This reverts commit 5ebdb07e7e.
Enabling shrink wrap by default can cause assertions or crashes, and
these should first be investigated and fixed. For now, reverting the
change so it can be cherry-picked into 14.0.0 is the safest choice.
Originally, hasRVVFrameObject() will scan all the stack objects to check
whether if there is any scalable vector object on the stack or not.
However, it causes errors in the register allocator. In issue 53016, it
returns false before RA because there is no RVV stack objects. After RA,
it returns true because there are spilling slots for RVV values during RA.
The compiler will not reserve BP during register allocation and generate BP
access in the PEI pass due to the inconsistent behavior of the function.
The function is changed to use hasStdExtV() as the return value. It is
not precise, but it can make the register allocation correct.
Refer to https://github.com/llvm/llvm-project/issues/53016.
Differential Revision: https://reviews.llvm.org/D117663
When we have out-going arguments passing through stack and we do not
reserve the stack space in the prologue. Use BP to access stack objects
after adjusting the stack pointer before function calls.
callseq_start -> sp = sp - reserved_space
//
// Use FP to access fixed stack objects.
// Use BP to access non-fixed stack objects.
//
call @foo
callseq_end -> sp = sp + reserved_space
Differential Revision: https://reviews.llvm.org/D114246
Currently, we restore the return address register as the last restoring
instruction in the epilog. The next instruction is `ret` usually. It is
a use of return address register. In some microarchitectures, there is
load-to-use data hazard. To avoid the load-to-use data hazard, we could
separate the load instruction from its use as far as possible. In this
patch, we reverse the order of restoring callee-saved registers to
increase the distance of `load ra` and `ret` in the epilog.
Differential Revision: https://reviews.llvm.org/D113967
Add new hasVInstructions() which is currently equivalent.
Replace vector uses of hasStdExtZfh/F/D with new vector specific
versions. The vector spec no longer requires that the vectors implement the
same types as scalar. It only requires that the scalar type is
the maximum size the vectors can support. This is currently
implemented using the scalar rule we were using before.
Add new hasVInstructionsI64() begin using to qualify code that
requires i64 vector elements.
This is all NFC for now, but we can start using this to better
implement D112408 which introduces the Zve extensions.
Reviewed By: frasercrmck, eopXD
Differential Revision: https://reviews.llvm.org/D112496
When using FP to access stack objects, the scalable stack objects will
be put at the lower end of the frame. It looks like
```
|-------------------| <-- FP
| callee-saved regs |
|-------------------|
| scalar local vars |
|-------------------|
| RVV local vars |
|-------------------| <-- SP
```
If there are scalar arguments that need to pass through memory and there
are vector objects on the stack using FP to access. The outgoing scalar
arguments will overwrite the vector objects. It looks like
```
|-------------------| <-- FP
| callee-saved regs |
|-------------------|
| scalar local vars |
|-------------------| |-------------------|
| RVV local vars | | outgoing args | <- outgoing arguments
|-------------------| <-- SP |-------------------| overwrite from here.
```
In this patch, we reserve the stack for the outgoing arguments before
function calls if using FP to access and there are scalable vector frame
objects. It looks like
```
|-------------------| <-- FP
| callee-saved regs |
|-------------------|
| scalar local vars |
|-------------------|
| RVV local vars |
|-------------------|
| outgoing args |
|-------------------| <-- SP
```
Differential Revision: https://reviews.llvm.org/D103622
This patch addresses an issue in which fixed-length (VLS) vector RVV
code could fail to reserve an emergency spill slot for their frame index
elimination. This is because we were previously only reserving a spill
slot when there were `scalable-vector` frame indices being used.
However, fixed-length codegen uses regular-type frame indices if it
needs to spill.
This patch does the fairly brute-force method of checking ahead of time
whether the function contains any RVV spill instructions, in which case
it reserves one slot. Note that the second RVV slot is still only
reserved for `scalable-vector` frame indices.
This unfortunately causes quite a bit of churn in existing tests, where
we chop and change stack offsets for spill slots.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D103269
This patch adds TargetStackID::WasmLocal. This stack holds locations of
values that are only addressable by name -- not via a pointer to memory.
For the WebAssembly target, these objects are lowered to WebAssembly
local variables, which are managed by the WebAssembly run-time and are
not addressable by linear memory.
For the WebAssembly target IR indicates that an AllocaInst should be put
on TargetStackID::WasmLocal by putting it in the non-integral address
space WASM_ADDRESS_SPACE_WASM_VAR, with value 1. SROA will mostly lift
these allocations to SSA locals, but any alloca that reaches instruction
selection (usually in non-optimized builds) will be assigned the new
TargetStackID there. Loads and stores to those values are transformed
to new WebAssemblyISD::LOCAL_GET / WebAssemblyISD::LOCAL_SET nodes,
which then lower to the type-specific LOCAL_GET_I32 etc instructions via
tablegen patterns.
Differential Revision: https://reviews.llvm.org/D101140
This patch adds TargetStackID::WasmLocal. This stack holds locations of
values that are only addressable by name -- not via a pointer to memory.
For the WebAssembly target, these objects are lowered to WebAssembly
local variables, which are managed by the WebAssembly run-time and are
not addressable by linear memory.
For the WebAssembly target IR indicates that an AllocaInst should be put
on TargetStackID::WasmLocal by putting it in the non-integral address
space WASM_ADDRESS_SPACE_WASM_VAR, with value 1. SROA will mostly lift
these allocations to SSA locals, but any alloca that reaches instruction
selection (usually in non-optimized builds) will be assigned the new
TargetStackID there. Loads and stores to those values are transformed
to new WebAssemblyISD::LOCAL_GET / WebAssemblyISD::LOCAL_SET nodes,
which then lower to the type-specific LOCAL_GET_I32 etc instructions via
tablegen patterns.
Differential Revision: https://reviews.llvm.org/D101140
Since ca5f07f8c4 already reverted
the cause for this warning, this commit now causes warnings about
a default label in a switch that covers the enum.
This reverts commit cf2eeb114c.
The MachineBasicBlock::iterator is continuously changing during
generating the frame handling instructions. We should use the DebugLoc
from the caller, instead of getting it from the changing iterator.
If the prologue instructions located in a basic block without any other
instructions after these prologue instructions, the iterator will be
updated to the boundary of the basic block and it is invalid to use the
iterator to access DebugLoc. This patch also fixes the crash when
accessing DebugLoc using the iterator.
Differential Revision: https://reviews.llvm.org/D102386
When rvv vector objects existed, using sp to access the fixed stack object will pass the rvv vector objects field. So the StackOffset needs add a scalable offset of the size of rvv vector objects field
Differential Revision: https://reviews.llvm.org/D100286
This patch adds an additional emergency spill slot to RVV code. This is
required as RVV stack offsets may require an additional register to compute.
This patch includes an optimization by @HsiangKai <kai.wang@sifive.com>
to reduce the number of registers required for the computation of stack
offsets from 3 to 2. Otherwise we'd need two additional emergency spill
slots.
Reviewed By: HsiangKai
Differential Revision: https://reviews.llvm.org/D100574
Currently needsStackRealignment returns false if canRealignStack returns false.
This means that the behavior of needsStackRealignment does not correspond to
it's name and description; a function might need stack realignment, but if it
is not possible then this function returns false. Furthermore,
needsStackRealignment is not virtual and therefore some backends have made use
of canRealignStack to indicate whether a function needs stack realignment.
This patch attempts to clarify the situation by separating them and introducing
new names:
- shouldRealignStack - true if there is any reason the stack should be
realigned
- canRealignStack - true if we are still able to realign the stack (e.g. we
can still reserve/have reserved a frame pointer)
- hasStackRealignment = shouldRealignStack && canRealignStack (not target
customisable)
Targets can now override shouldRealignStack to indicate that stack realignment
is required.
This change will make it easier in a future change to handle the case where we
need to realign the stack but can't do so (for example when the register
allocator creates an aligned spill after the frame pointer has been
eliminated).
Differential Revision: https://reviews.llvm.org/D98716
Change-Id: Ib9a4d21728bf9d08a545b4365418d3ffe1af4d87
In D97111 we changed the RVV frame layout when using sp or bp to address
the stack slots so we could address the emergency stack slot. The idea
is to put the RVV objects as far as possible (in offset terms) from the
frame reference register (sp / fp / bp).
When using fp this happens naturally because the RVV objects are already
the top of the stack and due to the constraints of RVV (VLENB being a
power of two >= 128) the stack remains aligned. The rest of this summary
does not apply to this case.
When using sp / bp we need to skip the non-RVV stack slots. The size of
the the non-RVV objects is computed subtracting the callee saved
register size (whose computation is added in D97111 itself) to the total
size of the stack (which does not account for RVV stack slots). However,
when doing so we round to 16 bytes when computing that size and we end
emitting a smaller offset that may belong to a scalar stack slot (see
D98801). So this change removes that rounding.
Also, because we want the RVV objects be between the non-RVV stack slots
and the callee-saved register slots, we need to make sure the RVV
objects are properly aligned to 8 bytes. Adding a padding of 8 would
render the stack unaligned. So when allocating space for RVV (only when
we don't use fp) we need to have extra padding that preserves the stack
alignment. This way we can round to 8 bytes the offset that skips the
non-RVV objects and we do not misalign the whole stack in the way. In
some circumstances this means that the RVV objects may have padding
before (=lower offsets from sp/bp) and after (before the CSR stack
slots).
Differential Revision: https://reviews.llvm.org/D98802
This patch change the rvv frame layout that proposed in D94465. In patch D94465, In the eliminateFrameIndex function,
to eliminate the rvv frame index, create temp virtual register is needed. This virtual register should be scavenged by class
RegsiterScavenger. If the machine function has other unused registers, there is no problem. But if there isn't unused registers,
we need a emergency spill slot. Because of the emergency spill slot belongs to the scalar local variables field, to access emergency
spill slot, we need a temp virtual register again. This makes the compiler report the "Incomplete scavenging after 2nd pass" error.
So I change the rvv frame layout as follows:
```
|--------------------------------------|
| arguments passed on the stack |
|--------------------------------------|<--- fp
| callee saved registers |
|--------------------------------------|
| rvv vector objects(local variables |
| and outgoing arguments |
|--------------------------------------|
| realignment field |
|--------------------------------------|
| scalar local variable(also contains|
| emergency spill slot) |
|--------------------------------------|<--- bp
| variable-sized local variables |
|--------------------------------------|<--- sp
```
Differential Revision: https://reviews.llvm.org/D97111
This patch proposes how to deal with RISC-V vector frame objects. The
layout of RISC-V vector frame will look like
|---------------------------------|
| scalar callee-saved registers |
|---------------------------------|
| scalar local variables |
|---------------------------------|
| scalar outgoing arguments |
|---------------------------------|
| RVV local variables && |
| RVV outgoing arguments |
|---------------------------------| <- end of frame (sp)
If there is realignment or variable length array in the stack, we will use
frame pointer to access fixed objects and stack pointer to access
non-fixed objects.
|---------------------------------| <- frame pointer (fp)
| scalar callee-saved registers |
|---------------------------------|
| scalar local variables |
|---------------------------------|
| ///// realignment ///// |
|---------------------------------|
| scalar outgoing arguments |
|---------------------------------|
| RVV local variables && |
| RVV outgoing arguments |
|---------------------------------| <- end of frame (sp)
If there are both realignment and variable length array in the stack, we
will use frame pointer to access fixed objects and base pointer to access
non-fixed objects.
|---------------------------------| <- frame pointer (fp)
| scalar callee-saved registers |
|---------------------------------|
| scalar local variables |
|---------------------------------|
| ///// realignment ///// |
|---------------------------------| <- base pointer (bp)
| RVV local variables && |
| RVV outgoing arguments |
|---------------------------------|
| /////////////////////////////// |
| variable length array |
| /////////////////////////////// |
|---------------------------------| <- end of frame (sp)
| scalar outgoing arguments |
|---------------------------------|
In this version, we do not save the addresses of RVV objects in the
stack. We access them directly through the polynomial expression
(a x VLENB + b). We do not reserve frame pointer when there is any RVV
object in the stack. So, we also access the scalar frame objects through the
polynomial expression (a x VLENB + b) if the access across RVV stack
area.
Differential Revision: https://reviews.llvm.org/D94465
This is a first change needed to fix a crash in which the emergency
spill splot ends being out of reach. This happens when we run the
register scavenger after we have eliminated the frame indexes. The fix
for the actual crash will come in a later change.
This change removes an extra stack size increase we do in
RISCVFrameLowering::determineFrameLayout.
We don't have to change the size of the stack here as
PEI::calculateFrameObjectOffsets is already doing this with the right
size accounting the extra alignment.
Differential Revision: https://reviews.llvm.org/D89237
This is a special calling convention to be used by the GHC compiler.
Patch by Andreas Schwab (schwab)
Differential Revision: https://reviews.llvm.org/D89788
To accommodate frame layouts that have both fixed and scalable objects
on the stack, describing a stack location or offset using a pointer + uint64_t
is not sufficient. For this reason, we've introduced the StackOffset class,
which models both the fixed- and scalable sized offsets.
The TargetFrameLowering::getFrameIndexReference is made to return a StackOffset,
so that this can be used in other interfaces, such as to eliminate frame indices
in PEI or to emit Debug locations for variables on the stack.
This patch is purely mechanical and doesn't change the behaviour of how
the result of this function is used for fixed-sized offsets. The patch adds
various checks to assert that the offset has no scalable component, as frame
offsets with a scalable component are not yet supported in various places.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D90018
Currenlty assume x18 is used as pointer to shadow call stack. User shall pass
flags:
"-fsanitize=shadow-call-stack -ffixed-x18"
Runtime supported is needed to setup x18.
If SCS is desired, all parts of the program should be built with -ffixed-x18 to
maintain inter-operatability.
There's no particuluar reason that we must use x18 as SCS pointer. Any register
may be used, as long as it does not have designated purpose already, like RA or
passing call arguments.
Differential Revision: https://reviews.llvm.org/D84414
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: dylanmckay, sdardis, nemanjai, hiraditya, kbarton, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76551
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: jholewinski, arsenm, dschuff, jyknight, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76348
This patch adds the support required for using the __riscv_save and
__riscv_restore libcalls to implement a size-optimization for prologue
and epilogue code, whereby the spill and restore code of callee-saved
registers is implemented by common functions to reduce code duplication.
Logic is also included to ensure that if both this optimization and
shrink wrapping are enabled then the prologue and epilogue code can be
safely inserted into the basic blocks chosen by shrink wrapping.
Differential Revision: https://reviews.llvm.org/D62686
When the FP exists, the FP base CFI directive offset should take the size of variable arguments into account.
Differential Revision: https://reviews.llvm.org/D73862
Enabling shrink wrapping requires ensuring the insertion point of the
epilogue is correct for MBBs without a terminator, in which case the
instruction to adjust the stack pointer is the last instruction in the
block.
Differential Revision: https://reviews.llvm.org/D62190
Summary: Removes CFI CFA directives that could incorrectly propagate
beyond the basic block they were inteded for. Specifically it removes
the epilogue CFI directives. See the branch_and_tail_call test for an
example of the issue. Should fix the stack unwinding issues caused by
the incorrect directives.
Reviewers: asb, lenary, shiva0217
Reviewed By: lenary
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69723
Summary: Removes CFI CFA directives that could incorrectly propagate
beyond the basic block they were inteded for. Specifically it removes
the epilogue CFI directives. See the branch_and_tail_call test for an
example of the issue. Should fix the stack unwinding issues caused by
the incorrect directives.
Reviewers: asb, lenary, shiva0217
Reviewed By: lenary
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69723