AtomicExpandPass uses this variable to determine emitting libcalls or not. The default value is 1024 and if we don't specify it for PPC64 explicitly, AtomicExpandPass won't emit `__atomic_*` libcalls for those target unable to inline atomic ops and finally the backend emits `__sync_*` libcalls. Thanks @efriedma for pointing it out.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D122868
Make 16-byte atomic type aligned to 16-byte on PPC64, thus consistent with GCC. Also enable inlining 16-byte atomics on non-AIX targets on PPC64.
Reviewed By: hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D122377
Add support for builtin_[max|min] which has below prototype:
A builtin_max (A1, A2, A3, ...)
All arguments must have the same type; they must all be float, double, or long double.
Internally use SelectCC to get the result.
Reviewed By: qiucf
Differential Revision: https://reviews.llvm.org/D122478
To store a byval parameter the existing code would store as many 8 byte elements
as was required to store the full size of the byval parameter.
For example, a paramter of size 16 would store two element of 8 bytes.
A paramter of size 12 would also store two elements of 8 bytes.
This would sometimes store too many bytes as the size of the paramter is not
always a factor of 8.
This patch fixes that issue and now byval paramters are stored with the correct
number of bytes.
Reviewed By: nemanjai, #powerpc, quinnp, amyk
Differential Revision: https://reviews.llvm.org/D121430
After D108936, @llvm.smul.with.overflow.i64 was lowered to __multi3
instead of __mulodi4, which also doesn't exist on PowerPC 32-bit, not
even with compiler-rt. Block it as well so that we get inline code.
Because libgcc doesn't have __muloti4, we block that as well.
Fixes#54460.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D122090
We are going to remove the old 'perfect shuffle' optimization since it
brings performance penalty in hot loop around vectors. For example, in
following loop sharing the same mask:
%v.1 = shufflevector ... <0,1,2,3,8,9,10,11,16,17,18,19,24,25,26,27>
%v.2 = shufflevector ... <0,1,2,3,8,9,10,11,16,17,18,19,24,25,26,27>
The generated instructions will be `vmrglw-vmrghw-vmrglw-vmrghw` instead
of `vperm-vperm`. In some large loop cases, this causes 20%+ performance
penalty.
The original attempt to resolve this is to pre-record masks of every
shufflevector operation in DAG, but that is somewhat complex and brings
unnecessary computation (to scan all nodes) in optimization. Here we
disable it by default. There're indeed some cases becoming worse after
this, which will be fixed in a more careful way in future patches.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D121082
Currently in Clang, we have two types of builtins for fnmsub operation:
one for float/double vector, they'll be transformed into IR operations;
one for float/double scalar, they'll generate corresponding intrinsics.
But for the vector version of builtin, the 3 op chain may be recognized
as expensive by some passes (like early cse). We need some way to keep
the fnmsub form until code generation.
This patch introduces ppc.fnmsub.* intrinsic to unify four fnmsub
intrinsics.
Reviewed By: shchenz
Differential Revision: https://reviews.llvm.org/D116015
Perfect shuffle was introduced into PowerPC backend years ago, and only
available in big-endian subtargets. This optimization has good effects
in simple cases, but brings serious negative impact in large programs
with many shuffle instructions sharing the same mask.
Here introduces a temporary backend hidden option to control it until we
implemented better way to fix the gap in vectorshuffle decomposition.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D120072
Power ISA 3.1 adds xsmaxcqp/xsmincqp for quad-precision type-c max/min selection,
and this opens the opportunity to improve instruction selection on: llvm.maxnum.f128,
llvm.minnum.f128, and select_cc ordered gt/lt and (don't care) gt/lt.
Reviewed By: nemanjai, shchenz, amyk
Differential Revision: https://reviews.llvm.org/D117006
This patch introduces the conversions from math function calls
to MASS library calls. To resolves calls generated with these conversions, one
need to link libxlopt.a library. This patch is tested on PowerPC Linux and AIX.
Differential: https://reviews.llvm.org/D101759
Reviewer: bmahjour
This patch updates the P10 patterns with a load feeding into an insertelt to
utilize the refactored load and store infrastructure, as well as updating any
tests that exhibit any codegen changes.
Furthermore, custom legalization is added for v4f32 on Power9 and above to not
only assist with adjusting the refactored load/stores for P10 vector insert,
but also it enables the utilization of direct moves.
Differential Revision: https://reviews.llvm.org/D115691
This patch updates how splat loads handled and is an extension of D106555.
Particularly, for v2i64/v4f32/v4i32 types, they are updated to handle only
non-extending loads. For v8i16/v16i8 types, they are updated to handle extending
loads only if the memory VT is the same vector element VT type.
A test case has been added to illustrate a scenario where a PPCISD::LD_SPLAT
node should not be produced. In this test, it depicts the following f64
extending load used in a v2f64 build vector, but the extending load is actually
used in more places other than the build vector (such as in t12 and t16).
```
Type-legalized selection DAG: %bb.0 'test:entry'
SelectionDAG has 20 nodes:
t0: ch = EntryToken
t4: i64,ch = CopyFromReg t0, Register:i64 %1
t6: i64,ch = CopyFromReg t0, Register:i64 %2
t11: f64,ch = load<(load (s64) from %ir.b, !tbaa !7)> t0, t4, undef:i64
t16: f64 = fadd t31, t37
t34: ch = store<(store (s64) into %ir.c, !tbaa !7)> t31:1, t16, t6, undef:i64
t36: ch = TokenFactor t34, t37:1
t27: v2f64 = BUILD_VECTOR t37, t37
t22: ch,glue = CopyToReg t36, Register:v2f64 $v2, t27
t12: f64 = fadd t11, t37
t28: ch = store<(store (s64) into %ir.b, !tbaa !7)> t11:1, t12, t4, undef:i64
t31: f64,ch = load<(load (s64) from %ir.c, !tbaa !7)> t28, t6, undef:i64
t2: i64,ch = CopyFromReg t0, Register:i64 %0
t37: f64,ch = load<(load (s32) from %ir.a, !tbaa !3), anyext from f32> t0, t2, undef:i64
t23: ch = PPCISD::RET_FLAG t22, Register:v2f64 $v2, t22:1
```
Differential Revision: https://reviews.llvm.org/D117803
This reverts commit ef82063207.
- It conflicts with the existing llvm::size in STLExtras, which will now
never be called.
- Calling it without llvm:: breaks C++17 compat
In commit 1674d9b6b2, I fixed the bug where we didn't consider
both words of the result of the comparison. However, the logic
needs to be different for eq and ne.
Namely for eq, we need both words of the doubleword to equal so it
is an AND. OTOH for ne, we need either word to be unequal so it
is an OR.
Instead use either Type::getPointerElementType() or
Type::getNonOpaquePointerElementType().
This is part of D117885, in preparation for deprecating the API.
When doing the float to int conversion the strict conversion also needs to
retun a chain. This patch fixes that.
Reviewed By: nemanjai, #powerpc, qiucf
Differential Revision: https://reviews.llvm.org/D117464
The current code makes the assumption that equality
comparison can be performed with a word comparison
instruction. While this is true if the entire 64-bit
results are used, it does not generally work. It is
possible that the low order words and high order
words produce different results and a user of only
one will get the wrong result.
This patch adds an and of the result words so that
each word has the result of the comparison of the
entire doubleword that contains it.
Differential revision: https://reviews.llvm.org/D115678
Now we won't copy the byval parameter (bigger than 8 bytes) to
caller's parameter save area. Instead, we will only copy the
byval parameter when it can not be passed entirely in registers
which means we have to use parameter save area according to the
64 bit SVR4 ABI.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D111485
The load/store infrastructure previously made an incorrect assumption that
whenever it is used with a load/store intrinsic on Power10 - those intrinsics
would automatically be the lxvp/stxvp intrinsics introduced in Power10.
However, this is obviously not the case as there are multiple instances of
pre-P10 intrinsics that use the refactored load/store implementation.
This patch corrects this assumption, and produces the expected intrinsic on pre-P10.
Differential Revision: https://reviews.llvm.org/D114978
The XL implementation of vec_round for vector double uses
"round-to-nearest, ties to even" just as the vector float
`version does. However clang and gcc use "round-to-nearest-away"
for vector double and "round-to-nearest, ties to even"
for vector float.
The XL behaviour is implemented under the __XL_COMPAT_ALTIVEC__
macro similarly to other instances of incompatibility.
Differential revision: https://reviews.llvm.org/D113642
Similarly to what GCC does, we should allow scalars with
the "v" constraint rather than introducing unnecessary
new constraints for scalars in Altivec registers.
Differential revision: https://reviews.llvm.org/D113635
The platform independent ISD::INSERT_VECTOR_ELT take a element index,
but vins* instructions take a byte index. Update 32bit td patterns for
vector insert to handle the element index accordingly.
Since vector insert for non constant index are supported in
ISA3.1, there is no need to use platform specific ISD node,
PPCISD::VECINSERT. Update td pattern to directly use
ISD::INSERT_VECTOR_ELT instead.
Reviewed By: nemanjai, #powerpc
Differential Revision: https://reviews.llvm.org/D113802
Currently, the floating point instructions that depend on
rounding mode are correctly marked in the PPC back end with
an implicit use of the RM register. Similarly, instructions
that explicitly define the register are marked with an
implicit def of the same register. So for the most part,
RM-using code won't be moved across RM-setting instructions.
However, calls are not marked as RM-setting instructions so
code can be moved across calls. This is generally desired,
but so is the ability to turn off this behaviour with an
appropriate option - and -frounding-math really should be
that option.
This patch provides a set of call instructions (for direct
and indirect calls) that are marked with an implicit def of
the RM register. These will be used for calls that are marked
with the strictfp attribute.
Differential revision: https://reviews.llvm.org/D111433
ppc_fp128 and fp128 are both 128-bit floating point types. However, we
can't do conversion between them now, since trunc/ext are not allowed
for same-size fp types.
This patch adds two new intrinsics: llvm.ppc.convert.f128.to.ppcf128 and
llvm.convert.ppcf128.to.f128, to support such conversion.
Reviewed By: shchenz
Differential Revision: https://reviews.llvm.org/D109421
Implement two builtins to pack/unpack IBM extended long double float,
according to GCC 'Basic PowerPC Builtin Functions Available ISA 2.05'.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D112055
Inspired by D111968, provide a isNegatedPowerOf2() wrapper instead of obfuscating code with (-Value).isPowerOf2() patterns, which I'm sure are likely avenues for typos.....
Differential Revision: https://reviews.llvm.org/D111998
To better reflect the meaning of the now-disambiguated {GlobalValue,
GlobalAlias}::getBaseObject after breaking off GlobalIFunc::getResolverFunction
(D109792), the function is renamed to getAliaseeObject.
Lowering of byval parameters with sizes that are not represented by a single
store require multiple stores to properly address the correct size of the
parameter.
Sizes that cannot be done with a single store are 3 bytes, 5 bytes, 6 bytes,
7 bytes. It is not correct to simply perform an 8 byte store and for these
elements because then the store would be larger than the element and alias
analysis would assume that this is undefined behaivour and return NoAlias
for them.
This patch adds the correct stores so that the size of the store is not larger
than the size of the element.
Reviewed By: nemanjai, #powerpc
Differential Revision: https://reviews.llvm.org/D108795
This patch fixes the return value of the builtin __builtin_ppc_load2r to
correctly return short instead of int.
Reviewed By: nemanjai, #powerpc
Differential Revision: https://reviews.llvm.org/D110771
This patch is in a series of patches to provide builtins for
compatability with the XL compiler. This patch adds builtins for compare
exponent and test data class operations on floating point values.
Reviewed By: #powerpc, lei
Differential Revision: https://reviews.llvm.org/D109437
This patch exploits the prefixed load and store instructions utilizing the
refactored load/store implementation introduced in D93370.
Prefixed load and store instructions are emitted whenever we are loading or
storing a value with an offset that fits into a 34-bit signed immediate.
Patterns for the prefixed load and stores are added in this patch, as well as
the implementation that detects when we are loading and storing a value with an
offset that fits in 34-bits.
Differential Revision: https://reviews.llvm.org/D96075
This patch updates the PC-Relative load and store patterns to utilize the
refactored load/store implementation introduced in D93370.
PC-Relative implementation has been added to PPCISelLowering.cpp, and also the
patterns in PPCInstrPrefix.td have been updated and no longer require AddedComplexity.
All existing test cases pass with this update.
Differential Revision: https://reviews.llvm.org/D95116
Soft deprecrate isNullValue/isAllOnesValue and update in tree
callers. This matches the changes to the APInt interface from
D109483.
Reviewed By: lattner
Differential Revision: https://reviews.llvm.org/D109535
This renames the primary methods for creating a zero value to `getZero`
instead of `getNullValue` and renames predicates like `isAllOnesValue`
to simply `isAllOnes`. This achieves two things:
1) This starts standardizing predicates across the LLVM codebase,
following (in this case) ConstantInt. The word "Value" doesn't
convey anything of merit, and is missing in some of the other things.
2) Calling an integer "null" doesn't make any sense. The original sin
here is mine and I've regretted it for years. This moves us to calling
it "zero" instead, which is correct!
APInt is widely used and I don't think anyone is keen to take massive source
breakage on anything so core, at least not all in one go. As such, this
doesn't actually delete any entrypoints, it "soft deprecates" them with a
comment.
Included in this patch are changes to a bunch of the codebase, but there are
more. We should normalize SelectionDAG and other APIs as well, which would
make the API change more mechanical.
Differential Revision: https://reviews.llvm.org/D109483