line markers, including maintenance of the virtual include stack.
For something like this:
# 42 "bar.c" 1
# 142 "bar2.c" 1
#warning zappa
# 92 "bar.c" 2
#warning gonzo
# 102 "foo.c" 2
#warning bonkta
we now produce these three warnings:
#1:
In file included from foo.c:3:
In file included from bar.c:42:
bar2.c:143:2: warning: #warning zappa
#warning zappa
^
#2:
In file included from foo.c:3:
bar.c:92:2: warning: #warning gonzo
#warning gonzo
^
#3:
foo.c:102:2: warning: #warning bonkta
#warning bonkta
^
llvm-svn: 63722
location below it report as coming from the #line location. For example,
with:
#line 92 "foo.h"
#warning blarg!
#warning blarg!
we now emit:
foo.h:92:2: warning: #warning blarg!
#warning blarg!
^
foo.h:92:2: warning: #warning blarg!
#warning blarg!
^
llvm-svn: 63709
makes it clear to clients that they have to pick an instantiation
or spelling location before calling it and allows optimization based
on that.
llvm-svn: 63698
ContentCache objects to using a densemap and list, and allocating
the ContentCache objects from a bump pointer. This does not speed
up or slow down things substantially, but gives us control over
their alignment.
llvm-svn: 63628
as reported to the user and as manipulated by #line. This is what __FILE__,
__INCLUDE_LEVEL__, diagnostics and other things should follow (but not
dependency generation!).
This patch also includes several cleanups along the way:
- SourceLocation now has a dump method, and several other places
that did similar things now use it.
- I cleaned up some code in AnalysisConsumer, but it should probably be
simplified further now that NamedDecl is better.
- TextDiagnosticPrinter is now simplified and cleaned up a bit.
This patch is a prerequisite for #line, but does not actually provide
any #line functionality.
llvm-svn: 63098
address space we used up. Some interesting data:
For c99-intconst-1.c:
6912762 SLocEntry's allocated, 25592386B of Sloc address space used.
For cocoa.h:
26469 SLocEntry's allocated, 10278752B of Sloc address space used.
For carbon.h:
27364 SLocEntry's allocated, 12398141B of Sloc address space used.
Clearly 2G of sloc address space should be enough for anyone?!
llvm-svn: 63093
ground work for implementing #line, and fixes the "out of macro ID's"
problem.
There is nothing particularly tricky about the code, other than the
very performance sensitive SourceManager::getFileID() method.
llvm-svn: 62978
the chunk ID not the file ID. This exposes problems in
TextDiagnosticPrinter where it should have been using the canonical
file ID but wasn't. Fix these along the way.
llvm-svn: 62427
"FileID" a concept that is now enforced by the compiler's type checker
instead of yet-another-random-unsigned floating around.
This is an important distinction from the "FileID" currently tracked by
SourceLocation. *That* FileID may refer to the start of a file or to a
chunk within it. The new FileID *only* refers to the file (and its
#include stack and eventually #line data), it cannot refer to a chunk.
FileID is a completely opaque datatype to all clients, only SourceManager
is allowed to poke and prod it.
llvm-svn: 62407
the "physical" location of tokens, refer to the "spelling" location.
This is more concrete and useful, tokens aren't really physical objects!
llvm-svn: 62309
- Big Idea:
Source files are now mmaped when ContentCache::getBuffer() is first called.
While this doesn't change the functionality when lexing regular source files,
it can result in source files not being paged in when using PTH.
- Performance change:
- No observable difference (-fsyntax-only/-Eonly) on Cocoa.h when doing
regular source lexing.
- No observable time difference (-fsyntax-only/-Eonly) on Cocoa.h when using
PTH. We do observe, however, a reduction of 279K in memory mapped source
code (3% reduction). The majority of pages from Cocoa.h (and friends) are
still being pulled in, however, because any literal will cause
Preprocessor::getSpelling() to be called (causing the source for the file to
get pulled in). The next possible optimization is to cache literal strings
in the PTH file to avoid the need for the original header sources entirely.
- Right now there is a preprocessor directive to toggle between "lazy" and
"eager" creation of MemBuffers. This is not permanent, and is there in the
short term to just test additional optimizations.
llvm-svn: 61827
- 'Buffer' is now private and must be accessed via 'getBuffer()'.
This paves the way for lazily mapping in source files on demand.
- Added 'getSize()' (which gets the size of the content without
necessarily accessing the MemBuffer) and 'getSizeBytesMapped()'.
- Modifed SourceManager to use these new methods. This reduces the
number of places that actually access the MemBuffer object for a file
to those that actually look at the character data.
These changes result in no performance change for -fsyntax-only on Cocoa.h.
llvm-svn: 61782
to whether the fileid is a 'extern c system header' in addition to whether it
is a system header, most of this is spreading plumbing around. Once we have that,
PPLexerChange bases its "file enter/exit" notifications to PPCallbacks to
base the system header state on FileIDInfo instead of HeaderSearch. Finally,
in Preprocessor::HandleIncludeDirective, mirror logic in GCC: the system headerness
of a file being entered can be set due to the #includer or the #includee.
llvm-svn: 56688
* Move FormatError() from TextDiagnostic up to DiagClient, remove now
empty class TextDiagnostic
* Make DiagClient optional for Diagnostic
This fixes the following problems:
* -html-diags (and probably others) does now output the same set of
warnings as console clang does
* nothing crashes if one forgets to call setHeaderSearch() on
TextDiagnostic
* some code duplication is removed
llvm-svn: 54620
This is a temporary solution to avoid running out of file descriptors (which defaults to 256).
Need to benchmark to understand the speed benefit. If the benefit is small, the simple solution is to avoid memory mapping files. If the benefit is significant, more thought is necessary.
llvm-svn: 48991
lib dir and move all the libraries into it. This follows the main
llvm tree, and allows the libraries to be built in parallel. The
top level now enforces that all the libs are built before Driver,
but we don't care what order the libs are built in. This speeds
up parallel builds, particularly incremental ones.
llvm-svn: 48402