This patch upstreams support for the AArch64 Armv8-A cpu Cortex-A34.
In detail adding support for:
- mcpu option in clang
- AArch64 Target Features in clang
- llvm AArch64 TargetParser definitions
details of the cpu can be found here:
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a34
Reviewers: SjoerdMeijer
Reviewed By: SjoerdMeijer
Subscribers: SjoerdMeijer, kristof.beyls, hiraditya, cfe-commits,
llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74483
Change-Id: Ida101fc544ca183a0a0e61a1277c8957855fde0b
The CheckAtomic module performs two tests to determine if passing
'-latomic' to the linker is required: one for 64-bit atomics, and
another for non-64-bit atomics. Include the missing check for 64-bit
atomics.
Reviewers: beanz, compnerd
Reviewed By: beanz, compnerd
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69444
As noted on D74621, the bswap intrinsic has a self imposed limitation that the type's bitwidth must be divisible by 16, but there's no reason that APInt::byteSwap must have the same limitation, given that it can already handle any byte width.
Summary:
this review is extracted from D74308.
It creates two error handlers which allow to redefine error
reporting routine and should be used for all places
where errors are reported:
std::function<void(Error)> RecoverableErrorHandler = defaultErrorHandler;
std::function<void(Error)> WarningHandler = defaultWarningHandler;
It also creates accessors to above handlers which should be used to
report errors.
function_ref<void(Error)> getRecoverableErrorHandler() {
return RecoverableErrorHandler;
}
function_ref<void(Error)> getWarningHandler() { return WarningHandler; }
It patches all error reporting places inside DWARFContext and DWARLinker.
Reviewers: jhenderson, dblaikie, probinson, aprantl, JDevlieghere
Reviewed By: jhenderson, JDevlieghere
Subscribers: hiraditya, llvm-commits
Tags: #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D74481
The goal of this patch is to maximize CPU utilization on multi-socket or high core count systems, so that parallel computations such as LLD/ThinLTO can use all hardware threads in the system. Before this patch, on Windows, a maximum of 64 hardware threads could be used at most, in some cases dispatched only on one CPU socket.
== Background ==
Windows doesn't have a flat cpu_set_t like Linux. Instead, it projects hardware CPUs (or NUMA nodes) to applications through a concept of "processor groups". A "processor" is the smallest unit of execution on a CPU, that is, an hyper-thread if SMT is active; a core otherwise. There's a limit of 32-bit processors on older 32-bit versions of Windows, which later was raised to 64-processors with 64-bit versions of Windows. This limit comes from the affinity mask, which historically is represented by the sizeof(void*). Consequently, the concept of "processor groups" was introduced for dealing with systems with more than 64 hyper-threads.
By default, the Windows OS assigns only one "processor group" to each starting application, in a round-robin manner. If the application wants to use more processors, it needs to programmatically enable it, by assigning threads to other "processor groups". This also means that affinity cannot cross "processor group" boundaries; one can only specify a "preferred" group on start-up, but the application is free to allocate more groups if it wants to.
This creates a peculiar situation, where newer CPUs like the AMD EPYC 7702P (64-cores, 128-hyperthreads) are projected by the OS as two (2) "processor groups". This means that by default, an application can only use half of the cores. This situation could only get worse in the years to come, as dies with more cores will appear on the market.
== The problem ==
The heavyweight_hardware_concurrency() API was introduced so that only *one hardware thread per core* was used. Once that API returns, that original intention is lost, only the number of threads is retained. Consider a situation, on Windows, where the system has 2 CPU sockets, 18 cores each, each core having 2 hyper-threads, for a total of 72 hyper-threads. Both heavyweight_hardware_concurrency() and hardware_concurrency() currently return 36, because on Windows they are simply wrappers over std:🧵:hardware_concurrency() -- which can only return processors from the current "processor group".
== The changes in this patch ==
To solve this situation, we capture (and retain) the initial intention until the point of usage, through a new ThreadPoolStrategy class. The number of threads to use is deferred as late as possible, until the moment where the std::threads are created (ThreadPool in the case of ThinLTO).
When using hardware_concurrency(), setting ThreadCount to 0 now means to use all the possible hardware CPU (SMT) threads. Providing a ThreadCount above to the maximum number of threads will have no effect, the maximum will be used instead.
The heavyweight_hardware_concurrency() is similar to hardware_concurrency(), except that only one thread per hardware *core* will be used.
When LLVM_ENABLE_THREADS is OFF, the threading APIs will always return 1, to ensure any caller loops will be exercised at least once.
Differential Revision: https://reviews.llvm.org/D71775
This reverts commit 80a34ae311 with fixes.
Previously, since bots turning on EXPENSIVE_CHECKS are essentially turning on
MachineVerifierPass by default on X86 and the fact that
inline-asm-avx-v-constraint-32bit.ll and inline-asm-avx512vl-v-constraint-32bit.ll
are not expected to generate functioning machine code, this would go
down to `report_fatal_error` in MachineVerifierPass. Here passing
`-verify-machineinstrs=0` to make the intent explicit.
This reverts commit 80a34ae311 with fixes.
On bots llvm-clang-x86_64-expensive-checks-ubuntu and
llvm-clang-x86_64-expensive-checks-debian only,
llc returns 0 for these two tests unexpectedly. I tweaked the RUN line a little
bit in the hope that LIT is the culprit since this change is not in the
codepath these tests are testing.
llvm\test\CodeGen\X86\inline-asm-avx-v-constraint-32bit.ll
llvm\test\CodeGen\X86\inline-asm-avx512vl-v-constraint-32bit.ll
This reverts commit rGcd5b308b828e, rGcd5b308b828e, rG8cedf0e2994c.
There are issues to be investigated for polly bots and bots turning on
EXPENSIVE_CHECKS.
Mark the CrashRecoveryContextImpl constructor noexcept, so that MSVC
won't emit an unwind helper to clean up the allocation from `new` if the
constructor throws an exception.
Otherwise, MSVC complains:
llvm\lib\Support\CrashRecoveryContext.cpp(220): error C2712: \
Cannot use __try in functions that require object unwinding
The other simple fix would be to wrap `new` in a static helper or
lambda.
Users have reported that Tensorflow builds LLVM with /EHsc.
Added a test for #pragma clang __debug llvm_fatal_error to test for the original issue.
Added llvm::sys::Process::Exit() and replaced ::exit() in places where it was appropriate. This new function would call the current CrashRecoveryContext if one is running on the same thread; or call ::exit() otherwise.
Fixes PR44705.
Differential Revision: https://reviews.llvm.org/D73742
Previously, the SEH codepath in CrashRecoveryContext didn't create a CrashRecoveryContextImpl. The other codepaths (VEH and Unix) were creating it.
When running with -fintegrated-cc1, this is needed to handle exit() as a jump to CrashRecoveryContext's exception filter, through a call to RaiseException. In that situation, we need a user-defined exception code, which is later interpreted as an exit() by the exception filter. This in turn needs to set RetCode accordingly, *inside* the exception filter, and *before* calling HandleCrash().
Differential Revision: https://reviews.llvm.org/D74078
As discussed in D70568, remove this because it isn't used anywhere, and I think it's better to go through real crashes for testing (#pragma clang __debug crash).
Also remove the support function llvm::CrashRecoveryContext::HandleCrash() which was added at the same time by @ddunbar.
Differential Revision: https://reviews.llvm.org/D74063
The problem was noticed by the Chrome OS toolchain folks
(crbug.com/1048445) because llvm-objcopy --add-gnu-debuglink would
insert the wrong checksum when processing a binary larger than 4 GB.
That use case regressed in 1e1e3ba252 when we started using
llvm::crc32() in more places.
Differential revision: https://reviews.llvm.org/D74039
Removed some #ifdefs specific to Windows handling of VFS paths. This
eliminates most of the differences between the Windows and non-Windows
code paths.
Making this work required some changes to account for the fact that VFS
file paths can be Posix style or Windows style, so you cannot just assume
that they use the host's native path style. In one case, this means
implementing our own version of make_absolute, since the filesystem code
in Support doesn't have styles in the sense that the path code does.
Differential Review: https://reviews.llvm.org/D71092
Summary:
This patch changes the underlying type of the ARM::ArchExtKind
enumeration to uint64_t and adjusts the related code.
The goal of the patch is to prepare the code base for a new
architecture extension.
Reviewers: simon_tatham, eli.friedman, ostannard, dmgreen
Reviewed By: dmgreen
Subscribers: merge_guards_bot, kristof.beyls, hiraditya, cfe-commits, llvm-commits, pbarrio
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73906
Copy it instead. Otherwise, key registers (such as RBP) may get zeroed
out by the stack unwinder.
Fixes CrashRecoveryTest.DumpStackCleanup with MSVC in release builds.
Reviewed By: stella.stamenova
Differential Revision: https://reviews.llvm.org/D73809
This patch wraps an external thread local storage variable inside of a
getter function and makes it have internal linkage. This allows LLVM to
be built with BUILD_SHARED_LIBS on windows with MinGW. Additionally it
allows Clang versions prior to 10 to compile current trunk for MinGW.
Differential Revision: https://reviews.llvm.org/D73639
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
This makes TimeTraceProfilerInstance thread local. Added
timeTraceProfilerFinishThread() which moves the thread local instance to
a global vector of instances. timeTraceProfilerWrite() then writes
recorded data from all instances.
Threads are identified based on their thread ids. Totals are reported
with artificial thread ids higher than the real ones.
This fixes the previous version to work with __thread as well as
thread_local.
Differential Revision: https://reviews.llvm.org/D71059
Summary:
This patch is part of a patch series to add support for FileCheck
numeric expressions. This specific patch adds support for selecting a
matching format to match a numeric value against (ie. decimal, hex lower
case letters or hex upper case letters).
This commit allows to select what format a numeric value should be
matched against. The following formats are supported: decimal value,
lower case hex value and upper case hex value. Matching formats impact
both the format of numeric value to be matched as well as the format of
accepted numbers in a definition with empty numeric expression
constraint.
Default for absence of format is decimal value unless the numeric
expression constraint is non null and use a variable in which case the
format is the one used to define that variable. Conclict of format in
case of several variable being used is diagnosed and forces the user to
select a matching format explicitely.
This commit also enables immediates in numeric expressions to be in any
radix known to StringRef's GetAsInteger method, except for legacy
numeric expressions (ie [[@LINE+<offset>]] which only support decimal
immediates.
Copyright:
- Linaro (changes up to diff 183612 of revision D55940)
- GraphCore (changes in later versions of revision D55940 and
in new revision created off D55940)
Reviewers: jhenderson, chandlerc, jdenny, probinson, grimar, arichardson
Reviewed By: jhenderson, arichardson
Subscribers: daltenty, MaskRay, hiraditya, llvm-commits, probinson, dblaikie, grimar, arichardson, kristina, hfinkel, rogfer01, JonChesterfield
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60389
Add support for converting Signaling NaN, and a NaN Payload from string.
The NaNs (the string "nan" or "NaN") may be prefixed with 's' or 'S' for defining a Signaling NaN.
A payload for a NaN can be specified as a suffix.
It may be a octal/decimal/hexadecimal number in parentheses or without.
Differential Revision: https://reviews.llvm.org/D69773
Summary:
This patch could be treated as a rebase of D33960. It also fixes PR35547.
A fix for `llvm/test/Other/close-stderr.ll` is proposed in D68164. Seems
the consensus is that the test is passing by chance and I'm not
sure how important it is for us. So it is removed like in D33960 for now.
The rest of the test fixes are just adding `--crash` flag to `not` tool.
** The reason it fixes PR35547 is
`exit` does cleanup including calling class destructor whereas `abort`
does not do any cleanup. In multithreading environment such as ThinLTO or JIT,
threads may share states which mostly are ManagedStatic<>. If faulting thread
tearing down a class when another thread is using it, there are chances of
memory corruption. This is bad 1. It will stop error reporting like pretty
stack printer; 2. The memory corruption is distracting and nondeterministic in
terms of error message, and corruption type (depending one the timing, it
could be double free, heap free after use, etc.).
Reviewers: rnk, chandlerc, zturner, sepavloff, MaskRay, espindola
Reviewed By: rnk, MaskRay
Subscribers: wuzish, jholewinski, qcolombet, dschuff, jyknight, emaste, sdardis, nemanjai, jvesely, nhaehnle, sbc100, arichardson, jgravelle-google, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, lenary, s.egerton, pzheng, cfe-commits, MaskRay, filcab, davide, MatzeB, mehdi_amini, hiraditya, steven_wu, dexonsmith, rupprecht, seiya, llvm-commits
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D67847
This patch allows for handling a failure inside a CrashRecoveryContext in the same way as the global exception/signal handler. A failure will have the same side-effect, such as cleanup of temporarty file, printing callstack, calling relevant signal handlers, and finally returning an exception code. This is an optional feature, disabled by default.
This is a support patch for D69825.
Differential Revision: https://reviews.llvm.org/D70568