Instead, mark the module as unavailable so that clang errors as soon as
someone tries to build this module.
This works towards the long-term goal of not stat'ing the header files at all
while reading the module map and instead read them only when the module is
being built (there is a corresponding FIXME in parseHeaderDecl()). However, it
seems non-trivial to get there and this unblock us and moves us into the right
direction.
Also changed the implementation to reuse the same DiagnosticsEngine.
llvm-svn: 197485
Instead, mark the module as unavailable so that clang errors as soon as
someone tries to build this module.
A better long-term strategy might be to not stat the header files at all
while reading the module map and instead read them only when the module
is being built (there is a corresponding FIXME in parseHeaderDecl()).
However, it seems non-trivial to get there and this would be a temporary
solution to unblock us.
Also changed the implementation to reuse the same DiagnosticsEngine as
otherwise warnings can't be enabled or disabled with command-line flags.
llvm-svn: 197388
The warning for backslash and newline separated by whitespace was missed in
this code path.
backslash<whitespace><newline> is handled differently from compiler to compiler
so it's important to warn consistently where there's ambiguity.
Matches similar handling of block comments and non-comment lines.
llvm-svn: 197331
Includes might always pull in arbitrary header or data files outside of
modules. Among others, this includes builtin includes, which do not have
a module (story) yet.
Also cleanup implementation of ModuleMap::findModuleForHeader() to be
non-recursive.
llvm-svn: 197034
In order to make the migration to modules easier, it seems to be helpful
to allow a 1:1 mapping between target names of a current build system
and the corresponding C++ modules. As such targets commonly contain
characters like "-". ":" and "/", allowing arbitrary quote-escaped
strings seems to be a straightforward option.
After several offline discussions, the precise mechanisms for C++
module names especially regarding submodules and import statements has
yet to be determined. Thus, this patch only enables string literals as
names inside the module map files which can be used by automatic module
import (through #include).
Also improve the error message on missing use-declarations.
llvm-svn: 196573
Before, there SourceManager would not return a FileEntry for a
SourceLocation of a macro expansion (if the header name itself is
defined in a macro). We'd then fallback to assume that the module
currently being built is the including module. However, in this case we
are actually interested in the spelling location of the filename loc in
order to derive the including module.
llvm-svn: 196311
module. Use the marker to diagnose cases where we try to transition between
submodules when not at the top level (most likely because a closing brace was
missing at the end of a header file, but is also possible if submodule headers
attempt to do something fundamentally non-modular, like our .def files).
llvm-svn: 195543
representing the module import rather than making the module immediately
visible. This serves two goals:
* It avoids making declarations in the module visible prematurely, if we
walk past the #include during a tentative parse, for instance, and
* It gives a diagnostic (although, admittedly, not a very nice one) if
a header with a corresponding module is included anywhere other than
at the top level.
llvm-svn: 194782
The preprocessor currently recognizes module declarations to load a
module based on seeing the 'import' keyword followed by an
identifier. This sequence is fairly unlikely in C (one would need a
type named 'import'), but is more common in Objective-C (where a
variable named 'import' can cause problems). Since import declarations
currently require a leading '@', recognize that in the preprocessor as
well. Fixes <rdar://problem/15084587>.
llvm-svn: 194225
After lexing a '##', we would look ahead and check to see if it was
followed by '__VA_ARGS__'. After doing so, we would then go ahead and
lex the token.
However we would fail in the case where the '##' was followed by a '#'
followed by an identifier because we would have lexed the '#' separately
from the identifier, bypassing our parameter validation logic.
Instead, lex the tokens coming after the '##' later.
This fixes PR17804.
llvm-svn: 194059
requires ! feature
The purpose of this is to allow (for instance) the module map for /usr/include
to exclude <tgmath.h> and <complex.h> when building in C++ (these headers are
instead provided by the C++ standard library in this case, and the glibc C
<tgmath.h> header would otherwise try to include <complex.h>, resulting in a
module cycle).
llvm-svn: 193549
This allows using virtual file mappings on the original SourceManager to
map in virtual module.map files. Without this patch, the ModuleMap
search will find a module.map file (as the FileEntry exists in the
FileManager), but will be unable to get the content from the
SourceManager (as ModuleMap previously created its own SourceManager).
Two problems needed to be fixed which this patch exposed:
1. Storing the inferred module map
When writing out a module, the ASTWriter stores the names of the files
in the main source manager; when loading the AST again, the ASTReader
errs out if such a file is found missing, unless it is overridden.
Previously CompilerInstance's compileModule method would store the
inferred module map to a temporary file; the problem with this approach
is that now that the module map is handled by the main source manager,
the ASTWriter stores the name of the temporary module map as source to
the compilation; later, when the module is loaded, the temporary file
has already been deleted, which leads to a compilation error. This patch
changes the inferred module map to instead inject a virtual file into
the source manager. This both saves some disk IO, and works with how the
ASTWriter/ASTReader handle overridden source files.
2. Changing test input in test/Modules/Inputs/*
Now that the module map file is handled by the main source manager, the
VerifyDiagnosticConsumer will not ignore diagnostics created while
parsing the module map file. The module test test/Modules/renamed.m uses
-I test/Modules/Inputs and triggers recursive loading of all module maps
in test/Modules/Inputs, some of which had conflicting names, thus
leading errors while parsing the module maps. Those diagnostics already
occur on trunk, but before this patch they would not break the test, as
they were ignored by the VerifyDiagnosticConsumer. This patch thus
changes the module maps that have been recently introduced which broke
the invariant of compatible modules maps in test/Modules/Inputs.
llvm-svn: 193314
This patch changes two things:
a) Allow a header to be part of multiple modules. The reasoning is that
in existing codebases that have a module-like build system, the same
headers might be used in several build targets. Simple reasons might be
that they defined different classes that are declared in the same
header. Supporting a header as a part of multiple modules will make the
transistion easier for those cases. A later step in clang can then
determine whether the two modules are actually compatible and can be
merged and error out appropriately. The later check is similar to what
needs to be done for template specializations anyway.
b) Allow modules to be stored in a directory tree separate from the
headers they describe.
Review: http://llvm-reviews.chandlerc.com/D1951
llvm-svn: 193151
The C and C++ standards disallow using universal character names to
refer to some characters, such as basic ascii and control characters,
so we reject these sequences in the lexer. However, when the
preprocessor isn't being used on C or C++, it doesn't make sense to
apply these restrictions.
Notably, accepting these characters avoids issues with unicode escapes
when GHC uses the compiler as a preprocessor on haskell sources.
Fixes rdar://problem/14742289
llvm-svn: 193067
Summary: Some MS headers use these features.
Reviewers: rnk, rsmith
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1948
llvm-svn: 192936
If the edit distance between the two macros is more than 50%, DefinedMacro may not be header guard or can be header guard of another header file or it might be defining something completely different set by the build environment.
llvm-svn: 192547
This partially addresses PR17435, but it doesn't actually implement the
pragma. If we implement it, we should map levels 1-4 to something like
-Wall and level 0 to something like -w.
llvm-svn: 191833
Previously the code would reduce a run of backslashes to a single
backslash, and now it will properly leave behind every other backslash.
llvm-svn: 191382
With this option, arbitrarily named module map files can be specified
to be loaded as required for headers in the respective (sub)directories.
This, together with the extern module declaration allows for specifying
module maps in a modular fashion without the need for files called
"module.map".
Among other things, this allows a directory to contain two modules that
are completely independent of one another.
Review: http://llvm-reviews.chandlerc.com/D1697.
llvm-svn: 191284
Review: http://llvm-reviews.chandlerc.com/D1546.
I have picked up this patch form Lawrence
(http://llvm-reviews.chandlerc.com/D1063) and did a few changes.
From the original change description (updated as appropriate):
This patch adds a check that ensures that modules only use modules they
have so declared. To this end, it adds a statement on intended module
use to the module.map grammar:
use module-id
A module can then only use headers from other modules if it 'uses' them.
This enforcement is off by default, but may be turned on with the new
option -fmodules-decluse.
When enforcing the module semantics, we also need to consider a source
file part of a module. This is achieved with a compiler option
-fmodule-name=<module-id>.
The compiler at present only applies restrictions to the module directly
being built.
llvm-svn: 191283
literal operators. Also, for now, allow the proposed C++1y "il", "i", and "if"
suffixes too. (Will revert the latter if LWG decides not to go ahead with that
change after all.)
llvm-svn: 191274
Before this patch, Lex() would recurse whenever the current lexer changed (e.g.
upon entry into a macro). This patch turns the recursion into a loop: the
various lex routines now don't return a token when the current lexer changes,
and at the top level Preprocessor::Lex() now loops until it finds a token.
Normally, the recursion wouldn't end up being very deep, but the recursion depth
can explode in edge cases like a bunch of consecutive macros which expand to
nothing (like in the testcase test/Preprocessor/macro_expand_empty.c in this
patch).
<rdar://problem/14569770>
llvm-svn: 190980
Unlike C++11's "thread_local" keyword, C11's "_Thread_local" is in the
reserved namespace, meaning we provide it unconditionally; it is marked
as KEYALL in TokenKinds.def.
This means that like all the other C11 keywords, we can expose its
presence through __has_extension().
llvm-svn: 190755
Summary:
This fixes PR17145 and avoids unknown pragma warnings.
This change does not attempt to map MSVC warning numbers to clang
warning flags. Perhaps in the future we will implement a mapping for
some common subset of Microsoft warnings, but for now we don't.
Reviewers: rsmith
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1652
llvm-svn: 190726
This patch is the first step to make module-map-files modular (instead
of requiring a single "module.map"-file per include directory). This
step adds a new "extern module" declaration that enables
module-map-files to reference one another along with a very basic
implementation.
The next steps are:
* Combine this with the use-declaration (from
http://llvm-reviews.chandlerc.com/D1546) in order to only load module
map files required for a specific compilation.
* Add an additional flag to start with a specific module-map-file (instead
of requiring there to be at least one "module.map").
Review: http://llvm-reviews.chandlerc.com/D1637
llvm-svn: 190497
Apparently, gcc's -traditional-cpp behaves slightly differently in C++ mode;
specifically, it discards "//" comments. Match gcc's behavior.
<rdar://problem/14808126>
llvm-svn: 189515
If the user has requested this warning, we should emit it, even if it's not
an extension in the current language mode. However, being an extension is
more important, so prefer the pedantic warning or the pedantic-compatibility
warning if those are enabled.
<rdar://problem/12922063>
llvm-svn: 189110
Basically, isInMainFile considers line markers, and isWrittenInMainFile
doesn't. Distinguishing between the two is useful when dealing with
files which are preprocessed files or rewritten with -frewrite-includes
(so we don't, for example, print useless warnings).
llvm-svn: 188968
Summary: This is a follow-up to r187837.
Reviewers: gribozavr, jordan_rose
Reviewed By: jordan_rose
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1306
llvm-svn: 188056
DataFlowSanitizer is a generalised dynamic data flow analysis.
Unlike other Sanitizer tools, this tool is not designed to detect a
specific class of bugs on its own. Instead, it provides a generic
dynamic data flow analysis framework to be used by clients to help
detect application-specific issues within their own code.
Differential Revision: http://llvm-reviews.chandlerc.com/D966
llvm-svn: 187925
This unifies the unix and windows versions of FileManager::UniqueDirContainer
and FileManager::UniqueFileContainer by using UniqueID.
We cannot just replace "struct stat" with llvm::sys::fs::file_status, since we
want to be able to construct fake ones, and file_status has different members
on unix and windows.
What the patch does is:
* Record only the information that clang is actually using.
* Use llvm::sys::fs::status instead of stat and fstat.
* Use llvm::sys::fs::UniqueID
* Delete the old windows versions of UniqueDirContainer and
UniqueFileContainer since the "unix" one now works on windows too.
llvm-svn: 187619
Beginning with svn r186971, we noticed an internal test started to fail when
using clang built with LTO. After much investigation, it turns out that there
are no blatant bugs here, we are just running out of stack space and crashing.
Preprocessor::ReadFunctionLikeMacroArgs already has one vector of 64 Tokens,
and r186971 added another. When built with LTO, that function is inlined into
Preprocessor::HandleMacroExpandedIdentifier, which for our internal test is
invoked in a deep recursive cycle. I'm leaving the original 64 Token vector
alone on the assumption that it is important for performance, but the new
FixedArgTokens vector is only used on an error path, so it should be OK if it
requires additional heap storage. It would be even better if we could avoid
the deep recursion, but I think this change is a good thing to do regardless.
<rdar://problem/14540345>
llvm-svn: 187315
This allows the ObjFW runtime to correctly implement message forwarding
for messages which return a struct.
Patch by Jonathan Schleifer.
llvm-svn: 187174
It turns out that Plum Hall depends on us not emitting an error on
integer literals which fit into long long, but fit into
unsigned long long. So C99 conformance requires not conforming to C99. :)
llvm-svn: 187172
cxx_init_capture. "generalized" is neither descriptive nor future-proof. No
compatibility problems expected, since we've never advertised having this
feature.
llvm-svn: 187058
function-like macro. Clang will attempt to correct the arguments by detecting
braced initializer lists:
1) If possible, suggest parentheses around arguments
containing braced lists which will give the proper number of arguments.
2) If a braced list is detected at the start of a macro argument, it cannot be
corrected by parentheses. Instead, just point out the location of these
braced lists.
llvm-svn: 186971
Switch some warnings over to errors which should never have been warnings
in the first place. (Also, a minor fix to the preprocessor rules for
integer literals while I'm here.)
llvm-svn: 186903
This allows clang to parse the type_traits header in Visual Studio 2012,
which is included widely in practice.
This is a rework of r163022 by João Matos. The original patch broke
preprocessing of gtest headers, which this patch addresses.
Patch by Will Wilson!
llvm-svn: 184968
and a '!defined(X)' if we find a broken header guard. This is suboptimal; we
should point the diagnostic at the 'X' token not the 'if' token, but it fixes
the crash.
llvm-svn: 184054
properly. This warning checks that the #ifndef and #define directives at
the beginning of a header refer to the same macro name. Includes a fix-it
hint to correct the header guard.
llvm-svn: 183867
When x is empty, x ## is suppressed, and when y gets expanded, the fact that it follows ## is not
available in the macro expansion result. The macro definition can be checked instead, the ## will
be available there regardless of what x expands to.
Fixes http://llvm.org/PR12767
Patch by Harald van Dijk!
llvm-svn: 182699
The most common (non-buggy) case are where such objects are used as
return expressions in bool-returning functions or as boolean function
arguments. In those cases I've used (& added if necessary) a named
function to provide the equivalent (or sometimes negative, depending on
convenient wording) test.
DiagnosticBuilder kept its implicit conversion operator owing to the
prevalent use of it in return statements.
One bug was found in ExprConstant.cpp involving a comparison of two
PointerUnions (PointerUnion did not previously have an operator==, so
instead both operands were converted to bool & then compared). A test
is included in test/SemaCXX/constant-expression-cxx1y.cpp for the fix
(adding operator== to PointerUnion in LLVM).
llvm-svn: 181869