using the new LLVM support for this. This is temporarily hiding
behind horrible and ugly #ifdefs until the time when the optimizer
is stable (hopefully a week or so). Until then, lets make it "opt in" :)
llvm-svn: 85446
1. CGF now has fewer bytes of state (one pointer instead of a vector).
2. The generated code is determinstic, instead of getting labels in
'map order' based on pointer addresses.
3. Clang now emits one 'indirect goto switch' for each function, instead
of one for each indirect goto. This fixes an M*N = N^2 IR size issue
when there are lots of address-taken labels and lots of indirect gotos.
4. This also makes the default cause do something useful, reducing the
size of the jump table needed (by one).
llvm-svn: 83952
functions when they are explicitly declared, e.g., via a function
template specialization or explicit template instantiation
declaration. Don't try to synthesize bodies for the special member
functions in this case; rather, check whether we have an implicit
declaration and, if so, synthesize the appropriate function
body. Fixes PR5084.
llvm-svn: 83212
Several of the existing methods were identical to their respective
specializations, and so have been removed entirely. Several more 'leaf'
optimizations were introduced.
The getAsFoo() methods which imposed extra conditions, like
getAsObjCInterfacePointerType(), have been left in place.
llvm-svn: 82501
consistent model for handling size expressions for VLAs.
The model is essentially as follows: VLA types own their associated
expression. In some cases, we need to create multiple VLA types to
represent a given VLA (for canonical types, or qualifiers on array types,
or type merging). If we need to create multiple types based off of
the same VLA declaration, we use the new refcounting functionality so they can
all own the expression. The VLASizeMap in CodeGenFunction then uses the size
expression to identify the group of VLA types based off of the same original
declaration.
I'm not particularly attached to the VLA types owning the expression,
but we're stuck with at least until someone comes up with a way
to walk the VLA expressions for a declaration.
I did the parallel fix in ASTContext for DependentSizedArrayType, but I
haven't really looked closely at it, so there might still be issues
there.
I'll clean up the code duplication in ASTContext in a followup commit.
llvm-svn: 79071
Type::getAsReferenceType() -> Type::getAs<ReferenceType>()
Type::getAsRecordType() -> Type::getAs<RecordType>()
Type::getAsPointerType() -> Type::getAs<PointerType>()
Type::getAsBlockPointerType() -> Type::getAs<BlockPointerType>()
Type::getAsLValueReferenceType() -> Type::getAs<LValueReferenceType>()
Type::getAsRValueReferenceType() -> Type::getAs<RValueReferenceType>()
Type::getAsMemberPointerType() -> Type::getAs<MemberPointerType>()
Type::getAsReferenceType() -> Type::getAs<ReferenceType>()
Type::getAsTagType() -> Type::getAs<TagType>()
And remove Type::getAsReferenceType(), etc.
This change is similar to one I made a couple weeks ago, but that was partly
reverted pending some additional design discussion. With Doug's pending smart
pointer changes for Types, it seemed natural to take this approach.
llvm-svn: 77510
- Emit variable declarations as "simple", we want to avoid forcing the creation
of a dummy basic block, but still need to make the variable available for
later use.
- With that, we can now skip IRgen for other unreachable statements (which
don't define a label).
- Anders, I added two fixmes on calls to EmitVLASize, can you check them?
llvm-svn: 76361
until Doug Gregor's Type smart pointer code lands (or more discussion occurs).
These methods just call the new Type::getAs<XXX> methods, so we still have
reduced implementation redundancy. Having explicit getAsXXXType() methods makes
it easier to set breakpoints in the debugger.
llvm-svn: 76193