This adds a createFunctionInliningPass pass that takes an InlineParams object and use this to create the pre-inliner pass. This prevents the regular inliner's threshold flag from influencing the preinliner.
Differential revision: https://reviews.llvm.org/D23377
llvm-svn: 278377
When legal, extending trip count in the loop control logic generates better code compared to truncating IV. This is because
(1) extending trip count is a loop invariant operation (see genLoopLimit where we prove trip count is loop invariant).
(2) Scalar Evolution seems to have problems understanding trunc when computing loop trip count. So removing them allows better analysis performed in Scalar Evolution. (In particular this fixes PR 28363 which is the motivation for this change).
I am not going to perform any performance test. Any degradation caused by this should be an indication of a bug elsewhere.
To prove legality, we rely on SCEV to prove zext(trunc(IV)) == IV (or similarly for sext). If this holds, we can prove equivalence of trunc(IV)==ExitCnt (1) and IV == zext(ExitCnt). Simply take zext of boths sides of (1) and apply the proven equivalence.
https://reviews.llvm.org/D23075
llvm-svn: 278334
Change --no-pgo-warn-missing to -pgo-warn-missing-function
and negate the default. /NFC
Add more test to make sure the warning is off by default
llvm-svn: 278314
Summary:
I think it is much better this way.
When I firstly saw line:
Cost += InlineConstants::LastCallToStaticBonus;
I though that this is a bug, because everywhere where the cost is being reduced
it is usuing -=.
Reviewers: eraman, tejohnson, mehdi_amini
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D23222
llvm-svn: 278290
We are seeing r276077 drastically increasing compiler time for our larger
benchmarks in PGO profile generation build (both clang based and IR based
mode) -- it can be 20x slower than without the patch (like from 30 secs to
780 secs)
The increased time are all in pass LCSSA. The problematic code is about
PostProcessPHIs after use-rewrite. Note that the InsertedPhis from ssa_updater
is accumulating (never been cleared). Since the inserted PHIs are added to the
candidate for each rewrite, The earlier ones will be repeatedly added. Later
when adding the new PHIs to the work-list, we don't check the duplication
either. This can result in extremely long work-list that containing tons of
duplicated PHIs.
This patch fixes the issue by hoisting the code out of the loop.
Differential Revision: http://reviews.llvm.org/D23344
llvm-svn: 278250
Summary:
A particular coroutine usage pattern, where a coroutine is created, manipulated and
destroyed by the same calling function, is common for coroutines implementing
RAII idiom and is suitable for allocation elision optimization which avoid
dynamic allocation by storing the coroutine frame as a static `alloca` in its
caller.
coro.free and coro.alloc intrinsics are used to indicate which code needs to be suppressed
when dynamic allocation elision happens:
```
entry:
%elide = call i8* @llvm.coro.alloc()
%need.dyn.alloc = icmp ne i8* %elide, null
br i1 %need.dyn.alloc, label %coro.begin, label %dyn.alloc
dyn.alloc:
%alloc = call i8* @CustomAlloc(i32 4)
br label %coro.begin
coro.begin:
%phi = phi i8* [ %elide, %entry ], [ %alloc, %dyn.alloc ]
%hdl = call i8* @llvm.coro.begin(i8* %phi, i32 0, i8* null,
i8* bitcast ([2 x void (%f.frame*)*]* @f.resumers to i8*))
```
and
```
%mem = call i8* @llvm.coro.free(i8* %hdl)
%need.dyn.free = icmp ne i8* %mem, null
br i1 %need.dyn.free, label %dyn.free, label %if.end
dyn.free:
call void @CustomFree(i8* %mem)
br label %if.end
if.end:
...
```
If heap allocation elision is performed, we replace coro.alloc with a static alloca on the caller frame and coro.free with null constant.
Also, we need to make sure that if there are any tail calls referencing the coroutine frame, we need to remote tail call attribute, since now coroutine frame lives on the stack.
Documentation and overview is here: http://llvm.org/docs/Coroutines.html.
Upstreaming sequence (rough plan)
1.Add documentation. (https://reviews.llvm.org/D22603)
2.Add coroutine intrinsics. (https://reviews.llvm.org/D22659)
3.Add empty coroutine passes. (https://reviews.llvm.org/D22847)
4.Add coroutine devirtualization + tests.
ab) Lower coro.resume and coro.destroy (https://reviews.llvm.org/D22998)
c) Do devirtualization (https://reviews.llvm.org/D23229)
5.Add CGSCC restart trigger + tests. (https://reviews.llvm.org/D23234)
6.Add coroutine heap elision + tests. <= we are here
7.Add the rest of the logic (split into more patches)
Reviewers: mehdi_amini, majnemer
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D23245
llvm-svn: 278242
This is a resubmission of previously reverted r277592. It was hitting overly strong assertion in getConstantRange which was relaxed in r278217.
Use LVI to prove that adds do not wrap. The change is motivated by https://llvm.org/bugs/show_bug.cgi?id=28620 bug and it's the first step to fix that problem.
Reviewed By: sanjoy
Differential Revision: http://reviews.llvm.org/D23059
llvm-svn: 278220
Hal pointed out that the semantic of our intrinsic and the libc
call are slightly different. Add a comment while I'm here to
explain why we can't emit an intrinsic. Thanks Hal!
llvm-svn: 278200
This adds an InlineParams struct which is populated from the command line options by getInlineParams and passed to getInlineCost for the call analyzer to use.
Differential revision: https://reviews.llvm.org/D22120
llvm-svn: 278189
Summary:
The inliner not being a function pass requires the work-around of
generating the OptimizationRemarkEmitter and in turn BFI on demand.
This will go away after the new PM is ready.
BFI is only computed inside ORE if the user has requested hotness
information for optimization diagnostitics (-pass-remark-with-hotness at
the 'opt' level). Thus there is no additional overhead without the
flag.
Reviewers: hfinkel, davidxl, eraman
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D22694
llvm-svn: 278185
Summary:
This hopefully fixes PR28825. The problem now was that a value from the
original loop was used in a subloop, which became a sibling after separation.
While a subloop doesn't need an lcssa phi node, a sibling does, and that's
where we broke LCSSA. The most natural way to fix this now is to simply call
formLCSSA on the original loop: it'll do what we've been doing before plus
it'll cover situations described above.
I think we don't need to run formLCSSARecursively here, and we have an assert
to verify this (I've tried testing it on LLVM testsuite + SPECs). I'd be happy
to be corrected here though.
I also changed a run line in the test from '-lcssa -loop-unroll' to
'-lcssa -loop-simplify -indvars', because it exercises LCSSA
preservation to the same extent, but also makes less unrelated
transformation on the CFG, which makes it easier to verify.
Reviewers: chandlerc, sanjoy, silvas
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23288
llvm-svn: 278173
The patch is to fix the bug in PR28705. It was caused by setting wrong return
value for SCEVExpander::findExistingExpansion. The return values of findExistingExpansion
have different meanings when the function is used in different ways so it is easy to make
mistake. The fix creates two new interfaces to replace SCEVExpander::findExistingExpansion,
and specifies where each interface is expected to be used.
Differential Revision: https://reviews.llvm.org/D22942
llvm-svn: 278161
no prof data for func warning is turned off by default
due to its high verbosity and minimal usefulness.
Differential Revision: http://reviews.llvm.org/D23295
llvm-svn: 278127
One exception here is LoopInfo which must forward-declare it (because
the typedef is in LoopPassManager.h which depends on LoopInfo).
Also, some includes for LoopPassManager.h were needed since that file
provides the typedef.
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.
Thanks to David for the suggestion.
llvm-svn: 278079
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.
Thanks to David for the suggestion.
llvm-svn: 278078
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.
Thanks to David for the suggestion.
llvm-svn: 278077
Summary:
Ensure that the MemorySSA object never changes address when using the
new pass manager since the walkers contained by MemorySSA cache pointers
to it at construction time. This is achieved by wrapping the
MemorySSAAnalysis result in a unique_ptr. Also add some asserts that
check for this bug.
Reviewers: george.burgess.iv, dberlin
Subscribers: mcrosier, hfinkel, chandlerc, silvas, llvm-commits
Differential Revision: https://reviews.llvm.org/D23171
llvm-svn: 278028
Summary:
In the use optimizer, we need to keep of whether the lower bound still
dominates us or else we may decide a lower bound is still valid when it
is not due to intervening pushes/pops. Fixes PR28880 (and probably a
bunch of other things).
Reviewers: george.burgess.iv
Subscribers: MatzeB, llvm-commits, sebpop
Differential Revision: https://reviews.llvm.org/D23237
llvm-svn: 277978
Summary:
The correctness fix here is that when we CSE a load with another load,
we need to combine the metadata on the two loads. This matches the
behavior of other passes, like instcombine and GVN.
There's also a minor optimization improvement here: for load PRE, the
aliasing metadata on the inserted load should be the same as the
metadata on the original load. Not sure why the old code was throwing
it away.
Issue found by inspection.
Differential Revision: http://reviews.llvm.org/D21460
llvm-svn: 277977
Summary:
CoroSplit pass processes the coroutine twice. First, it lets it go through
complete IPO optimization pipeline as a single function. It forces restart
of the pipeline by inserting an indirect call to an empty function "coro.devirt.trigger"
which is devirtualized by CoroElide pass that triggers a restart of the pipeline by CGPassManager.
(In later patches, when CoroSplit pass sees the same coroutine the second time, it splits it up,
adds coroutine subfunctions to the SCC to be processed by IPO pipeline.)
Documentation and overview is here: http://llvm.org/docs/Coroutines.html.
Upstreaming sequence (rough plan)
1.Add documentation. (https://reviews.llvm.org/D22603)
2.Add coroutine intrinsics. (https://reviews.llvm.org/D22659)
3.Add empty coroutine passes. (https://reviews.llvm.org/D22847)
4.Add coroutine devirtualization + tests.
ab) Lower coro.resume and coro.destroy (https://reviews.llvm.org/D22998)
c) Do devirtualization (https://reviews.llvm.org/D23229)
5.Add CGSCC restart trigger + tests. <= we are here
6.Add coroutine heap elision + tests.
7.Add the rest of the logic (split into more patches)
Reviewers: mehdi_amini, majnemer
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D23234
llvm-svn: 277936
GVN-Hoist appears to miscompile llvm-testsuite
SingleSource/Benchmarks/Misc/fbench.c at the moment.
I filed http://llvm.org/PR28880
This reverts commit r277786.
llvm-svn: 277909
Summary:
This is the 4c patch of the coroutine series. CoroElide pass now checks if PostSplit coro.begin
is referenced by coro.subfn.addr intrinsics. If so replace coro.subfn.addrs with an appropriate coroutine
subfunction associated with that coro.begin.
Documentation and overview is here: http://llvm.org/docs/Coroutines.html.
Upstreaming sequence (rough plan)
1.Add documentation. (https://reviews.llvm.org/D22603)
2.Add coroutine intrinsics. (https://reviews.llvm.org/D22659)
3.Add empty coroutine passes. (https://reviews.llvm.org/D22847)
4.Add coroutine devirtualization + tests.
ab) Lower coro.resume and coro.destroy (https://reviews.llvm.org/D22998)
c) Do devirtualization <= we are here
5.Add CGSCC restart trigger + tests.
6.Add coroutine heap elision + tests.
7.Add the rest of the logic (split into more patches)
Reviewers: majnemer
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D23229
llvm-svn: 277908
Fixes PR28764. Right now there is no way to test this, but (as
mentioned on the PR) with Michael Zolotukhin's yet to be checked in
LoopSimplify verfier, 8 of the llvm-lit tests for IRCE crash.
llvm-svn: 277891
Note that this fold really belongs in InstSimplify.
Refactoring here anyway as an intermediate step because
there's a planned addition to this function in D23134.
Differential Revision: https://reviews.llvm.org/D23223
llvm-svn: 277883
Summary:
Originally the plan was to use the custom worklist to do some block popping,
and because we don't actually need a visited set. The custom one we have
here is slightly broken, and it's not worth fixing vs using depth_first_iterator since we aren't going to go the route we originally
were.
Fixes PR28874
Reviewers: george.burgess.iv
Subscribers: llvm-commits, gberry
Differential Revision: https://reviews.llvm.org/D23187
llvm-svn: 277880
This fixes PR28825. The problem was that we only checked if a value from
a created inner loop is used in the outer loop, and fixed LCSSA for
them. But we missed to fixup LCSSA for values used in exits of the outer
loop.
llvm-svn: 277877
Summary:
Chrome on Linux uses WholeProgramDevirt for speed ups, and it's
important to detect regressions on both sides: the toolchain,
if fewer methods get devirtualized after an update, and Chrome,
if an innocently looking change caused many hot methods become
virtual again.
The need to track devirtualized methods is not Chrome-specific,
but it's probably the only user of the pass at this time.
Reviewers: kcc
Differential Revision: https://reviews.llvm.org/D23219
llvm-svn: 277856
Summary:
This is another refactoring to break up the one function into three logical components functions.
Another non-functional change before we start added in features.
Reviewers: nadav, mehdi_amini, majnemer
Subscribers: twoh, freik, llvm-commits
Differential Revision: https://reviews.llvm.org/D23102
llvm-svn: 277855
Summary: We do not care about intrinsic calls when assigning discriminators.
Reviewers: davidxl, dnovillo
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23212
llvm-svn: 277843
This generated IR based on the order of evaluation, which is different
between GCC and Clang. With that in mind you get bootstrap miscompares
if you compare a Clang built with GCC-built Clang vs. Clang built with
Clang-built Clang. Diagnosing that made my head hurt.
This also reverts commit r277337, which "fixed" the test case.
llvm-svn: 277820
Summary:
Turn (select C, (sext A), B) into (sext (select C, A, B')) when A is i1 and
B is a compatible constant, also for zext instead of sext. This will then be
further folded into logical operations.
The transformation would be valid for non-i1 types as well, but other parts of
InstCombine prefer to have sext from non-i1 as an operand of select.
Motivated by the shader compiler frontend in Mesa for AMDGPU, which emits i32
for boolean operations. With this change, the boolean logic is fully
recovered.
Reviewers: majnemer, spatel, tstellarAMD
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D22747
llvm-svn: 277801
The patch splits a complex && if condition into easier to read and understand
logic. That wrong early exit condition was letting some instructions with not
all operands available pass through when HoistingGeps was true.
Differential Revision: https://reviews.llvm.org/D23174
llvm-svn: 277785
Add a generalized IRBuilderCallbackInserter, which is just given a
callback to execute after insertion. This can be used to get rid of
the custom inserter in InstCombine, which will in turn allow me to add
target specific InstCombineCalls API for intrinsics without horrible
layering violations.
llvm-svn: 277784
Shifts with a uniform but non-constant count were considered very expensive to
vectorize, because the splat of the uniform count and the shift would tend to
appear in different blocks. That made the splat invisible to ISel, and we'd
scalarize the shift at codegen time.
Since r201655, CodeGenPrepare sinks those splats to be next to their use, and we
are able to select the appropriate vector shifts. This updates the cost model to
to take this into account by making shifts by a uniform cheap again.
Differential Revision: https://reviews.llvm.org/D23049
llvm-svn: 277782
This is the forth patch in the coroutine series. CoroEaly pass now lowers coro.resume
and coro.destroy intrinsics by replacing them with an indirect call to an address
returned by coro.subfn.addr intrinsic. This is done so that CGPassManager recognizes
devirtualization when CoroElide replaces a call to coro.subfn.addr with an appropriate
function address.
Patch by Gor Nishanov!
Differential Revision: https://reviews.llvm.org/D22998
llvm-svn: 277765
I'm removing a misplaced pair of more specific folds from InstCombine in this patch as well,
so we know where those folds are happening in InstSimplify.
llvm-svn: 277738
Summary:
TargetBaseAlign is no longer required since LSV checks if target allows misaligned accesses.
A constant defining a base alignment is still needed for stack accesses where alignment can be adjusted.
Previous patch (D22936) was reverted because tests were failing. This patch also fixes the cause of those failures:
- x86 failing tests either did not have the right target, or the right alignment.
- NVPTX failing tests did not have the right alignment.
- AMDGPU failing test (merge-stores) should allow vectorization with the given alignment but the target info
considers <3xi32> a non-standard type and gives up early. This patch removes the condition and only checks
for a maximum size allowed and relies on the next condition checking for %4 for correctness.
This should be revisited to include 3xi32 as a MVT type (on arsenm's non-immediate todo list).
Note that checking the sizeInBits for a MVT is undefined (leads to an assertion failure),
so we need to create an EVT, hence the interface change in allowsMisaligned to include the Context.
Reviewers: arsenm, jlebar, tstellarAMD
Subscribers: jholewinski, arsenm, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D23068
llvm-svn: 277735
Not a correctness issue, but it would be nice if we didn't have to
recompute our block numbering (worst-case) every time we move MSSA.
llvm-svn: 277652
Limit the number of times the while(1) loop is executed. With this restriction
the number of hoisted instructions does not change in a significant way on the
test-suite.
Differential Revision: https://reviews.llvm.org/D23028
llvm-svn: 277651
With this patch we compute the DFS numbers of instructions only once and update
them during the code generation when an instruction gets hoisted.
Differential Revision: https://reviews.llvm.org/D23021
llvm-svn: 277650
With this patch we compute the MemorySSA once and update it in the code generator.
Differential Revision: https://reviews.llvm.org/D22966
llvm-svn: 277649
This reverts commit r277611 and the followup r277614.
Bootstrap builds and chromium builds are crashing during inlining after
this change.
llvm-svn: 277642
This is a follow-up to r277637. It teaches MemorySSA that invariant
loads (and loads of provably constant memory) are always liveOnEntry.
llvm-svn: 277640
This patch makes MemorySSA recognize atomic/volatile loads, and makes
MSSA treat said loads specially. This allows us to be a bit more
aggressive in some cases.
Administrative note: Revision was LGTM'ed by reames in person.
Additionally, this doesn't include the `invariant.load` recognition in
the differential revision, because I feel it's better to commit that
separately. Will commit soon.
Differential Revision: https://reviews.llvm.org/D16875
llvm-svn: 277637
Summary:
InstCombine unfolds expressions of the form `zext(or(icmp, icmp))` to `or(zext(icmp), zext(icmp))` such that in a later iteration of InstCombine the exposed `zext(icmp)` instructions can be optimized. We now combine this unfolding and the subsequent `zext(icmp)` optimization to be performed together. Since the unfolding doesn't happen separately anymore, we also again enable the folding of `logic(cast(icmp), cast(icmp))` expressions to `cast(logic(icmp, icmp))` which had been disabled due to its interference with the unfolding transformation.
Tested via `make check` and `lnt`.
Background
==========
For a better understanding on how it came to this change we subsequently summarize its history. In commit r275989 we've already tried to enable the folding of `logic(cast(icmp), cast(icmp))` to `cast(logic(icmp, icmp))` which had to be reverted in r276106 because it could lead to an endless loop in InstCombine (also see http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160718/374347.html). The root of this problem is that in `visitZExt()` in InstCombineCasts.cpp there also exists a reverse of the above folding transformation, that unfolds `zext(or(icmp, icmp))` to `or(zext(icmp), zext(icmp))` in order to expose `zext(icmp)` operations which would then possibly be eliminated by subsequent iterations of InstCombine. However, before these `zext(icmp)` would be eliminated the folding from r275989 could kick in and cause InstCombine to endlessly switch back and forth between the folding and the unfolding transformation. This is the reason why we now combine the `zext`-unfolding and the elimination of the exposed `zext(icmp)` to happen at one go because this enables us to still allow the cast-folding in `logic(cast(icmp), cast(icmp))` without entering an endless loop again.
Details on the submitted changes
================================
- In `visitZExt()` we combine the unfolding and optimization of `zext` instructions.
- In `transformZExtICmp()` we have to use `Builder->CreateIntCast()` instead of `CastInst::CreateIntegerCast()` to make sure that the new `CastInst` is inserted in a `BasicBlock`. The new calls to `transformZExtICmp()` that we introduce in `visitZExt()` would otherwise cause according assertions to be triggered (in our case this happend, for example, with lnt for the MultiSource/Applications/sqlite3 and SingleSource/Regression/C++/EH/recursive-throw tests). The subsequent usage of `replaceInstUsesWith()` is necessary to ensure that the new `CastInst` replaces the `ZExtInst` accordingly.
- In InstCombineAndOrXor.cpp we again allow the folding of casts on `icmp` instructions.
- The instruction order in the optimized IR for the zext-or-icmp.ll test case is different with the introduced changes.
- The test cases in zext.ll have been adopted from the reverted commits r275989 and r276105.
Reviewers: grosser, majnemer, spatel
Subscribers: eli.friedman, majnemer, llvm-commits
Differential Revision: https://reviews.llvm.org/D22864
Contributed-by: Matthias Reisinger <d412vv1n@gmail.com>
llvm-svn: 277635
This removes the restriction for the icmp constant, but as noted by the FIXME comments,
we still need to change individual checks for binop operand constants.
llvm-svn: 277629
It is possible for the value map to not have an entry for some value
that has already been removed.
I don't have a testcase, this is fall-out from a buildbot.
llvm-svn: 277614
We were able to figure out that the result of a call is some constant.
While propagating that fact, we added the constant to the value map.
This is problematic because it results in us losing the call site when
processing the value map.
This fixes PR28802.
llvm-svn: 277611
Summary:
This is the first refactoring before adding new functionality.
Add a class wrapper for the functions and container for
state associated with the transformation.
No functional change
Reviewers: majnemer, nadav, mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23065
llvm-svn: 277565
This fixes a bug where we'd sometimes cache overly-conservative results
with our walker. This bug was made more obvious by r277480, which makes
our cache far more spotty than it was. Test case is llvm-unit, because
we're likely going to use CachingWalker only for def optimization in the
future.
The bug stems from that there was a place where the walker assumed that
`DefNode.Last` was a valid target to cache to when failing to optimize
phis. This is sometimes incorrect if we have a cache hit. The fix is to
use the thing we *can* assume is a valid target to cache to. :)
llvm-svn: 277559
Summary:
Sometimes, bitsets could get really large (>300k entries) and
we might want to drop a check, as it would have a too much cost.
Adding a flag to control how much penalty are we willing to pay
for bitsets.
Reviewers: kcc
Differential Revision: https://reviews.llvm.org/D23088
llvm-svn: 277556
Summary: We really want to move towards MemoryLocOrCall (or fix AA) everywhere, but for now, this lets us have a single instructionClobbersQuery.
Reviewers: george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23072
llvm-svn: 277530
As agreed in post-commit review of r265388, I'm switching the flag to
its original value until the 90% runtime performance regression on
SingleSource/Benchmarks/Stanford/Bubblesort is addressed.
llvm-svn: 277524
Update comment for isOutOfScope and add a testcase for uniform value being used
out of scope.
Differential Revision: https://reviews.llvm.org/D23073
llvm-svn: 277515
Fixes PR28670
Summary:
Rewrite the use optimizer to be less memory intensive and 50% faster.
Fixes PR28670
The new use optimizer works like a standard SSA renaming pass, storing
all possible versions a MemorySSA use could get in a stack, and just
tracking indexes into the stack.
This uses much less memory than caching N^2 alias query results.
It's also a lot faster.
The current version defers phi node walking to the normal walker.
Reviewers: george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23032
llvm-svn: 277480
This patch enables the vectorizer to generate both scalar and vector versions
of an integer induction variable for a given loop. Previously, we only
generated a scalar induction variable if we knew all its users were going to be
scalar. Otherwise, we generated a vector induction variable. In the case of a
loop with both scalar and vector users of the induction variable, we would
generate the vector induction variable and extract scalar values from it for
the scalar users. With this patch, we now generate both versions of the
induction variable when there are both scalar and vector users and select which
version to use based on whether the user is scalar or vector.
Differential Revision: https://reviews.llvm.org/D22869
llvm-svn: 277474
This patch refactors the logic in collectLoopUniforms and
collectValuesToIgnore, untangling the concepts of "uniform" and "scalar". It
adds isScalarAfterVectorization along side isUniformAfterVectorization to
distinguish the two. Known scalar values include those that are uniform,
getelementptr instructions that won't be vectorized, and induction variables
and induction variable update instructions whose users are all known to be
scalar.
This patch includes the following functional changes:
- In collectLoopUniforms, we mark uniform the pointer operands of interleaved
accesses. Although non-consecutive, these pointers are treated like
consecutive pointers during vectorization.
- In collectValuesToIgnore, we insert a value into VecValuesToIgnore if it
isScalarAfterVectorization rather than isUniformAfterVectorization. This
differs from the previous functionaly in that we now add getelementptr
instructions that will not be vectorized into VecValuesToIgnore.
This patch also removes the ValuesNotWidened set used for induction variable
scalarization since, after the above changes, it is now equivalent to
isScalarAfterVectorization.
Differential Revision: https://reviews.llvm.org/D22867
llvm-svn: 277460
Added ability to estimate the entry count of the extracted function and
the branch probabilities of the exit branches.
Patch by River Riddle!
Differential Revision: https://reviews.llvm.org/D22744
llvm-svn: 277411
Summary: By generalize the interface, users are able to inject more flexible Node token into the algorithm, for example, a pair of vector<Node>* and index integer. Currently I only migrated SCCIterator to use NodeRef, but more is coming. It's a NFC.
Reviewers: dblaikie, chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D22937
llvm-svn: 277399
Summary: This patch implements CFI for WebAssembly. It modifies the
LowerTypeTest pass to pre-assign table indexes to functions that are
called indirectly, and lowers type checks to test against the
appropriate table indexes. It also modifies the WebAssembly backend to
support a special ".indidx" assembly directive that propagates the table
index assignments out to the linker.
Patch by Dominic Chen
Differential Revision: https://reviews.llvm.org/D21768
llvm-svn: 277398
Using RAUW was wrong here; if we have a switch transform such as:
18 -> 6 then
6 -> 0
If we use RAUW, while performing the second transform the *transformed* 6
from the first will be also replaced, so we end up with:
18 -> 0
6 -> 0
Found by clang stage2 bootstrap; testcase added.
llvm-svn: 277332
If a switch is sparse and all the cases (once sorted) are in arithmetic progression, we can extract the common factor out of the switch and create a dense switch. For example:
switch (i) {
case 5: ...
case 9: ...
case 13: ...
case 17: ...
}
can become:
if ( (i - 5) % 4 ) goto default;
switch ((i - 5) / 4) {
case 0: ...
case 1: ...
case 2: ...
case 3: ...
}
or even better:
switch ( ROTR(i - 5, 2) {
case 0: ...
case 1: ...
case 2: ...
case 3: ...
}
The division and remainder operations could be costly so we only do this if the factor is a power of two, and emit a right-rotate instead of a divide/remainder sequence. Dense switches can be lowered significantly better than sparse switches and can even be transformed into lookup tables.
llvm-svn: 277325
When extracting a set of blocks make sure to inherit all of the target
dependent attributes to make sure that the function will be valid for
lowering. One example is the "target-features" attribute for x86, if the
extracted region has functionality that relies on a specific feature it
will fail to be lowered.
This also allows for extracted functions to be valid for inlining, at
least back into the parent function, as the target attributes are tested
when inlining for compatibility.
Patch by River Riddle!
Differential Revision: https://reviews.llvm.org/D22713
llvm-svn: 277315
Added ability to estimate the entry count of the extracted function and
the branch probabilities of the exit branches.
Patch by River Riddle!
Differential Revision: https://reviews.llvm.org/D22744
llvm-svn: 277313
LoopUnroll is a loop pass, so the analysis of OptimizationRemarkEmitter
is added to the common function analysis passes that loop passes
depend on.
The BFI and indirectly BPI used in this pass is computed lazily so no
overhead should be observed unless -pass-remarks-with-hotness is used.
This is how the patch affects the O3 pipeline:
Dominator Tree Construction
Natural Loop Information
Canonicalize natural loops
Loop-Closed SSA Form Pass
Basic Alias Analysis (stateless AA impl)
Function Alias Analysis Results
Scalar Evolution Analysis
+ Lazy Branch Probability Analysis
+ Lazy Block Frequency Analysis
+ Optimization Remark Emitter
Loop Pass Manager
Rotate Loops
Loop Invariant Code Motion
Unswitch loops
Simplify the CFG
Dominator Tree Construction
Basic Alias Analysis (stateless AA impl)
Function Alias Analysis Results
Combine redundant instructions
Natural Loop Information
Canonicalize natural loops
Loop-Closed SSA Form Pass
Scalar Evolution Analysis
+ Lazy Branch Probability Analysis
+ Lazy Block Frequency Analysis
+ Optimization Remark Emitter
Loop Pass Manager
Induction Variable Simplification
Recognize loop idioms
Delete dead loops
Unroll loops
...
llvm-svn: 277203
Patch by Sunita Marathe
Third try, now following fixes to MSan to handle mempcy in such a way that this commit won't break the MSan buildbots. (Thanks, Evegenii!)
llvm-svn: 277189
Some instructions may have their uses replaced with a symbolic constant.
However, the instruction may still have side effects which percludes it
from being removed from the function. EarlyCSE treated such an
instruction as if it were removed, resulting in PR28763.
llvm-svn: 277114
A ConstantVector can have ConstantExpr operands and vice versa.
However, the folder had no ability to fold ConstantVectors which, in
some cases, was an optimization barrier.
Instead, rephrase the folder in terms of Constants instead of
ConstantExprs and teach callers how to deal with failure.
llvm-svn: 277099
Summary:
copypasta doc of ImportedFunctionsInliningStatistics class
\brief Calculate and dump ThinLTO specific inliner stats.
The main statistics are:
(1) Number of inlined imported functions,
(2) Number of imported functions inlined into importing module (indirect),
(3) Number of non imported functions inlined into importing module
(indirect).
The difference between first and the second is that first stat counts
all performed inlines on imported functions, but the second one only the
functions that have been eventually inlined to a function in the importing
module (by a chain of inlines). Because llvm uses bottom-up inliner, it is
possible to e.g. import function `A`, `B` and then inline `B` to `A`,
and after this `A` might be too big to be inlined into some other function
that calls it. It calculates this statistic by building graph, where
the nodes are functions, and edges are performed inlines and then by marking
the edges starting from not imported function.
If `Verbose` is set to true, then it also dumps statistics
per each inlined function, sorted by the greatest inlines count like
- number of performed inlines
- number of performed inlines to importing module
Reviewers: eraman, tejohnson, mehdi_amini
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D22491
llvm-svn: 277089
Sanitizers set nobuiltin attribute on certain library functions to
avoid a situation where such function is neither instrumented nor
intercepted.
At the moment the list of interesting functions is hardcoded. This
change replaces it with logic based on
TargetLibraryInfo::hasOptimizedCodegen and the presense of readnone
function attribute (sanitizers are generally interested in memory
behavior of library functions).
This is expected to be a no-op change: the new logic matches exactly
the same set of functions.
r276771 (currently reverted) added mempcpy() to the list, breaking
MSan tests. With this change, r276771 can be safely re-landed.
llvm-svn: 277086
Summary:
Asan stack-use-after-scope check should poison alloca even if there is
no access between start and end.
This is possible for code like this:
for (int i = 0; i < 3; i++) {
int x;
p = &x;
}
"Loop Invariant Code Motion" will move "p = &x;" out of the loop, making
start/end range empty.
PR27453
Reviewers: eugenis
Differential Revision: https://reviews.llvm.org/D22842
llvm-svn: 277072
Summary:
Asan stack-use-after-scope check should poison alloca even if there is
no access between start and end.
This is possible for code like this:
for (int i = 0; i < 3; i++) {
int x;
p = &x;
}
"Loop Invariant Code Motion" will move "p = &x;" out of the loop, making
start/end range empty.
PR27453
Reviewers: eugenis
Differential Revision: https://reviews.llvm.org/D22842
llvm-svn: 277068
Summary:
TargetBaseAlign is no longer required since LSV checks if target allows misaligned accesses.
A constant defining a base alignment is still needed for stack accesses where alignment can be adjusted.
Reviewers: llvm-commits, jlebar
Subscribers: mzolotukhin, arsenm
Differential Revision: https://reviews.llvm.org/D22936
llvm-svn: 277038
This adds boilerplate code for all coroutine passes,
the passes are no-ops for now.
Also, a small test has been added to verify that passes execute in
the expected order or not at all if coroutine support is disabled.
Patch by Gor Nishanov!
Differential Revision: https://reviews.llvm.org/D22847
llvm-svn: 277033
The EP_CGSCCOptimizerLate extension point allows adding CallGraphSCC
passes at the end of the main CallGraphSCC passes and before any
function simplification passes run by CGPassManager.
Patch by Gor Nishanov!
Differential Revision: https://reviews.llvm.org/D22897
llvm-svn: 276953
Summary:
LCSSAWrapperPass currently doesn't override verifyAnalysis method, so pass
manager doesn't verify LCSSA. This patch adds the method so that we start
verifying LCSSA between loop passes.
Reviewers: chandlerc, sanjoy, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D22888
llvm-svn: 276941
Summary:
Given the crash in D22878, this patch converts the load/store vectorizer
to use explicit Instruction*s wherever possible. This is an overall
simplification and should be an improvement in safety, as we have fewer
naked cast<>s, and now where we use Value*, we really mean something
different from Instruction*.
This patch also gets rid of some cast<>s around Value*s returned by
Builder. Given that Builder constant-folds everything, we can't assume
much about what we get out of it.
One downside of this patch is that we have to copy our chain before
calling propagateMetadata. But I don't think this is a big deal, as our
chains are very small (usually 2 or 4 elems).
Reviewers: asbirlea
Subscribers: mzolotukhin, llvm-commits, arsenm
Differential Revision: https://reviews.llvm.org/D22887
llvm-svn: 276938
Summary:
When we ask the builder to create a bitcast on a constant, we get back a
constant, not an instruction.
Reviewers: asbirlea
Subscribers: jholewinski, mzolotukhin, llvm-commits, arsenm
Differential Revision: https://reviews.llvm.org/D22878
llvm-svn: 276922
Summary: The MadeChange flag should be ORed to keep the previous result.
Reviewers: mcrosier
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D22873
llvm-svn: 276894
This lets you actually check to see if a block is valid before trying to
extract.
Patch by River Riddle!
Differential Revision: https://reviews.llvm.org/D22699
llvm-svn: 276846
When loading or storing in a field of a struct like "a.b.c", GVN is able to
detect the equivalent expressions, and GVN-hoist would fail in the code
generation. This is because the GEPs are not hoisted as scalar operations to
avoid moving the GEPs too far from their ld/st instruction when the ld/st is not
movable. So we end up having to generate code for the GEP of a ld/st when we
move the ld/st. In the case of a GEP referring to another GEP as in "a.b.c" we
need to code generate all the GEPs necessary to make all the operands available
at the new location for the ld/st. With this patch we recursively walk through
the GEP operands checking whether all operands are available, and in the case of
a GEP operand, it recursively makes all its operands available. Code generation
happens from the inner GEPs out until reaching the GEP that appears as an
operand of the ld/st.
Differential Revision: https://reviews.llvm.org/D22599
llvm-svn: 276841
The patch replaces a function that walks the IR with a call to firstInBB() that
uses the DFS numbering. NFC.
Differential Revision: https://reviews.llvm.org/D22809
llvm-svn: 276840
Instead of DFS numbering basic blocks we now DFS number instructions that avoids
the costly operation of which instruction comes first in a basic block.
Patch mostly written by Daniel Berlin.
Differential Revision: https://reviews.llvm.org/D22777
llvm-svn: 276714
This patch adds an option to specify the maximum depth in a BB at which to
consider hoisting instructions. Hoisting instructions from a deeper level is
not profitable as it increases register pressure and compilation time.
Differential Revision: https://reviews.llvm.org/D22772
llvm-svn: 276713
Pre-instrumentation inline (pre-inliner) greatly improves the IR
instrumentation code performance, among other benefits. One issue of the
pre-inliner is it can introduce CFG-mismatch for COMDAT functions. This
is due to the fact that the same COMDAT function may have different early
inline decisions across different modules -- that means different copies
of COMDAT functions will have different CFG checksum.
In this patch, we propose a partially renaming the COMDAT group and its
member function/variable so we have different profile counter for each
version. We will post-fix the COMDAT function and the group name with its
FunctionHash.
Differential Revision: http://reviews.llvm.org/D22600
llvm-svn: 276673
There didn't appear to be a good reason to use iplist in this case, a regular
list of unique_ptr works just as well.
Change made in preparation to a new PM port (since iplist is not moveable).
llvm-svn: 276668
Modify the variable names and code style to be that of modern LLVM.
Patch by River Riddle!
Differential Revision: https://reviews.llvm.org/D22743
llvm-svn: 276610
The public InlineFunction utility assumes that the passed in
InlineFunctionInfo has a valid AssumptionCacheTracker.
Patch by River Riddle!
Differential Revision: https://reviews.llvm.org/D22706
llvm-svn: 276609
If we two loads of two different alignments, we must use the minimum of
the two alignments when hoisting. Same deal for stores.
For allocas, use the maximum of the two allocas.
llvm-svn: 276601
Allowed loop vectorization with secondary FP IVs. Like this:
float *A;
float x = init;
for (int i=0; i < N; ++i) {
A[i] = x;
x -= fp_inc;
}
The auto-vectorization is possible when the induction binary operator is "fast" or the function has "unsafe" attribute.
Differential Revision: https://reviews.llvm.org/D21330
llvm-svn: 276554
checkClobberSanity will now be run for all results of `ClobberWalk`,
instead of just the crazy phi-optimized ones. This can help us catch
cases where our cache is being wonky.
llvm-svn: 276553
This unblocks the new PM part of River's patch in
https://reviews.llvm.org/D22706
Conveniently, this same change was needed for D21921 and so these
changes are just spun out from there.
llvm-svn: 276515
Summary:
Clang inserts cleanup code before resume similar way as before return instruction.
This makes asan poison local variables causing false use-after-scope reports.
__asan_handle_no_return does not help here as it was executed before
llvm.lifetime.end inserted into resume block.
To avoid false report we need to unpoison stack for resume same way as for return.
PR27453
Reviewers: kcc, eugenis
Differential Revision: https://reviews.llvm.org/D22661
llvm-svn: 276480
Summary:
Adding a flag to diable GVN Hoisting by default.
Note: The GVN Hoist Pass causes some Halide tests to hang. Halide will disable the pass while investigating.
Reviewers: llvm-commits, chandlerc, spop, dberlin
Subscribers: mehdi_amini
Differential Revision: https://reviews.llvm.org/D22639
llvm-svn: 276479
When vectorizing a tree rooted at a store bundle, we currently try to sort the
stores before building the tree, so that the stores can be vectorized. For other
trees, the order of the root bundle - which determines the order of all other
bundles - is arbitrary. That is bad, since if a leaf bundle of consecutive loads
happens to appear in the wrong order, we will not vectorize it.
This is partially mitigated when the root is a binary operator, by trying to
build a "reversed" tree when that's considered profitable. This patch extends the
workaround we have for binops to trees rooted in a horizontal reduction.
This fixes PR28474.
Differential Revision: https://reviews.llvm.org/D22554
llvm-svn: 276477
Recommiting r275571 after fixing crash reported in PR28270.
Now we erase elements of IOL in deleteDeadInstruction().
Original Summary:
This change use the overlap interval map built from partial overwrite tracking to perform shortening MemIntrinsics.
Add test cases which was missing opportunities before.
llvm-svn: 276452
Just because we can constant fold the result of an instruction does not
imply that we can delete the instruction. It may have side effects.
This fixes PR28655.
llvm-svn: 276389
Summary:
Clang inserts GetElementPtrInst so findAllocaForValue was not
able to find allocas.
PR27453
Reviewers: kcc, eugenis
Differential Revision: https://reviews.llvm.org/D22657
llvm-svn: 276374
If `-irce-skip-profitability-checks` is passed in, IRCE will kick in in
all cases where it is legal for it to kick in. This flag is intended to
help diagnose and analyse performance issues.
llvm-svn: 276372