Previously, we handled common symbols as a kind of Defined symbol,
but what we were doing for common symbols is pretty different from
regular defined symbols.
Common symbol and defined symbol are probably as different as shared
symbol and defined symbols are different.
This patch introduces CommonSymbol to represent common symbols.
After symbols are resolved, they are converted to Defined symbols
residing in a .bss section.
Differential Revision: https://reviews.llvm.org/D61895
llvm-svn: 360841
SymbolTable's add-family functions have lots of parameters because
when they have to create a new symbol, they forward given arguments
to Symbol's constructors. Therefore, the functions take at least as
many arguments as their corresponding constructors.
This patch simplifies the add-family functions. Now, the functions
take a symbol instead of arguments to construct a symbol. If there's
no existing symbol, a given symbol is memcpy'ed to the symbol table.
Otherwise, the functions attempt to merge the existing and a given
new symbol.
I also eliminated `CanOmitFromDynSym` parameter, so that the functions
take really one argument.
Symbol classes are trivially constructible, so looks like constructing
them to pass to add-family functions is as cheap as passing a lot of
arguments to the functions. A quick benchmark showed that this patch
seems performance-neutral.
This is a preparation for
http://lists.llvm.org/pipermail/llvm-dev/2019-April/131902.html
Differential Revision: https://reviews.llvm.org/D61855
llvm-svn: 360838
This matches the ELF does. Update the comment in ELF/Symbols.h and
duplicate it in wasm/Symbols.h
This a followup on rL355580 and rL355577.
Differential Revision: https://reviews.llvm.org/D59075
llvm-svn: 355737
Non-GOT non-PLT relocations to non-preemptible ifuncs result in the
creation of a canonical PLT, which now takes the identity of the IFUNC
in the symbol table. This (a) ensures address consistency inside and
outside the module, and (b) fixes a bug where some of these relocations
end up pointing to the resolver.
Fixes (at least) PR40474 and PR40501.
Differential Revision: https://reviews.llvm.org/D57371
llvm-svn: 353981
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
If .rela.iplt does not exist, we used to emit a corrupt symbol table
that contains two symbols, .rela_iplt_{start,end}, pointing to a
nonexisting section.
This patch fixes the issue by setting section index 0 to the symbols
if .rel.iplt section does not exist.
Differential Revision: https://reviews.llvm.org/D56623
llvm-svn: 351218
This patch also makes getPltEntryOffset a non-member function because
it doesn't depend on any private members of the TargetInfo class.
I tried a few different ideas, and it seems this change fits in best to me.
Differential Revision: https://reviews.llvm.org/D54981
llvm-svn: 347781
On PowerPC64, when a function call offset is too large to encode in a call
instruction the address is stored in a table in the data segment. A thunk is
used to load the branch target address from the table relative to the
TOC-pointer and indirectly branch to the callee. When linking position-dependent
code the addresses are stored directly in the table, for position-independent
code the table is allocated and filled in at load time by the dynamic linker.
For position-independent code the branch targets could have gone in the .got.plt
but using the .branch_lt section for both position dependent and position
independent binaries keeps it consitent and helps keep this PPC64 specific logic
seperated from the target-independent code handling the .got.plt.
Differential Revision: https://reviews.llvm.org/D53408
llvm-svn: 346877
`Type` parameter was used only to check for TLS attribute mismatch,
but we can do that when we actually replace symbols, so we don't need
to type as an argument. This change should simplify the interface of
the symbol table a bit.
llvm-svn: 344394
These symbols are declared early with the same value, so they otherwise
appear identical to ICF.
Differential Revision: https://reviews.llvm.org/D51376
llvm-svn: 340998
We have an issue with -wrap that the option doesn't work well when
renamed symbols get PLT entries. I'll explain what is the issue and
how this patch solves it.
For one -wrap option, we have three symbols: foo, wrap_foo and real_foo.
Currently, we use memcpy to overwrite wrapped symbols so that they get
the same contents. This works in most cases but doesn't when the relocation
processor sets some flags in the symbol. memcpy'ed symbols are just
aliases, so they always have to have the same contents, but the
relocation processor breaks that assumption.
r336609 is an attempt to fix the issue by memcpy'ing again after
processing relocations, so that symbols that are out of sync get the
same contents again. That works in most cases as well, but it breaks
ASan build in a mysterious way.
We could probably fix the issue by choosing symbol attributes that need
to be copied after they are updated. But it feels too complicated to me.
So, in this patch, I fixed it once and for all. With this patch, we no
longer memcpy symbols. All references to renamed symbols point to new
symbols after wrapSymbols() is done.
Differential Revision: https://reviews.llvm.org/D50569
llvm-svn: 340387
Patch by PkmX.
This patch makes lld recognize RISC-V target and implements basic
relocation for RV32/RV64 (and RVC). This should be necessary for static
linking ELF applications.
The ABI documentation for RISC-V can be found at:
https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md.
Note that the documentation is far from complete so we had to figure out
some details from bfd.
The patch should be pretty straightforward. Some highlights:
- A new relocation Expr R_RISCV_PC_INDIRECT is added. This is needed as
the low part of a PC-relative relocation is linked to the corresponding
high part (auipc), see:
https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md#pc-relative-symbol-addresses
- LLVM's MC support for RISC-V is very incomplete (we are working on
this), so tests are given in objectyaml format with the original
assembly included in the comments. Once we have complete support for
RISC-V in MC, we can switch to llvm-as/llvm-objdump.
- We don't support linker relaxation for now as it requires greater
changes to lld that is beyond the scope of this patch. Once this is
accepted we can start to work on adding relaxation to lld.
Differential Revision: https://reviews.llvm.org/D39322
llvm-svn: 339364
Adding all libcall symbols to the link can have undesired consequences.
For example, the libgcc implementation of __sync_val_compare_and_swap_8
on 32-bit ARM pulls in an .init_array entry that aborts the program if
the Linux kernel does not support 64-bit atomics, which would prevent
the program from running even if it does not use 64-bit atomics.
This change makes it so that we only add libcall symbols to the
link before LTO if we have to, i.e. if the symbol's definition is in
bitcode. Any other required libcall symbols will be added to the link
after LTO when we add the LTO object file to the link.
Differential Revision: https://reviews.llvm.org/D50475
llvm-svn: 339301
Almost all entries inside MIPS GOT are referenced by signed 16-bit
index. Zero entry lies approximately in the middle of the GOT. So the
total number of GOT entries cannot exceed ~16384 for 32-bit architecture
and ~8192 for 64-bit architecture. This limitation makes impossible to
link rather large application like for example LLVM+Clang. There are two
workaround for this problem. The first one is using the -mxgot
compiler's flag. It enables using a 32-bit index to access GOT entries.
But each access requires two assembly instructions two load GOT entry
index to a register. Another workaround is multi-GOT. This patch
implements it.
Here is a brief description of multi-GOT for detailed one see the
following link https://dmz-portal.mips.com/wiki/MIPS_Multi_GOT.
If the sum of local, global and tls entries is less than 64K only single
got is enough. Otherwise, multi-got is created. Series of primary and
multiple secondary GOTs have the following layout:
```
- Primary GOT
Header
Local entries
Global entries
Relocation only entries
TLS entries
- Secondary GOT
Local entries
Global entries
TLS entries
...
```
All GOT entries required by relocations from a single input file
entirely belong to either primary or one of secondary GOTs. To reference
GOT entries each GOT has its own _gp value points to the "middle" of the
GOT. In the code this value loaded to the register which is used for GOT
access.
MIPS 32 function's prologue:
```
lui v0,0x0
0: R_MIPS_HI16 _gp_disp
addiu v0,v0,0
4: R_MIPS_LO16 _gp_disp
```
MIPS 64 function's prologue:
```
lui at,0x0
14: R_MIPS_GPREL16 main
```
Dynamic linker does not know anything about secondary GOTs and cannot
use a regular MIPS mechanism for GOT entries initialization. So we have
to use an approach accepted by other architectures and create dynamic
relocations R_MIPS_REL32 to initialize global entries (and local in case
of PIC code) in secondary GOTs. But ironically MIPS dynamic linker
requires GOT entries and correspondingly ordered dynamic symbol table
entries to deal with dynamic relocations. To handle this problem
relocation-only section in the primary GOT contains entries for all
symbols referenced in global parts of secondary GOTs. Although the sum
of local and normal global entries of the primary got should be less
than 64K, the size of the primary got (including relocation-only entries
can be greater than 64K, because parts of the primary got that overflow
the 64K limit are used only by the dynamic linker at dynamic link-time
and not by 16-bit gp-relative addressing at run-time.
The patch affects common LLD code in the following places:
- Added new hidden -mips-got-size flag. This flag required to set low
maximum size of a single GOT to be able to test the implementation using
small test cases.
- Added InputFile argument to the getRelocTargetVA function. The same
symbol referenced by GOT relocation from different input file might be
allocated in different GOT. So result of relocation depends on the file.
- Added new ctor to the DynamicReloc class. This constructor records
settings of dynamic relocation which used to adjust address of 64kb page
lies inside a specific output section.
With the patch LLD is able to link all LLVM+Clang+LLD applications and
libraries for MIPS 32/64 targets.
Differential revision: https://reviews.llvm.org/D31528
llvm-svn: 334390
On PowerPC calls to functions through the plt must be done through a call stub
that is responsible for:
1) Saving the toc pointer to the stack.
2) Loading the target functions address from the plt into both r12 and the
count register.
3) Indirectly branching to the target function.
Previously we have been emitting these call stubs to the .plt section, however
the .plt section should be reserved for the lazy symbol resolution stubs. This
patch moves the call stubs to the text section by moving the implementation from
writePlt to the thunk framework.
Differential Revision: https://reviews.llvm.org/D46204
llvm-svn: 331607
This is slightly simpler to read IMHO. Now if a symbol has a position
in the file, it is Defined.
The main motivation is that with this a SharedSymbol doesn't need a
section, which reduces the size of SymbolUnion.
With this the peak allocation when linking chromium goes from 568.1 to
564.2 MB.
llvm-svn: 330966
It was always an offset of PltIndex.
This doesn't reduce the size of the structures, but makes it easier to
do so in a followup patch.
llvm-svn: 330953
Before this patch:
Symbol 56
Defined 80
Undefined 56
SharedSymbol 88
LazyArchive 72
LazyObject 56
With this patch
Symbol 48
Defined 72
Undefined 48
SharedSymbol 80
LazyArchive 64
LazyObject 48
The result is that peak allocation when linking chromium (according to
heaptrack) goes from 578 to 568 MB.
llvm-svn: 330874
Our code for LazyObject and LazyArchive duplicates.
This patch extracts the common part to remove
the duplication.
Differential revision: https://reviews.llvm.org/D45516
llvm-svn: 330701
We had a single symbol using -1 with a synthetic section. It is
simpler to just update its value.
This is not a big will by itself, but will allow having a simple
getOffset for InputSeciton.
llvm-svn: 330340
This should resolve the issue that lld build fails in some hosts
that uses case-insensitive file system.
Differential Revision: https://reviews.llvm.org/D43788
llvm-svn: 326339
The profailing style in lld seem to be to not include such empty lines.
Clang-tidy/clang-format seem to handle this just fine.
Differential Revision: https://reviews.llvm.org/D43528
llvm-svn: 325629
This adds an extra level of static safety to our use of placement
new to allocate Symbol types. It prevents the accidental addition
on a non-trivially-destructible member that could allocate and
leak memory.
From the spec: Storage occupied by trivially destructible objects
may be reused without calling the destructor.
Differential Revision: https://reviews.llvm.org/D43244
llvm-svn: 325025
Symbol had both Visibility and getVisibility() and they had different
meanings. That is just too easy to get wrong.
getVisibility() would compute the visibility of a particular symbol
(foo in bar.o), and Visibility stores the computed value we will put
in the output.
There is only one case when we want what getVisibility() provides, so
inline it.
llvm-svn: 322590
By using an index instead of a pointer for verdef we can put the index
next to the alignment field. This uses the otherwise wasted area and
reduces the shared symbol size.
By itself the performance change of this is in the noise, but I have a
followup patch to remove another 8 bytes that improves performance
when combined with this.
llvm-svn: 320449