missed in the first pass because the script didn't yet handle include
guards.
Note that the script is now able to handle all of these headers without
manual edits. =]
llvm-svn: 169224
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
make it more consistent with its intended semantics.
The `linker_private_weak_def_auto' linkage type was meant to automatically hide
globals which never had their addresses taken. It has nothing to do with the
`linker_private' linkage type, which outputs the symbols with a `l' (ell) prefix
among other things.
The intended semantic is more like the `linkonce_odr' linkage type.
Change the name of the linkage type to `linkonce_odr_auto_hide'. And therefore
changing the semantics so that it produces the correct output for the linker.
Note: The old linkage name `linker_private_weak_def_auto' will still parse but
is not a synonym for `linkonce_odr_auto_hide'. This should be removed in 4.0.
<rdar://problem/11754934>
llvm-svn: 162114
This is still a work in progress but I believe it is currently good enough
to fix PR13122 "Need unit test driver for codegen IR passes". For example,
you can run llc with -stop-after=loop-reduce to have it dump out the IR after
running LSR. Serializing machine-level IR is not yet supported but we have
some patches in progress for that.
The plan is to serialize the IR to a YAML file, containing separate sections
for the LLVM IR, machine-level IR, and whatever other info is needed. Chad
suggested that we stash the stop-after pass in the YAML file and use that
instead of the start-after option to figure out where to restart the
compilation. I think that's a great idea, but since it's not implemented yet
I put the -start-after option into this patch for testing purposes.
llvm-svn: 159570
This allows the user/front-end to specify a model that is better
than what LLVM would choose by default. For example, a variable
might be declared as
@x = thread_local(initialexec) global i32 42
if it will not be used in a shared library that is dlopen'ed.
If the specified model isn't supported by the target, or if LLVM can
make a better choice, a different model may be used.
llvm-svn: 159077
Renamed methods caseBegin, caseEnd and caseDefault with case_begin, case_end, and case_default.
Added some notes relative to case iterators.
llvm-svn: 152532
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120130/136146.html
Implemented CaseIterator and it solves almost all described issues: we don't need to mix operand/case/successor indexing anymore. Base iterator class is implemented as a template since it may be initialized either from "const SwitchInst*" or from "SwitchInst*".
ConstCaseIt is just a read-only iterator.
CaseIt is read-write iterator; it allows to change case successor and case value.
Usage of iterator allows totally remove resolveXXXX methods. All indexing convertions done automatically inside the iterator's getters.
Main way of iterator usage looks like this:
SwitchInst *SI = ... // intialize it somehow
for (SwitchInst::CaseIt i = SI->caseBegin(), e = SI->caseEnd(); i != e; ++i) {
BasicBlock *BB = i.getCaseSuccessor();
ConstantInt *V = i.getCaseValue();
// Do something.
}
If you want to convert case number to TerminatorInst successor index, just use getSuccessorIndex iterator's method.
If you want initialize iterator from TerminatorInst successor index, use CaseIt::fromSuccessorIndex(...) method.
There are also related changes in llvm-clients: klee and clang.
llvm-svn: 152297
but with a critical fix to the SelectionDAG code that optimizes copies
from strings into immediate stores: the previous code was stopping reading
string data at the first nul. Address this by adding a new argument to
llvm::getConstantStringInfo, preserving the behavior before the patch.
llvm-svn: 149800
The purpose of refactoring is to hide operand roles from SwitchInst user (programmer). If you want to play with operands directly, probably you will need lower level methods than SwitchInst ones (TerminatorInst or may be User). After this patch we can reorganize SwitchInst operands and successors as we want.
What was done:
1. Changed semantics of index inside the getCaseValue method:
getCaseValue(0) means "get first case", not a condition. Use getCondition() if you want to resolve the condition. I propose don't mix SwitchInst case indexing with low level indexing (TI successors indexing, User's operands indexing), since it may be dangerous.
2. By the same reason findCaseValue(ConstantInt*) returns actual number of case value. 0 means first case, not default. If there is no case with given value, ErrorIndex will returned.
3. Added getCaseSuccessor method. I propose to avoid usage of TerminatorInst::getSuccessor if you want to resolve case successor BB. Use getCaseSuccessor instead, since internal SwitchInst organization of operands/successors is hidden and may be changed in any moment.
4. Added resolveSuccessorIndex and resolveCaseIndex. The main purpose of these methods is to see how case successors are really mapped in TerminatorInst.
4.1 "resolveSuccessorIndex" was created if you need to level down from SwitchInst to TerminatorInst. It returns TerminatorInst's successor index for given case successor.
4.2 "resolveCaseIndex" converts low level successors index to case index that curresponds to the given successor.
Note: There are also related compatability fix patches for dragonegg, klee, llvm-gcc-4.0, llvm-gcc-4.2, safecode, clang.
llvm-svn: 149481
subdirectories to traverse into.
- Originally I wanted to avoid this and just autoscan, but this has one key
flaw in that new subdirectories can not automatically trigger a rerun of the
llvm-build tool. This is particularly a pain when switching back and forth
between trees where one has added a subdirectory, as the dependencies will
tend to be wrong. This will also eliminates FIXME implicitly.
llvm-svn: 146436
change, now you need a TargetOptions object to create a TargetMachine. Clang
patch to follow.
One small functionality change in PTX. PTX had commented out the machine
verifier parts in their copy of printAndVerify. That now calls the version in
LLVMTargetMachine. Users of PTX who need verification disabled should rely on
not passing the command-line flag to enable it.
llvm-svn: 145714
and code model. This eliminates the need to pass OptLevel flag all over the
place and makes it possible for any codegen pass to use this information.
llvm-svn: 144788
handle defining the "magic" target related components (like native,
nativecodegen, and engine).
- We still require these components to be in the project (currently in
lib/Target) so that we have a place to document them and hopefully make it
more obvious that they are "magic".
llvm-svn: 144253
change the generated library .a file name once we fully switch over, but
simplifies how we treat these targets without requiring more special casing
(since their library group name and the codegen library name currently map to
the same "llvm-config" style component name).
llvm-svn: 144251