The root cause of reverting was fixed - PR33514.
Summary:
The patch makes instruction count the highest priority for
LSR solution for X86 (previously registers had highest priority).
Reviewers: qcolombet
Differential Revision: http://reviews.llvm.org/D30562
From: Evgeny Stupachenko <evstupac@gmail.com>
<evgeny.v.stupachenko@intel.com>
llvm-svn: 310289
This patch expands the support of lowerInterleavedStore to 16x8i stride 4.
LLVM creates suboptimal shuffle code-gen for AVX2. In overall, this patch is a specific fix for the pattern (Strid=4 VF=16) and we plan to include more patterns in the future.
The patch goal is to optimize the following sequence:
At the end of the computation, we have ymm2, ymm0, ymm12 and ymm3 holding
each 16 chars:
c0, c1, , c16
m0, m1, , m16
y0, y1, , y16
k0, k1, ., k16
And these need to be transposed/interleaved and stored like so:
c0 m0 y0 k0 c1 m1 y1 k1 c2 m2 y2 k2 c3 m3 y3 k3 ....
Differential Revision: https://reviews.llvm.org/D35829
llvm-svn: 310252
We can convert any select-of-constants to math ops:
http://rise4fun.com/Alive/d7d
For this patch, I'm enhancing an existing x86 transform that uses fake multiplies
(they always become shl/lea) to avoid cmov or branching. The current code misses
cases where we have a negative constant and a positive constant, so this is just
trying to plug that hole.
The DAGCombiner diff prevents us from hitting a terrible inefficiency: we can start
with a select in IR, create a select DAG node, convert it into a sext, convert it
back into a select, and then lower it to sext machine code.
Some notes about the test diffs:
1. 2010-08-04-MaskedSignedCompare.ll - We were creating control flow that didn't exist in the IR.
2. memcmp.ll - Choose -1 or 1 is the case that got me looking at this again. I
think we could avoid the push/pop in some cases if we used 'movzbl %al' instead of an xor on
a different reg? That's a post-DAG problem though.
3. mul-constant-result.ll - The trade-off between sbb+not vs. setne+neg could be addressed if
that's a regression, but I think those would always be nearly equivalent.
4. pr22338.ll and sext-i1.ll - These tests have undef operands, so I don't think we actually care about these diffs.
5. sbb.ll - This shows a win for what I think is a common case: choose -1 or 0.
6. select.ll - There's another borderline case here: cmp+sbb+or vs. test+set+lea? Also, sbb+not vs. setae+neg shows up again.
7. select_const.ll - These are motivating cases for the enhancement; replace cmov with cheaper ops.
Assembly differences between movzbl and xor to avoid a partial reg stall are caused later by the X86 Fixup SetCC pass.
Differential Revision: https://reviews.llvm.org/D35340
llvm-svn: 310208
Summary:
On older processors this instruction encoding is treated as a NOP.
MSVC doesn't disable intrinsics based on features the way clang/gcc does. Because the PAUSE instruction encoding doesn't crash older processors, some software out there uses these intrinsics without checking for SSE2.
This change also seems to also be consistent with gcc behavior.
Fixes PR34079
Reviewers: RKSimon, zvi
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D36361
llvm-svn: 310190
Summary:
Direct calls to dllimport functions are very common Windows. We should
add them to the -O0 fast path.
Reviewers: rafael
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D36197
llvm-svn: 310152
Its sole purpose was to avoid spreading around ifdefs related to
building global-isel. Since r309990, GlobalISel is not optional anymore,
thus, we can get rid of this mechanism all together.
NFC.
llvm-svn: 310115
With this change, the GlobalISel library gets always built. In
particular, this is not possible to opt GlobalISel out of the build
using the LLVM_BUILD_GLOBAL_ISEL variable any more.
llvm-svn: 309990
IMHO it is an antipattern to have a enum value that is Default.
At any given piece of code it is not clear if we have to handle
Default or if has already been mapped to a concrete value. In this
case in particular, only the target can do the mapping and it is nice
to make sure it is always done.
This deletes the two default enum values of CodeModel and uses an
explicit Optional<CodeModel> when it is possible that it is
unspecified.
llvm-svn: 309911
Improves atom scheduler test coverage (to make it easier to upgrade them for PR32431).
Merged SSE_VEC_BIT_ITINS_P + SSE_BIT_ITINS_P as we were interchanging between them.
llvm-svn: 309715
Summary: The 64-bit 'and' with immediate instruction only supports a 32-bit immediate. So for larger constants we have to load the constant into a register first. If the immediate happens to be a mask we can use the BEXTRI instruction to perform the masking. We already do something similar using the BZHI instruction from the BMI2 instruction set.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D36129
llvm-svn: 309706
Improves atom scheduler test coverage (to make it easier to upgrade them for PR32431).
Checked on Agner that these actually match the UNPACK schedules, but better to include a separate class
llvm-svn: 309701
We were already using the 32 bit element opcode if BWI isn't enabled, but there's no reason to change opcode if we have BWI. We will still use the 8/16 opcodes for masked stores though.
This allows us to use the aligned opcode when we can which makes our test output more consistent between different modes. It also reduces the number of isel patterns we need.
This is a slight inconsistency with loads which default to 64 bit element opcodes. I'll probably rectify that in a future patch.
Differential Revision: https://reviews.llvm.org/D35978
llvm-svn: 309693
These were taking priority over the aligned load instructions since there is no vmovda8/16. I don't think there is really a difference between aligned and unaligned on newer cpus so I don't think it matters which instructions we use.
But with this change we reduce the size of the isel table a little and we allow the aligned information to pass through to the evex->vec pass and produce the same output has avx/avx2 in some cases.
I also generally dislike patterns rooted in a bitcast which these were.
Differential Revision: https://reviews.llvm.org/D35977
llvm-svn: 309589
Added patterns to recognize AND 1 on the mask of a scalar masked
move is not needed since only the lower bit is relevant for the
instruction.
Differential Revision:
https://reviews.llvm.org/D35897
llvm-svn: 309546
MS ignores the keyword "short" when used after a jc/jz instruction, LLVM ought to do the same.
Test: D35893
Differential Revision: https://reviews.llvm.org/D35892
llvm-svn: 309509
This patch is in 2 parts:
1 - replace combineBT's use of SimplifyDemandedBits (hasOneUse only) with SelectionDAG::GetDemandedBits to more aggressively determine the lower bits used by BT.
2 - update SelectionDAG::GetDemandedBits to support ANY_EXTEND - if the demanded bits are only in the non-extended portion, then peek through and demand from the source value and then ANY_EXTEND that if we found a match.
Differential Revision: https://reviews.llvm.org/D35896
llvm-svn: 309486
This commit
- Removes IsTailCall and replaces it with a target-defined unsigned
- Refactors getOutliningCallOverhead and getOutliningFrameOverhead so that they don't use IsTailCall
- Adds a call class + frame class classification to OutlinedFunction and Candidate respectively
This accomplishes a couple things.
Firstly, we don't need the notion of *tail call* in the general outlining algorithm.
Secondly, we now can have different "outlining classes" for each candidate within a set of candidates.
This will make it easy to add new ways to outline sequences for certain targets and dynamically choose
an appropriate cost model for a sequence depending on the context that that sequence lives in.
Ultimately, this should get us closer to being able to do something like, say avoid saving the link
register when outlining AArch64 instructions.
llvm-svn: 309475
This is some more cleanup in preparation for some actual
functional changes. This splits getOutliningBenefit into
two cost functions: getOutliningCallOverhead and
getOutliningFrameOverhead. These functions return the
number of instructions that would be required to call
a specific function and the number of instructions
that would be required to construct a frame for a
specific funtion. The actual outlining benefit logic
is moved into the outliner, which calls these functions.
The goal of refactoring getOutliningBenefit is to:
- Get us closer to getting rid of the IsTailCall flag
- Further split up "target-specific" things and
"general algorithm" things
llvm-svn: 309356
The X86 tail call eligibility logic was correct when it was written, but
the addition of inalloca and argument copy elision broke its
assumptions. It was assuming that fixed stack objects were immutable.
Currently, we aim to emit a tail call if no arguments have to be
re-arranged in memory. This code would trace the outgoing argument
values back to check if they are loads from an incoming stack object.
If the stack argument is immutable, then we won't need to store it back
to the stack when we tail call.
Fortunately, stack objects track their mutability, so we can just make
the obvious check to fix the bug.
This was http://crbug.com/749826
llvm-svn: 309343
Like r309323, X86 had a typo where it passed the wrong flags to TLO.
Found by inspection; I haven't been able to tickle this into having
observable behavior. I don't think it does, given that X86 doesn't have
custom demanded bits logic, and the generic logic doesn't have a lot of
exposure to illegal constructs.
llvm-svn: 309325
Assign all concat elements to zero and then just replace the first element, instead of setting them all to null and copying everything in.
llvm-svn: 309261
This patch expands the support of lowerInterleavedStore to 32x8i stride 4.
LLVM creates suboptimal shuffle code-gen for AVX2. In overall, this patch is a specific fix for the pattern (Strid=4 VF=32) and we plan to include more patterns in the future. To reach our goal of "more patterns". We include two mask creators. The first function creates shuffle's mask equivalent to unpacklo/unpackhi instructions. The other creator creates mask equivalent to a concat of two half vectors(high/low).
The patch goal is to optimize the following sequence:
At the end of the computation, we have ymm2, ymm0, ymm12 and ymm3 holding
each 32 chars:
c0, c1, , c31
m0, m1, , m31
y0, y1, , y31
k0, k1, ., k31
And these need to be transposed/interleaved and stored like so:
c0 m0 y0 k0 c1 m1 y1 k1 c2 m2 y2 k2 c3 m3 y3 k3 ....
Reviewers:
dorit
Farhana
RKSimon
guyblank
DavidKreitzer
Differential Revision: https://reviews.llvm.org/D34601
llvm-svn: 309086
Changing mask argument type from const SmallVectorImpl<int>& to
ArrayRef<int>.
This came up in D35700 where a mask is received as an ArrayRef<int> and
we want to pass it to TargetLowering::isShuffleMaskLegal().
Also saves a few lines of code.
llvm-svn: 309085
splitting patch D34601 into two part. This part changes the location of two functions.
The second part will be based on that patch. This was requested by @RKSimon.
Reviewers:
1. dorit
2. Farhana
3. RKSimon
4. guyblank
5. DavidKreitzer
llvm-svn: 309084
Summary: The aligned load predicates don't suppress themselves if the load is non-temporal the way the unaligned predicates do. For the most part this isn't a problem because the aligned predicates are mostly used for instructions that only load the the non-temporal loads have priority over those. The exception are masked loads.
Reviewers: RKSimon, zvi
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D35712
llvm-svn: 309079
D35067/rL308322 attempted to support up to 4 load pairs for memcmp inlining which resulted in regressions for some optimized libc memcmp implementations (PR33914).
Until we can match these more optimal cases, this patch reduces the memcmp expansion to a maximum of 2 load pairs (which matches what we do for -Os).
This patch should be considered for the 5.0.0 release branch as well
Differential Revision: https://reviews.llvm.org/D35830
llvm-svn: 308986
This reverts r308867 and r308866.
It broke the sanitizer-windows buildbot on C++ code similar to the
following:
namespace cl { }
void f() {
__asm {
mov al, cl
}
}
t.cpp(4,13): error: unexpected namespace name 'cl': expected expression
mov al, cl
^
In this case, MSVC parses 'cl' as a register, not a namespace.
llvm-svn: 308926
On MS-style, the following snippet:
int eax;
__asm mov eax, ebx
should yield loading of ebx, into the location pointed by the variable eax
This patch sees to it.
Currently, a reg-to-reg move would have been invoked.
clang: D34740
Differential Revision: https://reviews.llvm.org/D34739
llvm-svn: 308866