The FinalRead statement represented a virtual read that is executed after the
SCoP. It was used when we verified the correctness of a schedule by checking if
it yields the same FLOW dependences as the original code. This is only works, if
we have a final read that reads all memory at the end of the SCoP.
We now switched to just checking if a schedule does not introduce negative
dependences and also consider WAW WAR dependences. This restricts the schedules
a little bit more, but we do not have any optimizer that would calculate a more
complex schedule. Hence, for now final reads are obsolete.
llvm-svn: 152319
We now just check if the new scattering would create non-positive dependences.
This is a lot faster than recalculating dependences (which is especially slow
on tiled code).
llvm-svn: 152230
In case we can not analyze an access function, we do not discard the SCoP, but
assume conservatively that all memory accesses that can be derived from our base
pointer may be accessed.
Patch provided by: Marcello Maggioni <hayarms@gmail.com>
llvm-svn: 146972
Parameters can be complex SCEV expressions, but they can also be single scalar
values. If a parameters is such a simple scalar value and the value is named,
use this name to name the isl parameter dimensions.
llvm-svn: 144641
This does not work reliable and is probably not needed. I accidentally changed
this in this recent commit:
commit a0bcd63c6ffa81616cf8c6663a87588803f7d91c
Author: grosser <grosser@91177308-0d34-0410-b5e6-96231b3b80d8>
Date: Thu Nov 10 12:47:21 2011 +0000
ScopDetect: Use INVALID macro to fail in case of aliasing
This simplifies the code and also makes the error message available to the
graphviz scop viewer.
git-svn-id: https://llvm.org/svn/llvm-project/polly/trunk@144284
llvm-svn: 144286
address is part of the access function. Also remove unused special cases that
were necessery when the base address was still contained in the access function
llvm-svn: 144280
Previously we allowed in access functions only a single SCEVUnknown, which later
became the base address. We now use getPointerBase() to derive the base address
and all remaining unknowns are handled as parameters. This allows us to handle
cases like A[b+c];
llvm-svn: 144278
This check was necessary because of the use AffineSCEVIterator in TempScopInfo.
As we removed this use recently it is not necessary any more.
llvm-svn: 144228