Commit Graph

10 Commits

Author SHA1 Message Date
Alexey Bataev 2377fe95c6 [OPENMP] Outlined function for parallel and other regions with list of captured variables.
Currently all variables used in OpenMP regions are captured into a record and passed to outlined functions in this record. It may result in some poor performance because of too complex analysis later in optimization passes. Patch makes to emit outlined functions for parallel-based regions with a list of captured variables. It reduces code for 2*n GEPs, stores and loads at least.
Codegen for task-based regions remains unchanged because runtime requires that all captured variables are passed in captured record.

llvm-svn: 247251
2015-09-10 08:12:02 +00:00
John McCall 7f416cc426 Compute and preserve alignment more faithfully in IR-generation.
Introduce an Address type to bundle a pointer value with an
alignment.  Introduce APIs on CGBuilderTy to work with Address
values.  Change core APIs on CGF/CGM to traffic in Address where
appropriate.  Require alignments to be non-zero.  Update a ton
of code to compute and propagate alignment information.

As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.

The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned.  Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay.  I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.

Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.

We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment.  In particular,
field access now uses alignmentAtOffset instead of min.

Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs.  For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint.  That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.

ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments.  In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments.  That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.

I partially punted on applying this work to CGBuiltin.  Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.

llvm-svn: 246985
2015-09-08 08:05:57 +00:00
Alexey Bataev b44fdfc7b2 [OPENMP] Drop type qualifiers from private variables.
If the variable is marked as private in OpenMP construct, the reference to this variable should not keep type qualifiers for the original variable. Private copy is not volatile or constant, so we can use unqualified type for private copy.

llvm-svn: 242133
2015-07-14 10:32:29 +00:00
Adrian Prantl bc068586ac Revert "Revert r241620 and follow-up commits" and move the initialization
of the llvm targets from clang/CodeGen into ClangCheck.cpp and CIndex.cpp.

llvm-svn: 241653
2015-07-08 01:00:30 +00:00
Adrian Prantl 142ec39739 Revert r241620 and follow-up commits while investigating linux buildbot failures.
llvm-svn: 241642
2015-07-07 23:19:46 +00:00
Adrian Prantl 683c4943e6 Add target requirements to testcases that emit PCH.
llvm-svn: 241630
2015-07-07 21:45:48 +00:00
Alexey Bataev db39021cee [OPENMP] -fopenmp enables OpenMP support (fix for http://llvm.org/PR23492)
-fopenmp turns on OpenMP support and links libiomp5 as OpenMP library. Also there is -fopenmp={libiomp5|libgomp} option that allows to override effect of -fopenmp and link libgomp library (if -fopenmp=libgomp is specified).
Differential Revision: http://reviews.llvm.org/D9736

llvm-svn: 237769
2015-05-20 04:24:19 +00:00
Alexey Bataev 4fce73aabf [OPENMP] Fixed test for reduction on 'sections' directive.
llvm-svn: 236692
2015-05-07 04:09:41 +00:00
Alexey Bataev 69a4779965 [OPENMP] Fixed codegen for 'reduction' clause.
Fixed codegen for reduction operations min, max, && and ||. Codegen for them is quite similar and I was confused by this similarity.
Also added a call to kmpc_end_reduce() in atomic part of reduction codegen (call to kmpc_end_reduce_nowait() is not required).
Differential Revision: http://reviews.llvm.org/D9513

llvm-svn: 236689
2015-05-07 03:54:03 +00:00
Alexey Bataev a89adf22db [OPENMP] Codegen for 'reduction' clause in 'sections' directive.
Emit a code for reduction clause. Next code should be emitted for reductions:

static kmp_critical_name lock = { 0 };

void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
    *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
      ...
        *(Type<n>-1*)lhs[<n>-1] =
          ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
            *(Type<n>-1*)rhs[<n>-1]);
}

...
void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), RedList, reduce_func, &<lock>)) {
case 1:
  <LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]);
  ...
  <LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]);
  __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
  break;
case 2:
  Atomic(<LHSExprs>[0] = ReductionOperation0(*<LHSExprs>[0], *<RHSExprs>[0]));
  ...
  Atomic(<LHSExprs>[<n>-1] = ReductionOperation<n>-1(*<LHSExprs>[<n>-1], *<RHSExprs>[<n>-1]));
  break;
default:;
}
Reduction variables are a kind of a private variables, they have private copies, but initial values are chosen in accordance with the reduction operation.
If sections directive has only single section, then original shared variables are used instead with barrier at the end of the directive.
Differential Revision: http://reviews.llvm.org/D9242

llvm-svn: 235835
2015-04-27 05:04:13 +00:00