The memory location that corresponds to a volatile operation is very
special. They are observed by the machine in ways which we cannot
reason about.
Differential Revision: http://reviews.llvm.org/D20555
llvm-svn: 270879
Summary
When a non-escaping pointer is compared to a global value, the
comparison can be folded even if the corresponding malloc/allocation
call cannot be elided.
We need to make sure the global value is not null, since comparisons to
null cannot be folded.
In future, we should also handle cases when the the comparison
instruction dominates the pointer escape.
Reviewers: sanjoy
Subscribers s.egerton, llvm-commits
Differential Revision: http://reviews.llvm.org/D19549
llvm-svn: 268390
These atomic operations are conceptually both a load and store from the same location. As such, we can treat them as the most conservative of those two components which in practice, means we can treat them like stores. An cmpxchg or atomicrmw captures the values, but not the locations accessed.
Note: We can probably be more aggressive about the comparison value in an cmpxhg since to have it be in memory, it must already be captured, but I figured it was better to avoid that for the moment.
Note 2: It turns out that since we don't actually support cmpxchg of pointer type, writing a negative test is impossible.
Differential Revision: http://reviews.llvm.org/D17400
llvm-svn: 261245
While we have successfully implemented a funclet-oriented EH scheme on
top of LLVM IR, our scheme has some notable deficiencies:
- catchendpad and cleanupendpad are necessary in the current design
but they are difficult to explain to others, even to seasoned LLVM
experts.
- catchendpad and cleanupendpad are optimization barriers. They cannot
be split and force all potentially throwing call-sites to be invokes.
This has a noticable effect on the quality of our code generation.
- catchpad, while similar in some aspects to invoke, is fairly awkward.
It is unsplittable, starts a funclet, and has control flow to other
funclets.
- The nesting relationship between funclets is currently a property of
control flow edges. Because of this, we are forced to carefully
analyze the flow graph to see if there might potentially exist illegal
nesting among funclets. While we have logic to clone funclets when
they are illegally nested, it would be nicer if we had a
representation which forbade them upfront.
Let's clean this up a bit by doing the following:
- Instead, make catchpad more like cleanuppad and landingpad: no control
flow, just a bunch of simple operands; catchpad would be splittable.
- Introduce catchswitch, a control flow instruction designed to model
the constraints of funclet oriented EH.
- Make funclet scoping explicit by having funclet instructions consume
the token produced by the funclet which contains them.
- Remove catchendpad and cleanupendpad. Their presence can be inferred
implicitly using coloring information.
N.B. The state numbering code for the CLR has been updated but the
veracity of it's output cannot be spoken for. An expert should take a
look to make sure the results are reasonable.
Reviewers: rnk, JosephTremoulet, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D15139
llvm-svn: 255422
Summary:
Earlier CaptureTracking would assume all "interesting" operands to a
call or invoke were its arguments. With operand bundles this is no
longer true.
Note: an earlier change got `doesNotCapture` working correctly with
operand bundles.
This change uses DSE to test the changes to CaptureTracking. DSE is a
vehicle for testing only, and is not directly involved in this change.
Reviewers: reames, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14306
llvm-svn: 252095
Some personality routines require funclet exit points to be clearly
marked, this is done by producing a token at the funclet pad and
consuming it at the corresponding ret instruction. CleanupReturnInst
already had a spot for this operand but CatchReturnInst did not.
Other personality routines don't need to use this which is why it has
been made optional.
llvm-svn: 245149
This patch is a follow up from r240560 and is a step further into
mitigating the compile time performance issues in CaptureTracker.
By providing the CaptureTracker with a "cached ordered basic block"
instead of computing it every time, MemDepAnalysis can use this cache
throughout its calls to AA->callCapturesBefore, avoiding to recompute it
for every scanned instruction. In the same testcase used in r240560,
compile time is reduced from 2min to 30s.
This also fixes PR22348.
rdar://problem/19230319
Differential Revision: http://reviews.llvm.org/D11364
llvm-svn: 243750
CaptureTracking becomes very expensive in large basic blocks while
calling PointerMayBeCaptured. PointerMayBeCaptured scans the BB the
number of times equal to the number of uses of 'BeforeHere', which is
currently capped at 20 and bails out with Tracker->tooManyUses().
The bottleneck here is the number of calls to PointerMayBeCaptured * the
basic block scan. In a testcase with a 82k instruction BB,
PointerMayBeCaptured is called 130k times, leading to 'shouldExplore'
taking 527k runs, this currently takes ~12min.
To fix this we locally (within PointerMayBeCaptured) number the
instructions in the basic block using a DenseMap to cache instruction
positions/numbers. We build the cache incrementally every time we need
to scan an unexplored part of the BB, improving compile time to only
take ~2min.
This triggers in the flow: DeadStoreElimination -> MepDepAnalysis ->
CaptureTracking.
Side note: after multiple runs in the test-suite I've seen no
performance nor compile time regressions, but could note a couple of
compile time improvements:
Performance Improvements - Compile Time Delta Previous Current StdDev
SingleSource/Benchmarks/Misc-C++/bigfib -4.48% 0.8547 0.8164 0.0022
MultiSource/Benchmarks/TSVC/LoopRerolling-dbl/LoopRerolling-dbl -1.47% 1.3912 1.3707 0.0056
Differential Revision: http://reviews.llvm.org/D7010
llvm-svn: 240560
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
utils/sort_includes.py.
I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.
llvm-svn: 225974
This is to be consistent with StringSet and ultimately with the standard
library's associative container insert function.
This lead to updating SmallSet::insert to return pair<iterator, bool>,
and then to update SmallPtrSet::insert to return pair<iterator, bool>,
and then to update all the existing users of those functions...
llvm-svn: 222334
As it turns out, the capture tracker named CaptureBefore used by AA, and now
available via the PointerMayBeCapturedBefore function, would have been
more-aptly named CapturedBeforeOrAt, because it considers captures at the
instruction provided. This is not always what one wants, and it is difficult to
get the strictly-before behavior given only the current interface. This adds an
additional parameter which controls whether or not you want to include
captures at the provided instruction. The default is not to include the
instruction provided, so that 'Before' matches its name.
No functionality change intended.
llvm-svn: 213582
There were two generally-useful CaptureTracker classes defined in LLVM: the
simple tracker defined in CaptureTracking (and made available via the
PointerMayBeCaptured utility function), and the CapturesBefore tracker
available only inside of AA. This change moves the CapturesBefore tracker into
CaptureTracking, generalizes it slightly (by adding a ReturnCaptures
parameter), and makes it generally available via a PointerMayBeCapturedBefore
utility function.
This logic will be needed, for example, to perform noalias function parameter
attribute inference.
No functionality change intended.
llvm-svn: 213519
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
detail
2) Change it to actually be a *Use* iterator rather than a *User*
iterator.
3) Add an adaptor which is a User iterator that always looks through the
Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
they wanted a use_iterator (and to explicitly dig out the User when
needed), or a user_iterator which makes the Use itself totally
opaque.
Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.
The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.
However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]
llvm-svn: 203364
to ensure we don't mess up any of the overrides. Necessary for cleaning
up the Value use iterators and enabling range-based traversing of use
lists.
llvm-svn: 202958
The heuristic was added to avoid spending too much compile time A specially
crafted test case (PR17461, PR16474) with many uses on a select or bitcast
instruction can still trigger the slow case. Add a check for that case.
This only affects compile time, don't have a good way to test it.
llvm-svn: 191896
captured. This allows the tracker to look at the specific use, which may be
especially interesting for function calls.
Use this to fix 'nocapture' deduction in FunctionAttrs. The existing one does
not iterate until a fixpoint and does not guarantee that it produces the same
result regardless of iteration order. The new implementation builds up a graph
of how arguments are passed from function to function, and uses a bottom-up walk
on the argument-SCCs to assign nocapture. This gets us nocapture more often, and
does so rather efficiently and independent of iteration order.
llvm-svn: 147327
and stores capture) to permit the caller to see each capture point and decide
whether to continue looking.
Use this inside memdep to do an analysis that basicaa won't do. This lets us
solve another devirtualization case, fixing PR8908!
llvm-svn: 144580
examines; fall back to a conservative answer if there are
more. This works around some several compile time problems
resulting from BasicAliasAnalysis calling PointerMayBeCaptured.
The value has been chosen arbitrarily.
This fixes rdar://7438917 and may partially address PR5708.
llvm-svn: 90905
same object to be a non-capture; Duncan pointed out a way that such
a comparison could be a capture.
Make the rule that considers a comparison against null more specific,
and only consider noalias return values compared against null. This
still supports test/Transforms/GVN/nonescaping-malloc.ll, and is not
susceptible to the problem Duncan pointed out with noalias arguments.
llvm-svn: 89468
because if the results from getUnderlyingObject match, the values must
be from the same underlying object, even if we don't know what that
object is.
llvm-svn: 89434
careful about crazy methods of capturing pointers using comparisons.
Comparisons of identified objects with null in the default address
space are not captures. And, comparisons of two pointers within the
same identified object are not captures.
llvm-svn: 89421
if it is not ultimately captured. Teach BasicAliasAnalysis that a
local object address which does not escape and is never stored does
not alias with a value resulting from a load.
llvm-svn: 89398