The Go interpreter doesn't JIT or use LLVM, so this also
moves all the JIT related code from UserExpression to a new class LLVMUserExpression.
Differential Revision: http://reviews.llvm.org/D13073
Fix merge
llvm-svn: 251820
the corresponding TypeSystem. This makes sense because what kind of data there
is -- and how it can be looked up -- depends on the language.
Functionality that is common to all type systems is factored out into
PersistentExpressionState.
llvm-svn: 248934
There are still a bunch of dependencies on the plug-in, but this helps to
identify them.
There are also a few more bits we need to move (and abstract, for example the
ClangPersistentVariables).
llvm-svn: 248612
Before we had:
ClangFunction
ClangUtilityFunction
ClangUserExpression
and code all over in lldb that explicitly made Clang-based expressions. This patch adds an Expression
base class, and three pure virtual implementations for the Expression kinds:
FunctionCaller
UtilityFunction
UserExpression
You can request one of these expression types from the Target using the Get<ExpressionType>ForLanguage.
The Target will then consult all the registered TypeSystem plugins, and if the type system that matches
the language can make an expression of that kind, it will do so and return it.
Because all of the real expression types need to communicate with their ExpressionParser in a uniform way,
I also added a ExpressionTypeSystemHelper class that expressions generically can vend, and a ClangExpressionHelper
that encapsulates the operations that the ClangExpressionParser needs to perform on the ClangExpression types.
Then each of the Clang* expression kinds constructs the appropriate helper to do what it needs.
The patch also fixes a wart in the UtilityFunction that to use it you had to create a parallel FunctionCaller
to actually call the function made by the UtilityFunction. Now the UtilityFunction can be asked to vend a
FunctionCaller that will run its function. This cleaned up a lot of boiler plate code using UtilityFunctions.
Note, in this patch all the expression types explicitly depend on the LLVM JIT and IR, and all the common
JIT running code is in the FunctionCaller etc base classes. At some point we could also abstract that dependency
but I don't see us adding another back end in the near term, so I'll leave that exercise till it is actually necessary.
llvm-svn: 247720
It is required because of the following edge case on arm:
bx <addr> Non-tail call in a no return function
[data-pool] Marked with $d mapping symbol
The return address of the function call will point to the data pool but
we have to treat it as code so the StackFrame can calculate the symbols
correctly.
Differential revision: http://reviews.llvm.org/D12556
llvm-svn: 246958
stores information about a variable that different parts of LLDB use, from the
compiler-specific portion that only the expression parser cares about.
http://reviews.llvm.org/D12602
llvm-svn: 246871
This API is currently a no-op (in the sense that it has the same behavior as the already existing GetName()), but is meant long-term to provide a best-for-visualization version of the name of a function
It is still not hooked up to the command line 'bt' command, nor to the 'gui' mode, but I do have ideas on how to make that work going forward
rdar://21203242
llvm-svn: 241482
lldb::addr_t SBFrame::GetCFA();
This gets the CFA (call frame address) of the frame so it allows us to take an address that is on the stack and figure out which thread it comes from.
Also modified the heap.py module to be able to find out which variable in a frame's stack frame contains an address. This way when ptr_refs finds a match on the stack, it get then report which variable contains the pointer.
llvm-svn: 238393
Summary:
sc.block->AppendVariables(...) returns 0 if there are no arguments or local
variables, but we still need to check for global variables.
Test Plan:
```
$ cat test.cpp
int i;
int main() {
}
$ lldb test -o 'b main' -o r
(lldb) script
>>> print lldb.frame.FindValue('i', lldb.eValueTypeVariableGlobal)
(int) i = 0 # as opposed to "No value"
```
Reviewers: jingham, ovyalov, vharron, clayborg
Reviewed By: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D8464
llvm-svn: 232767
Reverting this commit led to other failures which I did not see at
first. This turned out to be an easy problem to fix, so I added
SBVariablesOptions.cpp to the CMakeLists.txt. In the future please
try to make sure new files are added to CMake.
llvm-svn: 229516
We talked about it internally - and came to the conclusion that it's time to have an options class
This commit adds an SBVariablesOptions class and goes through all the required dance
llvm-svn: 228975
A runtime support value is a ValueObject whose only purpose is to support some language runtime's operation, but it does not directly provide any user-visible benefit
As such, unless the user is working on the runtime support, it is mostly safe for them not to see such a value when debugging
It is a language runtime's job to check whether a ValueObject is a support value, and that - in conjunction with a target setting - is used by frame variable and target variable
SBFrame::GetVariables gets a new overload with yet another flag to dictate whether to return those support values to the caller - that which defaults to the setting's value
rdar://problem/15539930
llvm-svn: 228791
Add a callback that will allow an expression to be cancelled between the
expression evaluation stages (for the ClangUserExpressions.)
<rdar://problem/16790467>, <rdar://problem/16573440>
llvm-svn: 207944
This is a purely mechanical change explicitly casting any parameters for printf
style conversion. This cleans up the warnings emitted by gcc 4.8 on Linux.
llvm-svn: 205607
Fix a bug where calling SBFrame::FindValue() would cause a copy of all variables in the block to be inserted in the frame's variable list, regardless of whether those same variables were there or not - which means one could end up with a frame with lots of duplicate copies of the same variables
llvm-svn: 201614
pure virtual base class and made StackFrame a subclass of that. As
I started to build on top of that arrangement today, I found that it
wasn't working out like I intended. Instead I'll try sticking with
the single StackFrame class -- there's too much code duplication to
make a more complicated class hierarchy sensible I think.
llvm-svn: 193983
defines a protocol that all subclasses will implement. StackFrame
is currently the only subclass and the methods that Frame vends are
nearly identical to StackFrame's old methods.
Update all callers to use Frame*/Frame& instead of pointers to
StackFrames.
This is almost entirely a mechanical change that touches a lot of
the code base so I'm committing it alone. No new functionality is
added with this patch, no new subclasses of Frame exist yet.
I'll probably need to tweak some of the separation, possibly moving
some of StackFrame's methods up in to Frame, but this is a good
starting point.
<rdar://problem/15314068>
llvm-svn: 193907
LLDB is crashing when logging is enabled from lldb-perf-clang. This has to do with the global destructor chain as the process and its threads are being torn down.
All logging channels now make one and only one instance that is kept in a global pointer which is never freed. This guarantees that logging can correctly continue as the process tears itself down.
llvm-svn: 178191
SBValueList was backed by a ValueObjectList. This caused us to lose track of the additional metadata in the ValueImpl that backs SBValue.
This checkin fixes that by backing SBValueList with ValueListImpl (that essentially wraps a vector<SBValue>).
llvm-svn: 174638
the frame and then getting the run lock. Which means that our frame could have gotten
invalidated by stopping between the time we got the frame and assured the the target was
stopped. Now we get the run lock first, and THEN resolve the underlying frame object.
<rdar://problem/12621607>
llvm-svn: 168838
Given our implementation of ValueObjects we could have a scenario where a ValueObject has a dynamic type of Foo* at one point, and then its dynamic type changes to Bar*
If Bar* has synthetic children enabled, by the time we figure that out, our public API is already vending SBValues wrapping a DynamicVO, instead of a SyntheticVO and there was
no trivial way for us to change the SP inside an SBValue on the fly
This checkin reimplements SBValue in terms of a wrapper, ValueImpl, that allows this substitutions on-the-fly by overriding GetSP() to do The Right Thing (TM)
As an additional bonus, GetNonSyntheticValue() now works, and we can get rid of the ForceDisableSyntheticChildren idiom in ScriptInterpreterPython
Lastly, this checkin makes sure the synthetic VOs get the correct m_value and m_data from their parents (prevented summaries from working in some cases)
llvm-svn: 166426
Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes:
- Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file".
- modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly
- Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was.
- modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile()
Cleaned up header includes a bit as well.
llvm-svn: 162860
particularly in the SBThread & SBFrame interfaces. Instead of filling the whole context & then getting
the API mutex, we now get only the target, acquire the API mutex from it, then fill out the rest of the
context. This removes a race condition where you get a ThreadSP, then wait on the API mutex while another
command Destroy's the Thread you've just gotten.
Also fixed the ExecutionContextRef::Get*SP calls so they don't return invalid objects.
Also fixed the ExecutionContext::Has*Scope calls so they don't claim to have a scope if the object representing
that scope has been destroyed.
Also fixed a think-o in Thread::IsValid which was causing it to return the opposite of the desired value.
<rdar://problem/11995490>
llvm-svn: 162401
Also changed the defaults for SBThread::Step* to not delete extant plans.
Also added some test cases to test more complex stepping scenarios.
llvm-svn: 156667
Also test for the process to be stopped when many SBValue API calls are made to make sure it is safe to evaluate values, children of values and much more.
llvm-svn: 154160