On BtVer2 conditional SIMD stores are heavily microcoded.
The latency is directly proportional to the number of packed elements extracted
from the input vector. Also, according to micro-benchmarks, most of the
computation seems to be done in the integer unit.
Only a minority of the uOPs is executed by the FPU. The observed behaviour on
the FPU looks similar to this:
- The input MASK value is moved to the Integer Unit
-- [ a VMOVMSK-like uOP-executed on JFPU0].
- In parallel, each element of the input XMM/YMM is extracted and then sent to
the IntegerUnit through JFPU1.
As expected, a (conditional) store is executed for every extracted element.
Interestingly, a (speculative) load is executed for every extracted element too.
It is as-if a "LOAD - BIT_EXTRACT- CMOV" sequence of uOPs is repeated by the
integer unit for every contionally stored element.
VMASKMOVDQU is a special case: the number of speculative loads is always 2
(presumably, one load per quadword). That means, extra shifts and masking is
performed on (one of) the loaded quadwords before each conditional store (that
also explains the big number of non-FP uOPs retired).
This patch replaces the existing writes for conditional SIMD stores (i.e.
WriteFMaskedStore, and WriteFMaskedStoreY) with the following new writes:
WriteFMaskedStore32 [ XMM Packed Single ]
WriteFMaskedStore32Y [ YMM Packed Single ]
WriteFMaskedStore64 [ XMM Packed Double ]
WriteFMaskedStore64Y [ YMM Packed Double ]
Added a wrapper class named X86SchedWriteMaskMove in X86Schedule.td to describe
both RM and MR variants for conditional SIMD moves in a single tablegen
definition.
Instances of that class are then passed in input to multiclass avx_movmask_rm
when constructing MASKMOVPS/PD definitions.
Since this patch introduces new writes, I had to update all the X86 scheduling
models.
Differential Revision: https://reviews.llvm.org/D66801
llvm-svn: 370649
Summary:
Reorder the condition code enum to match their encodings. Move it to MC layer so it can be used by the scheduler models.
This avoids needing an isel pattern for each condition code. And it removes
translation switches for converting between CMOV instructions and condition
codes.
Now the printer, encoder and disassembler take care of converting the immediate.
We use InstAliases to handle the assembly matching. But we print using the
asm string in the instruction definition. The instruction itself is marked
IsCodeGenOnly=1 to hide it from the assembly parser.
This does complicate the scheduler models a little since we can't assign the
A and BE instructions to a separate class now.
I plan to make similar changes for SETcc and Jcc.
Reviewers: RKSimon, spatel, lebedev.ri, andreadb, courbet
Reviewed By: RKSimon
Subscribers: gchatelet, hiraditya, kristina, lebedev.ri, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60041
llvm-svn: 357800
This patch adds a new ReadAdvance definition named ReadInt2Fpu.
ReadInt2Fpu allows x86 scheduling models to accurately describe delays caused by
data transfers from the integer unit to the floating point unit.
ReadInt2Fpu currently defaults to a delay of zero cycles (i.e. no delay) for all
x86 models excluding BtVer2. That means, this patch is only a functional change
for the Jaguar cpu model only.
Tablegen definitions for instructions (V)PINSR* have been updated to account for
the new ReadInt2Fpu. That read is mapped to the the GPR input operand.
On Jaguar, int-to-fpu transfers are modeled as a +6cy delay. Before this patch,
that extra delay was added to the opcode latency. In practice, the insert opcode
only executes for 1cy. Most of the actual latency is actually contributed by the
so-called operand-latency. According to the AMD SOG for family 16h, (V)PINSR*
latency is defined by expression f+1, where f is defined as a forwarding delay
from the integer unit to the fpu.
When printing instruction latency from MCA (see InstructionInfoView.cpp) and LLC
(only when flag -print-schedule is speified), we now need to account for any
extra forwarding delays. We do this by checking if scheduling classes declare
any negative ReadAdvance entries. Quoting a code comment in TargetSchedule.td:
"A negative advance effectively increases latency, which may be used for
cross-domain stalls". When computing the instruction latency for the purpose of
our scheduling tests, we now add any extra delay to the formula. This avoids
regressing existing codegen and mca schedule tests. It comes with the cost of an
extra (but very simple) hook in MCSchedModel.
Differential Revision: https://reviews.llvm.org/D57056
llvm-svn: 351965
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Currently we hardcode instructions with ReadAfterLd if the register operands don't need to be available until the folded load has completed. This doesn't take into account the different load latencies of different memory operands (PR36957).
This patch adds a ReadAfterFold def into X86FoldableSchedWrite to replace ReadAfterLd, allowing us to specify the load latency at a scheduler class level.
I've added ReadAfterVec*Ld classes that match the XMM/Scl, XMM and YMM/ZMM WriteVecLoad classes that we currently use, we can tweak these values in future patches once this infrastructure is in place.
Differential Revision: https://reviews.llvm.org/D52886
llvm-svn: 343868
This patch adds a 'WriteCopy' [WriteLoad, WriteStore] schedule sequence instead to better model the behaviour
Found by @andreadb during llvm-mca testing on btver2 which was crashing on "zero uop" WriteRMW only instructions
llvm-svn: 343708
I was expecting this to be a nfc but Silvermont seems to be setup a little differently:
// A folded store needs a cycle on MEC_RSV for the store data, but it does not need an extra port cycle to recompute the address.
def : WriteRes<WriteRMW, [SLM_MEC_RSV]>;
So moving from WriteStore to WriteRMW reduces predicted port pressure, confirmed by @craig.topper that this is correct.
Differential Revision: https://reviews.llvm.org/D52740
llvm-svn: 343670
Split WriteIMul by size and also by IMUL multiply-by-imm and multiply-by-reg cases.
This removes all the scheduler overrides for gpr multiplies and stops WriteMULH being ignored for BMI2 MULX instructions.
llvm-svn: 342892
Variable Shifts/Rotates using the CL register have different behaviours to the immediate instructions - split accordingly to help remove yet more repeated overrides from the schedule models.
llvm-svn: 342852
NFCI for now, but it should make it easier to remove a lot of unnecessary overrides in a future commit.
Now that funnel shift intrinsics are coming online we need to get this cleaned up to make vectorization costs from scalar rotate patterns more straightforward.
llvm-svn: 342837
Don't declare them as X86SchedWritePair when the folded class will never be used.
Note: MOVBE (load/store endian conversion) instructions tend to have a very different behaviour to BSWAP.
llvm-svn: 338412
This patch fixes the latency/throughput of LEA instructions in the BtVer2
scheduling model.
On Jaguar, A 3-operands LEA has a latency of 2cy, and a reciprocal throughput of
1. That is because it uses one cycle of SAGU followed by 1cy of ALU1. An LEA
with a "Scale" operand is also slow, and it has the same latency profile as the
3-operands LEA. An LEA16r has a latency of 3cy, and a throughput of 0.5 (i.e.
RThrouhgput of 2.0).
This patch adds a new TIIPredicate named IsThreeOperandsLEAFn to X86Schedule.td.
The tablegen backend (for instruction-info) expands that definition into this
(file X86GenInstrInfo.inc):
```
static bool isThreeOperandsLEA(const MachineInstr &MI) {
return (
(
MI.getOpcode() == X86::LEA32r
|| MI.getOpcode() == X86::LEA64r
|| MI.getOpcode() == X86::LEA64_32r
|| MI.getOpcode() == X86::LEA16r
)
&& MI.getOperand(1).isReg()
&& MI.getOperand(1).getReg() != 0
&& MI.getOperand(3).isReg()
&& MI.getOperand(3).getReg() != 0
&& (
(
MI.getOperand(4).isImm()
&& MI.getOperand(4).getImm() != 0
)
|| (MI.getOperand(4).isGlobal())
)
);
}
```
A similar method is generated in the X86_MC namespace, and included into
X86MCTargetDesc.cpp (the declaration lives in X86MCTargetDesc.h).
Back to the BtVer2 scheduling model:
A new scheduling predicate named JSlowLEAPredicate now checks if either the
instruction is a three-operands LEA, or it is an LEA with a Scale value
different than 1.
A variant scheduling class uses that new predicate to correctly select the
appropriate latency profile.
Differential Revision: https://reviews.llvm.org/D49436
llvm-svn: 337469
Summary:
{F6603964}
While there is still some discrepancies within that new group,
it is clearly separate from the other shifts.
And Agner's tables agree, these double shifts are clearly
different from the normal shifts/rotates.
I'm guessing `FeatureSlowSHLD` is related.
Indeed, a basic sched pair is *not* the /best/ match.
But keeping it in the WriteShift is /clearly/ not ideal either.
This can and likely will be fine-tuned later.
This is purely mechanical change, it does not change any numbers,
as the [lack of the change of] mca tests show.
Reviewers: craig.topper, RKSimon, andreadb
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49015
llvm-svn: 336515
Summary:
Motivation: {F6597954}
This only does the mechanical splitting, does not actually change
any numbers, as the tests added in previous revision show.
Reviewers: craig.topper, RKSimon, courbet
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48998
llvm-svn: 336511
Summary:
I ran llvm-exegesis on SKX, SKL, BDW, HSW, SNB.
Atom is from Agner and SLM is a guess.
I've left AMD processors alone.
Reviewers: RKSimon, craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48079
llvm-svn: 335097
Summary:
This fixes most of the scheduling info for SKX vector operations.
I had to split a lot of the YMM/ZMM classes into separate classes for YMM and ZMM.
The before/after llvm-exegesis analysis are in the phabricator diff.
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47721
llvm-svn: 334407
Summary: In preparation for D47721. HSW and SNB still define unsupported
classes as they are used by KNL and generic models respectively.
Reviewers: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47763
llvm-svn: 334389
This patch is the last of a sequence of three patches related to LLVM-dev RFC
"MC support for variant scheduling classes".
http://lists.llvm.org/pipermail/llvm-dev/2018-May/123181.html
This fixes PR36672.
The main goal of this patch is to teach llvm-mca how to solve variant scheduling
classes. This patch does that, plus it adds new variant scheduling classes to
the BtVer2 scheduling model to identify so-called zero-idioms (i.e. so-called
dependency breaking instructions that are known to generate zero, and that are
optimized out in hardware at register renaming stage).
Without the BtVer2 change, this patch would not have had any meaningful tests.
This patch is effectively the union of two changes:
1) a change that teaches llvm-mca how to resolve variant scheduling classes.
2) a change to the BtVer2 scheduling model that allows us to special-case
packed XOR zero-idioms (this partially fixes PR36671).
Differential Revision: https://reviews.llvm.org/D47374
llvm-svn: 333909
Summary:
{FLDL2E, FLDL2T, FLDLG2, FLDLN2, FLDPI} were using WriteMicrocoded.
- I've measured the values for Broadwell, Haswell, SandyBridge, Skylake.
- For ZnVer1 and Atom, values were transferred form InstRWs.
- For SLM and BtVer2, I've guessed some values :(
Reviewers: RKSimon, craig.topper, andreadb
Subscribers: gbedwell, llvm-commits
Differential Revision: https://reviews.llvm.org/D47585
llvm-svn: 333656
Summary:
- I've measured the values for Broadwell, Haswell, SandyBridge, Skylake.
- For ZnVer1 and Atom, values were transferred form `InstRW`s.
- For SLM and BtVer2, values are from Agner.
This is split off from https://reviews.llvm.org/D47377
Reviewers: RKSimon, andreadb
Subscribers: gbedwell, llvm-commits
Differential Revision: https://reviews.llvm.org/D47523
llvm-svn: 333642
BtVer2 - fix NumMicroOp and account for the Lat+6cy GPR->XMM and Lat+1cy XMm->GPR delays (see rL332737)
The high number of MOVD/MOVQ equivalent instructions meant that there were a number of missed patterns in SNB/Znver1:
SNB - add missing GPR<->MMX costs (taken from Agner / Intel AOM)
Znver1 - add missing GPR<->XMM MOVQ costs (taken from Agner)
llvm-svn: 332745
A lot of the models still have too many InstRW overrides for these new classes - this needs cleaning up but I wanted to get the classes in first
llvm-svn: 332451
BtVer2 - Fixes schedules for (V)CVTPS2PD instructions
A lot of the Intel models still have too many InstRW overrides for these new classes - this needs cleaning up but I wanted to get the classes in first
llvm-svn: 332376
Btver2 - VCVTPH2PSYrm needs to double pump the AGU
Broadwell - missing VCVTPS2PH*mr stores extra latency
Allows us to remove the WriteCvtF2FSt conversion store class
llvm-svn: 332357
This fixes a couple of BtVer2 missing instructions that weren't been handled in the override.
NOTE: There are still a lot of overrides that still need cleaning up!
llvm-svn: 331770
I've created the necessary classes but there are still a lot of overrides that need cleaning up.
NOTE: The Znver1 model was missing some div/idiv variants in the instregex patterns and wasn't setting the resource cycles at all in the overrides.
llvm-svn: 331767
Split to support single/double for scalar, XMM and YMM/ZMM instructions - removing InstrRW overrides for these instructions.
Fixes Atom ADDSUBPD instruction and reclassifies VFPCLASS as WriteFCmp which is closer in behaviour.
llvm-svn: 331672
WriteFRcp/WriteFRsqrt are split to support scalar, XMM and YMM/ZMM instructions.
WriteFSqrt is split into single/double/long-double sizes and scalar, XMM, YMM and ZMM instructions.
This removes all InstrRW overrides for these instructions.
NOTE: There were a couple of typos in the Znver1 model - notably a 1cy throughput for SQRT that is highly unlikely and doesn't tally with Agner.
NOTE: I had to add Agner's numbers for several targets for WriteFSqrt80.
llvm-svn: 331629