We have isel patterns that can put an IMPLICIT_DEF on one of
the sources for these instructions. So we should make sure
we break any dependencies there. This should be done by
just using one of the other sources.
llvm-svn: 373025
Similar for f64 and having a non-zero passthru value.
We were previously not trying to fold the load at all. Using
a CodeGenOnly instruction allows us to use FR32X/FR64X as the
register class to avoid a bunch of COPY_TO_REGCLASS.
llvm-svn: 373021
SLM is 2 x slower for <2 x i64> comparison ops than other vector types, we should account for this like we do for SLM <2 x i64> add/sub/mul costs.
This should remove some of the SLM codegen diffs in D43582
llvm-svn: 372954
This matches what's done for VRNDSCALE and most other instructions.
This mainly determines which instruction will be preferred by
disassembler and assembly parser. The printing and encoding
information is the same.
We prefer the _Int form since it uses the VR128 class due to
intrinsic interface. For some of EVEX features like embedded
rounding, we only select from intrinsics today. So there is
only a VR128 version. So making the VR128 version the preferred
is overally consistent.
llvm-svn: 372947
This pass is only concerned with ZMM0-15 and YMM0-15. For YMM
we use VR256 which only contains YMM0-15, but for ZMM we were
using VR512 which contains ZMM0-31. Using VR512_0_15 is more
correct.
Given that the ABI and register allocator will use registers in
order, its unlikely that register from 16-31 would be used
without also using 0-15. So this probably doesn't functionally
matter.
llvm-svn: 372933
Neither the base implementation of findCommutedOpIndices nor any in-tree target modifies the instruction passed in and there is no reason why they would in the future.
Committed on behalf of @hvdijk (Harald van Dijk)
Differential Revision: https://reviews.llvm.org/D66138
llvm-svn: 372882
Summary:
The functions different in two ways:
- getLLVMRegNum could return both "eh" and "other" dwarf register
numbers, while getLLVMRegNumFromEH only returned the "eh" number.
- getLLVMRegNum asserted if the register was not found, while the second
function returned -1.
The second distinction was pretty important, but it was very hard to
infer that from the function name. Aditionally, for the use case of
dumping dwarf expressions, we needed a function which can work with both
kinds of number, but does not assert.
This patch solves both of these issues by merging the two functions into
one, returning an Optional<unsigned> value. While the same thing could
be achieved by adding an "IsEH" argument to the (renamed)
getLLVMRegNumFromEH function, it seemed better to avoid the confusion of
two functions and put the choice of asserting into the hands of the
caller -- if he checks the Optional value, he can safely process
"untrusted" input, and if he blindly dereferences the Optional, he gets
the assertion.
I've updated all call sites to the new API, choosing between the two
options according to the function they were calling originally, except
that I've updated the usage in DWARFExpression.cpp to use the "safe"
method instead, and added a test case which would have previously
triggered an assertion failure when processing (incorrect?) dwarf
expressions.
Reviewers: dsanders, arsenm, JDevlieghere
Subscribers: wdng, aprantl, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67154
llvm-svn: 372710
This removes the need for ConvertToTarget opcodes in the isel table.
It's also consistent with the recent changes to use TargetConstant
for intrinsic nodes that always take immediates.
Differential Revision: https://reviews.llvm.org/D67902
llvm-svn: 372645
The attached test case would previous infinite loop after
r365711.
I'm going to move this to X86ISelDAGToDAG.cpp to get the setcc
to match VPTEST in 32-bit mode in a follow up commit.
llvm-svn: 372543
This allows us to use timm in the isel table which is more
consistent with other intrinsics that take an immediate now.
We can't declare the intrinsic as taking an ImmArg because we
need to match non-constants to the shift by MMX register
instruction which we do by mutating the intrinsic id during
lowering.
llvm-svn: 372537
This intrinsics should be shift by immediate, but gcc allows any
i32 scalar and clang needs to match that. So we try to detect the
non-constant case and move the data from an integer register to an
MMX register.
Previously this was done by creating a v2i32 build_vector and
bitcast in SelectionDAGBuilder. This had to be done early since
v2i32 isn't a legal type. The bitcast+build_vector would be DAG
combined to X86ISD::MMX_MOVW2D which isel will turn into a
GPR->MMX MOVD.
This commit just moves the whole thing to lowering and emits
the X86ISD::MMX_MOVW2D directly to avoid the illegal type. The
test changes just seem to be due to nodes being linearized in a
different order.
llvm-svn: 372535
Summary:
PR43381 notes that while we are good at matching `(X >> C1) & C2` as BEXTR/BEXTRI,
we only do that if we either have BEXTRI (TBM),
or if BEXTR is marked as being fast (`-mattr=+fast-bextr`).
In all other cases we don't match.
But that is mainly only true for AMD CPU's.
However, for all the CPU's for which we have sched models,
the BZHI is always fast (or the sched models are all bad.)
So if we decide that it's unprofitable to emit BEXTR/BEXTRI,
we should consider falling-back to BZHI if it is available,
and follow-up with the shift.
While it's really tempting to do something because it's cool
it is wise to first think whether it actually makes sense to do.
We shouldn't just use BZHI because we can, but only it it is beneficial.
In particular, it isn't really worth it if the input is a register,
mask is small, or we can fold a load.
But it is worth it if the mask does not fit into 32-bits.
(careful, i don't know much about intel cpu's, my choice of `-mcpu` may be bad here)
Thus we manage to fold a load:
https://godbolt.org/z/Er0OQz
Or if we'd end up using BZHI anyways because the mask is large:
https://godbolt.org/z/dBJ_5h
But this isn'r actually profitable in general case,
e.g. here we'd increase microop count
(the register renaming is free, mca does not model that there it seems)
https://godbolt.org/z/k6wFoz
Likewise, not worth it if we just get load folding:
https://godbolt.org/z/1M1deGhttps://bugs.llvm.org/show_bug.cgi?id=43381
Reviewers: RKSimon, craig.topper, davezarzycki, spatel
Reviewed By: craig.topper, davezarzycki
Subscribers: andreadb, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67875
llvm-svn: 372532
We're now using a lot more TargetConstant nodes in SelectionDAG.
But we were still telling isel to convert some of them
to TargetConstants even though they already are. This is because
isel emits a conversion anytime the output pattern has a an 'imm'.
I guess for patterns in instructions we take the 'timm' from the
'set' pattern, but for Pat patterns with explcicit output we
previously had to say 'imm' since 'timm' wasn't allowed in outputs.
llvm-svn: 372525
We are missing costs for a lot of truncation cases, I'm hoping to address all the 'zero cost' cases in trunc.ll
I thought this was a vector widening side effect, but even before this we had some interesting LV decisions (notably over indvars) being made due to these zero costs.
llvm-svn: 372498
Previously we only matched scalar_to_vector and scalar load, but
we should be able to narrow a vector load or match vzload.
Also need to match TargetConstant instead of Constant. The register
patterns were previously updated, but not the memory patterns.
llvm-svn: 372458
This reverts commit 52621307bc.
Tests have been failing all night with
[0/2] ACTION //llvm/test:check-llvm(//llvm/utils/gn/build/toolchain:unix)
-- Testing: 33647 tests, 64 threads --
Testing: 0 .. 10..
UNRESOLVED: LLVM :: CodeGen/AMDGPU/GlobalISel/isel-blendi-gettargetconstant.ll (6943 of 33647)
******************** TEST 'LLVM :: CodeGen/AMDGPU/GlobalISel/isel-blendi-gettargetconstant.ll' FAILED ********************
Test has no run line!
********************
Since there were other concerns on https://reviews.llvm.org/D67785,
I'm just reverting for now.
llvm-svn: 372383
We reuse an ISD opcode here that can be reached from BMI that
doesn't require it to be an immediate. Our isel patterns to match
the TBM immediate form require a Constant and not a TargetConstant.
We were accidentally getting the Constant due to a quirk of
combineBEXTR calling SimplifyDemandedBits. The call to
SimplifyDemandedBits ended up constant folding the TargetConstant
to a regular Constant. But we should probably instead be asserting
if SimplifyDemandedBits on a TargetConstant so we shouldn't rely
on this behavior.
llvm-svn: 372373
Summary: This fixes a crasher introduced by r372338.
Reviewers: echristo, arsenm
Subscribers: jvesely, wdng, nhaehnle, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67785
Tighten up the test case.
llvm-svn: 372366
The later code that generates a constant when there are
some non-const elements works basically the same and doesn't
require there to be any non-const elements.
llvm-svn: 372365
This reverts r372314, reapplying r372285 and the commits which depend
on it (r372286-r372293, and r372296-r372297)
This was missing one switch to getTargetConstant in an untested case.
llvm-svn: 372338
This patch converts the DAGCombine isNegatibleForFree/GetNegatedExpression into overridable TLI hooks and includes a demonstration X86 implementation.
The intention is to let us extend existing FNEG combines to work more generally with negatible float ops, allowing it work with target specific combines and opcodes (e.g. X86's FMA variants).
Unlike the SimplifyDemandedBits, we can't just handle target nodes through a Target callback, we need to do this as an override to allow targets to handle generic opcodes as well. This does mean that the target implementations has to duplicate some checks (recursion depth etc.).
I've only begun to replace X86's FNEG handling here, handling FMADDSUB/FMSUBADD negation and some low impact codegen changes (some FMA negatation propagation). We can build on this in future patches.
Differential Revision: https://reviews.llvm.org/D67557
llvm-svn: 372333
This broke the Chromium build, causing it to fail with e.g.
fatal error: error in backend: Cannot select: t362: v4i32 = X86ISD::VSHLI t392, Constant:i8<15>
See llvm-commits thread of r372285 for details.
This also reverts r372286, r372287, r372288, r372289, r372290, r372291,
r372292, r372293, r372296, and r372297, which seemed to depend on the
main commit.
> Encode them directly as an imm argument to G_INTRINSIC*.
>
> Since now intrinsics can now define what parameters are required to be
> immediates, avoid using registers for them. Intrinsics could
> potentially want a constant that isn't a legal register type. Also,
> since G_CONSTANT is subject to CSE and legalization, transforms could
> potentially obscure the value (and create extra work for the
> selector). The register bank of a G_CONSTANT is also meaningful, so
> this could throw off future folding and legalization logic for AMDGPU.
>
> This will be much more convenient to work with than needing to call
> getConstantVRegVal and checking if it may have failed for every
> constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
> immarg operands, many of which need inspection during lowering. Having
> to find the value in a register is going to add a lot of boilerplate
> and waste compile time.
>
> SelectionDAG has always provided TargetConstant for constants which
> should not be legalized or materialized in a register. The distinction
> between Constant and TargetConstant was somewhat fuzzy, and there was
> no automatic way to force usage of TargetConstant for certain
> intrinsic parameters. They were both ultimately ConstantSDNode, and it
> was inconsistently used. It was quite easy to mis-select an
> instruction requiring an immediate. For SelectionDAG, start emitting
> TargetConstant for these arguments, and using timm to match them.
>
> Most of the work here is to cleanup target handling of constants. Some
> targets process intrinsics through intermediate custom nodes, which
> need to preserve TargetConstant usage to match the intrinsic
> expectation. Pattern inputs now need to distinguish whether a constant
> is merely compatible with an operand or whether it is mandatory.
>
> The GlobalISelEmitter needs to treat timm as a special case of a leaf
> node, simlar to MachineBasicBlock operands. This should also enable
> handling of patterns for some G_* instructions with immediates, like
> G_FENCE or G_EXTRACT.
>
> This does include a workaround for a crash in GlobalISelEmitter when
> ARM tries to uses "imm" in an output with a "timm" pattern source.
llvm-svn: 372314
Encode them directly as an imm argument to G_INTRINSIC*.
Since now intrinsics can now define what parameters are required to be
immediates, avoid using registers for them. Intrinsics could
potentially want a constant that isn't a legal register type. Also,
since G_CONSTANT is subject to CSE and legalization, transforms could
potentially obscure the value (and create extra work for the
selector). The register bank of a G_CONSTANT is also meaningful, so
this could throw off future folding and legalization logic for AMDGPU.
This will be much more convenient to work with than needing to call
getConstantVRegVal and checking if it may have failed for every
constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
immarg operands, many of which need inspection during lowering. Having
to find the value in a register is going to add a lot of boilerplate
and waste compile time.
SelectionDAG has always provided TargetConstant for constants which
should not be legalized or materialized in a register. The distinction
between Constant and TargetConstant was somewhat fuzzy, and there was
no automatic way to force usage of TargetConstant for certain
intrinsic parameters. They were both ultimately ConstantSDNode, and it
was inconsistently used. It was quite easy to mis-select an
instruction requiring an immediate. For SelectionDAG, start emitting
TargetConstant for these arguments, and using timm to match them.
Most of the work here is to cleanup target handling of constants. Some
targets process intrinsics through intermediate custom nodes, which
need to preserve TargetConstant usage to match the intrinsic
expectation. Pattern inputs now need to distinguish whether a constant
is merely compatible with an operand or whether it is mandatory.
The GlobalISelEmitter needs to treat timm as a special case of a leaf
node, simlar to MachineBasicBlock operands. This should also enable
handling of patterns for some G_* instructions with immediates, like
G_FENCE or G_EXTRACT.
This does include a workaround for a crash in GlobalISelEmitter when
ARM tries to uses "imm" in an output with a "timm" pattern source.
llvm-svn: 372285
Summary:
Add function to AutoUpgrade to change the datalayout of old X86 datalayout strings.
This adds "-p270:32:32-p271:32:32-p272:64:64" to X86 datalayouts that are otherwise valid
and don't already contain it.
This also removes the compatibility changes in https://reviews.llvm.org/D66843.
Datalayout change in https://reviews.llvm.org/D64931.
Reviewers: rnk, echristo
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67631
llvm-svn: 372267
This generates worse code, but matches what is done for avx2 and
prevents crashes when more arguments are passed than we have
registers for.
llvm-svn: 372200