This patch fixes a bug exposed by D65653 where a subsequent invocation
of `determineCalleeSaves` ends up with a different size for the callee
save area, leading to different frame-offsets in debug information.
In the invocation by PEI, `determineCalleeSaves` tries to determine
whether it needs to spill an extra callee-saved register to get an
emergency spill slot. To do this, it calls 'estimateStackSize' and
manually adds the size of the callee-saves to this. PEI then allocates
the spill objects for the callee saves and the remaining frame layout
is calculated accordingly.
A second invocation in LiveDebugValues causes estimateStackSize to return
the size of the stack frame including the callee-saves. Given that the
size of the callee-saves is added to this, these callee-saves are counted
twice, which leads `determineCalleeSaves` to believe the stack has
become big enough to require spilling an extra callee-save as emergency
spillslot. It then updates CalleeSavedStackSize with a larger value.
Since CalleeSavedStackSize is used in the calculation of the frame
offset in getFrameIndexReference, this leads to incorrect offsets for
variables/locals when this information is recalculated after PEI.
Reviewers: omjavaid, eli.friedman, thegameg, efriedma
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D66935
llvm-svn: 372204
Changes:
There was a condition for `!NeedsFrameRecord` missing in the assert. The
assert in question has changed to:
+ assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP ||
+ RPI.Reg1 == AArch64::LR) &&
+ "FrameRecord must be allocated together with LR");
This addresses PR43016.
llvm-svn: 369122
This patch changes the location of the frame-record (FP, LR) to the
bottom of the callee-saved area. According to the AAPCS the location of
the frame-record within the stackframe is unspecified (section 5.2.3 The
Frame Pointer), so the compiler should be free to choose a different
location.
The reason for changing the location of the frame-record is to prepare
the frame for allocating an SVE area below the callee-saves. This way the
compiler can use the VL-scaled addressing modes to directly access SVE
objects from the frame-pointer.
: :
| stack | | stack |
| args | | args |
+-------+ +-------+
| x30 | | x19 |
| x29 | | x20 |
FP -> |- - - -| | x21 |
| x19 | ==> | x22 |
| x20 | |- - - -|
| x21 | | x30 |
| x22 | | x29 |
+-------+ +-------+ <- FP
|///////| |///////| // realignment gap
|- - - -| |- - - -|
|spills/| |spills/|
| locals| | locals|
SP -> +-------+ +-------+ <- SP
Things to point out:
- The algorithm to find a paired register should be prevented from
accidentally pairing some callee-saved register with LR that is not
FP, since they should always be paired together when the frame
has a frame-record.
- For Darwin platforms the location of the frame-record is unchanged,
since the unwind encoding does not allow for encoding this position
dynamically and other tools currently depend on the former layout.
Reviewers: efriedma, rovka, rengolin, thegameg, greened, t.p.northover
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D65653
llvm-svn: 368987
To support spilling/filling of scalable vectors we need a more generic
representation of a stack offset than simply 'int'.
For this we introduce the StackOffset struct, which comprises multiple
offsets sized by their respective MVTs. Byte-offsets will thus be a simple
tuple such as { offset, MVT::i8 }. Adding two byte-offsets will result in a
byte offset { offsetA + offsetB, MVT::i8 }. When two offsets have different
types, we can canonicalise them to use the same MVT, as long as their
runtime sizes are guaranteed to have the same size-ratio as they would have
at compile-time.
When we have both scalable- and fixed-size objects on the stack, we can
create an offset that is:
({ offset_fixed, MVT::i8 } + { offset_scalable, MVT::nxv1i8 })
The struct also contains a getForFrameOffset() method that is specific to
AArch64 and decomposes the frame-offset to be used directly in instructions
that operate on the stack or index into the stack.
Note: This patch adds StackOffset as an AArch64-only concept, but we would
like to make this a generic concept/struct that is supported by all
interfaces that take or return stack offsets (currently as 'int'). Since
that would be a bigger change that is currently pending on D32530 landing,
we thought it makes sense to first show/prove the concept in the AArch64
target before proposing to roll this out further.
Reviewers: thegameg, rovka, t.p.northover, efriedma, greened
Reviewed By: rovka, greened
Differential Revision: https://reviews.llvm.org/D61435
llvm-svn: 368024
Fix an issue where the compiler still allocates an emergency spill slot even
though it already decided to spill an extra callee-save register to use
as a scratch register.
Reviewers: gberry, thegameg, mstorsjo, t.p.northover
Reviewed By: thegameg
Differential Revision: https://reviews.llvm.org/D65504
llvm-svn: 367540
Implement IR intrinsics for stack tagging. Generated code is very
unoptimized for now.
Two special intrinsics, llvm.aarch64.irg.sp and llvm.aarch64.tagp are
used to implement a tagged stack frame pointer in a virtual register.
Differential Revision: https://reviews.llvm.org/D64172
llvm-svn: 366360
Split AArch64FrameLowering::resolveFrameIndexReference in two parts
* Finding frame offset for the index.
* Finding base register and offset to that register.
The second part will be used to implement a virtual frame pointer in
armv8.5 MTE stack instrumentation lowering.
Reviewers: pcc, vitalybuka, hctim, ostannard
Subscribers: javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64171
llvm-svn: 365958
To help produce better diagnostics for stack use-after-return, we'd like
to be able to determine the addresses of each HWASANified function's local
variables given a small amount of information recorded on entry to the
function. Currently we require all HWASANified functions to use frame pointers
and record (PC, FP) on function entry. This works better than recording SP
because FP cannot change during the function, unlike SP which can change
e.g. due to dynamic alloca.
However, most variables currently end up using SP-relative locations in their
debug info. This prevents us from recomputing the address of most variables
because the distance between SP and FP isn't recorded in the debug info. To
address this, make the AArch64 backend prefer FP-relative debug locations
when producing debug info for HWASANified functions.
Differential Revision: https://reviews.llvm.org/D63300
llvm-svn: 364117
Summary:
Otherwise, we emit directives for CFI without any actual CFI opcodes to
go with them, which causes tools to malfunction. The technique is
similar to what the x86 backend already does.
Fixes https://bugs.llvm.org/show_bug.cgi?id=40876
Patch by: froydnj (Nathan Froyd)
Reviewers: mstorsjo, eli.friedman, rnk, mgrang, ssijaric
Reviewed By: rnk
Subscribers: javed.absar, kristof.beyls, llvm-commits, dmajor
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61960
llvm-svn: 360816
In certain cases, the first non-frame-setup instruction in a function is
a branch. For example, it could be a cbz on an argument. Make sure we
correctly allocate the UnwindHelp, and find an appropriate register to
use to initialize it.
Fixes https://bugs.llvm.org/show_bug.cgi?id=40184
Differential Revision: https://reviews.llvm.org/D58752
llvm-svn: 355136
Summary: This fixes using the correct stack registers for SEH when stack realignment is needed or when variable size objects are present.
Reviewers: rnk, efriedma, ssijaric, TomTan
Reviewed By: rnk, efriedma
Subscribers: javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D57183
llvm-svn: 352923
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
EXPENSIVE_CHECKS buildbots are failing due to r351404.
Add x1 as live in to the funclet basic block for SEH funclets, as well as
-verify-machineinstrs to the test case that triggered the failure.
llvm-svn: 351472
Summary:
This patch supports MS SEH extensions __try/__except/__finally. The intrinsics localescape and localrecover are responsible for communicating escaped static allocas from the try block to the handler.
We need to preserve frame pointers for SEH. So we create a new function/property HasLocalEscape.
Reviewers: rnk, compnerd, mstorsjo, TomTan, efriedma, ssijaric
Reviewed By: rnk, efriedma
Subscribers: smeenai, jrmuizel, alex, majnemer, ssijaric, ehsan, dmajor, kristina, javed.absar, kristof.beyls, chrib, llvm-commits
Differential Revision: https://reviews.llvm.org/D53540
llvm-svn: 351370
- When signing return addresses with -msign-return-address=<scope>{+<key>},
either the A key instructions or the B key instructions can be used. To
correctly authenticate the return address, the unwinder/debugger must know
which key was used to sign the return address.
- When and exception is thrown or a break point reached, it may be necessary to
unwind the stack. To accomplish this, the unwinder/debugger must be able to
first authenticate an the return address if it has been signed.
- To enable this, the augmentation string of CIEs has been extended to allow
inclusion of a 'B' character. Functions that are signed using the B key
variant of the instructions should have and FDE whose associated CIE has a 'B'
in the augmentation string.
- One must also be able to preserve these semantics when first stepping from a
high level language into assembly and then, as a second step, into an object
file. To achieve this, I have introduced a new assembly directive
'.cfi_b_key_frame ', that tells the assembler the current frame uses return
address signing with the B key.
- This ensures that the FDE is associated with a CIE that has 'B' in the
augmentation string.
Differential Revision: https://reviews.llvm.org/D51798
llvm-svn: 349895
- Reapply changes intially introduced in r343089
- The archtecture info is no longer loaded whenever a DWARFContext is created
- The runtimes libraries (santiziers) make use of the dwarf context classes but
do not intialise the target info
- The architecture of the object can be obtained without loading the target info
- Adding a method to the dwarf context to get this information and multiplex the
string printing later on
Differential Revision: https://reviews.llvm.org/D55774
llvm-svn: 349472
The comment was misplaced, and the code didn't do what the comment indicated,
namely ignoring the varargs portion when computing the local stack size of a
funclet in emitEpilogue. This results in incorrect offset computations within
funclets that are contained in vararg functions.
Differential Revision: https://reviews.llvm.org/D55096
llvm-svn: 348222
All that you can legitimately do with the CFI for a nounwind function
is get a backtrace, and adjusting the SCS register is not (currently)
required for this purpose.
Differential Revision: https://reviews.llvm.org/D54988
llvm-svn: 348035
When unwinding past a function that uses shadow call stack, we must
subtract 8 from the value of the x18 register. This patch causes us
to emit a call frame instruction that causes that to happen.
Differential Revision: https://reviews.llvm.org/D54609
llvm-svn: 347089
This patch adds support for funclets in frame lowering and ISel
lowering. Together with D50288 and D50166, it enables C++ exception
handling.
Patch by Sanjin Sijaric, with some fixes by me.
Differential Revision: https://reviews.llvm.org/D51524
llvm-svn: 346568
Emit pseudo instructions indicating unwind codes corresponding to each
instruction inside the prologue/epilogue. These are used by the MCLayer to
populate the .xdata section.
Differential Revision: https://reviews.llvm.org/D50288
llvm-svn: 345701
- Add support to generate AUTIBSP, PACIBSP, RETAB instructions for return
address signing
- The key used to sign the function is controlled by the function attribute
"sign-return-address-key"
Differential Revision: https://reviews.llvm.org/D51427
llvm-svn: 345511
When branch target identification is enabled, all indirectly-callable
functions start with a BTI C instruction. this instruction can only be
the target of certain indirect branches (direct branches and
fall-through are not affected):
- A BLR instruction, in either a protected or unprotected page.
- A BR instruction in a protected page, using x16 or x17.
- A BR instruction in an unprotected page, using any register.
Without BTI, we can use any non call-preserved register to hold the
address for an indirect tail call. However, when BTI is enabled, then
the code being compiled might be loaded into a BTI-protected page, where
only x16 and x17 can be used for indirect tail calls.
Legacy code withiout this restriction can still indirectly tail-call
BTI-protected functions, because they will be loaded into an unprotected
page, so any register is allowed.
Differential revision: https://reviews.llvm.org/D52868
llvm-svn: 343968
- Add fix so that all code paths that create DWARFContext
with an ObjectFile initialise the target architecture in the context
- Add an assert that the Arch is known in the Dwarf CallFrameString method
llvm-svn: 343317
This caused the DebugInfo/Sparc/gnu-window-save.ll test to fail.
> Functions that have signed return addresses need additional dwarf support:
> - After signing the LR, and before authenticating it, the LR register is in a
> state the is unusable by a debugger or unwinder
> - To account for this a new directive, .cfi_negate_ra_state, is added
> - This directive says the signed state of the LR register has now changed,
> i.e. unsigned -> signed or signed -> unsigned
> - This directive has the same CFA code as the SPARC directive GNU_window_save
> (0x2d), adding a macro to account for multiply defined codes
> - This patch matches the gcc implementation of this support:
> https://patchwork.ozlabs.org/patch/800271/
>
> Differential Revision: https://reviews.llvm.org/D50136
llvm-svn: 343103
Functions that have signed return addresses need additional dwarf support:
- After signing the LR, and before authenticating it, the LR register is in a
state the is unusable by a debugger or unwinder
- To account for this a new directive, .cfi_negate_ra_state, is added
- This directive says the signed state of the LR register has now changed,
i.e. unsigned -> signed or signed -> unsigned
- This directive has the same CFA code as the SPARC directive GNU_window_save
(0x2d), adding a macro to account for multiply defined codes
- This patch matches the gcc implementation of this support:
https://patchwork.ozlabs.org/patch/800271/
Differential Revision: https://reviews.llvm.org/D50136
llvm-svn: 343089
Summary:
Specifying X[8-15,18] registers as callee-saved is used to support
CONFIG_ARM64_LSE_ATOMICS in Linux kernel. As part of this patch we:
- use custom CSR list/mask when user specifies custom CSRs
- update Machine Register Info's list of CSRs with additional custom CSRs in
LowerCall and LowerFormalArguments.
Reviewers: srhines, nickdesaulniers, efriedma, javed.absar
Reviewed By: nickdesaulniers
Subscribers: kristof.beyls, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D52216
llvm-svn: 342824
This patch adds codegen support for the saving/restoring
V8-V23 for functions specified with the aarch64_vector_pcs
calling convention attribute, as added in patch D51477.
Reviewers: t.p.northover, gberry, thegameg, rengolin, javed.absar, MatzeB
Reviewed By: thegameg
Differential Revision: https://reviews.llvm.org/D51479
llvm-svn: 342049
This patch refactors several parts of AArch64FrameLowering
so that it can be easily extended to support saving/restoring
of FPR128 (Q) registers.
Reviewers: t.p.northover, gberry, thegameg, rengolin, javed.absar
Reviewed By: thegameg
Differential Revision: https://reviews.llvm.org/D51478
llvm-svn: 342038
Summary:
Reserving registers x1-7 is used to support CONFIG_ARM64_LSE_ATOMICS in Linux kernel. This change adds support for reserving registers x1 through x7.
Reviewers: javed.absar, phosek, srhines, nickdesaulniers, efriedma
Reviewed By: nickdesaulniers, efriedma
Subscribers: niravd, jfb, manojgupta, nickdesaulniers, jyknight, efriedma, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D48580
llvm-svn: 341706
This adds the plumbing for the Tiny code model for the AArch64 backend. This,
instead of loading addresses through the normal ADRP;ADD pair used in the Small
model, uses a single ADR. The 21 bit range of an ADR means that the code and
its statically defined symbols need to be within 1MB of each other.
This makes it mostly interesting for embedded applications where we want to fit
as much as we can in as small a space as possible.
Differential Revision: https://reviews.llvm.org/D49673
llvm-svn: 340397
- Generate pointer authentication instructions
- The functions instrumented depend on function attribtues:
all (all functions instrumentent)
non-leaf (only those that spill LR)
none
- Function epilogues sign the LR before spilling to the stack and authenticate
the LR once restored
- If the target is v8.3a or greater than can use the combined authenticate and
return instruction
Differential revision: https://reviews.llvm.org/D49793
llvm-svn: 340018
a generically extensible collection of extra info attached to
a `MachineInstr`.
The primary change here is cleaning up the APIs used for setting and
manipulating the `MachineMemOperand` pointer arrays so chat we can
change how they are allocated.
Then we introduce an extra info object that using the trailing object
pattern to attach some number of MMOs but also other extra info. The
design of this is specifically so that this extra info has a fixed
necessary cost (the header tracking what extra info is included) and
everything else can be tail allocated. This pattern works especially
well with a `BumpPtrAllocator` which we use here.
I've also added the basic scaffolding for putting interesting pointers
into this, namely pre- and post-instruction symbols. These aren't used
anywhere yet, they're just there to ensure I've actually gotten the data
structure types correct. I'll flesh out support for these in
a subsequent patch (MIR dumping, parsing, the works).
Finally, I've included an optimization where we store any single pointer
inline in the `MachineInstr` to avoid the allocation overhead. This is
expected to be the overwhelmingly most common case and so should avoid
any memory usage growth due to slightly less clever / dense allocation
when dealing with >1 MMO. This did require several ergonomic
improvements to the `PointerSumType` to reasonably support the various
usage models.
This also has a side effect of freeing up 8 bits within the
`MachineInstr` which could be repurposed for something else.
The suggested direction here came largely from Hal Finkel. I hope it was
worth it. ;] It does hopefully clear a path for subsequent extensions
w/o nearly as much leg work. Lots of thanks to Reid and Justin for
careful reviews and ideas about how to do all of this.
Differential Revision: https://reviews.llvm.org/D50701
llvm-svn: 339940
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240