This diff attempts to resolve the TODO in `getOpIndexSet` (formerly
known as `getInstIndexSet`), which states "Add support to handle IfInsts
surronding `op`".
Major changes in this diff:
1. Overload `getIndexSet`. The overloaded version considers both
`AffineForOp` and `AffineIfOp`.
2. The `getInstIndexSet` is updated accordingly: its name is changed to
`getOpIndexSet` and its implementation is based on a new API `getIVs`
instead of `getLoopIVs`.
3. Add `addAffineIfOpDomain` to `FlatAffineConstraints`, which extracts
new constraints from the integer set of `AffineIfOp` and merges it to
the current constraint system.
4. Update how a `Value` is determined as dim or symbol for
`ValuePositionMap` in `buildDimAndSymbolPositionMaps`.
Differential Revision: https://reviews.llvm.org/D84698
This revision aims to provide a new API, `checkTilingLegality`, to
verify that the loop tiling result still satisifes the dependence
constraints of the original loop nest.
Previously, there was no check for the validity of tiling. For instance:
```
func @diagonal_dependence() {
%A = alloc() : memref<64x64xf32>
affine.for %i = 0 to 64 {
affine.for %j = 0 to 64 {
%0 = affine.load %A[%j, %i] : memref<64x64xf32>
%1 = affine.load %A[%i, %j - 1] : memref<64x64xf32>
%2 = addf %0, %1 : f32
affine.store %2, %A[%i, %j] : memref<64x64xf32>
}
}
return
}
```
You can find more information about this example from the Section 3.11
of [1].
In general, there are three types of dependences here: two flow
dependences, one in direction `(i, j) = (0, 1)` (notation that depicts a
vector in the 2D iteration space), one in `(i, j) = (1, -1)`; and one
anti dependence in the direction `(-1, 1)`.
Since two of them are along the diagonal in opposite directions, the
default tiling method in `affine`, which tiles the iteration space into
rectangles, will violate the legality condition proposed by Irigoin and
Triolet [2]. [2] implies two tiles cannot depend on each other, while in
the `affine` tiling case, two rectangles along the same diagonal are
indeed dependent, which simply violates the rule.
This diff attempts to put together a validator that checks whether the
rule from [2] is violated or not when applying the default tiling method
in `affine`.
The canonical way to perform such validation is by examining the effect
from adding the constraint from Irigoin and Triolet to the existing
dependence constraints.
Since we already have the prior knowlegde that `affine` tiles in a
hyper-rectangular way, and the resulting tiles will be scheduled in the
same order as their respective loop indices, we can simplify the
solution to just checking whether all dependence components are
non-negative along the tiling dimensions.
We put this algorithm into a new API called `checkTilingLegality` under
`LoopTiling.cpp`. This function iterates every `load`/`store` pair, and
if there is any dependence between them, we get the dependence component
and check whether it has any negative component. This function returns
`failure` if the legality condition is violated.
[1]. Bondhugula, Uday. Effective Automatic parallelization and locality optimization using the Polyhedral model. https://dl.acm.org/doi/book/10.5555/1559029
[2]. Irigoin, F. and Triolet, R. Supernode Partitioning. https://dl.acm.org/doi/10.1145/73560.73588
Differential Revision: https://reviews.llvm.org/D84882
This patch adds the capability to perform exact integer emptiness checks for FlatAffineConstraints using the General Basis Reduction algorithm (GBR). Previously, only a heuristic was available for emptiness checks, which was not guaranteed to always give a conclusive result.
This patch adds a `Simplex` class, which can be constructed using a `FlatAffineConstraints`, and can find an integer sample point (if one exists) using the GBR algorithm. Additionally, it adds two classes `Matrix` and `Fraction`, which are used by `Simplex`.
The integer emptiness check functionality can be accessed through the new `FlatAffineConstraints::isIntegerEmpty()` function, which runs the existing heuristic first and, if that proves to be inconclusive, runs the GBR algorithm to produce a conclusive result.
Differential Revision: https://reviews.llvm.org/D80860
Fix memref region compute for 0-d memref accesses in certain cases (when
there are loops surrounding such 0-d accesses).
Differential Revision: https://reviews.llvm.org/D81792
This revision adds a helper function to hoist vector.transfer_read /
vector.transfer_write pairs out of immediately enclosing scf::ForOp
iteratively, if the following conditions are true:
1. The 2 ops access the same memref with the same indices.
2. All operands are invariant under the enclosing scf::ForOp.
3. No uses of the memref either dominate the transfer_read or are
dominated by the transfer_write (i.e. no aliasing between the write and
the read across the loop)
To improve hoisting opportunities, call the `moveLoopInvariantCode` helper
function on the candidate loop above which to hoist. Hoisting the transfers
results in scf::ForOp yielding the value that originally transited through
memory.
This revision additionally exposes `moveLoopInvariantCode` as a helper in
LoopUtils.h and updates SliceAnalysis to support return scf::For values and
allow hoisting across multiple scf::ForOps.
Differential Revision: https://reviews.llvm.org/D81199
This patch introduces interfaces for read and write ops with affine
restrictions. I used `read`/`write` intead of `load`/`store` for the
interfaces so that they can also be implemented by dma ops.
For now, they are only implemented by affine.load, affine.store,
affine.vector_load and affine.vector_store.
For testing purposes, this patch also migrates affine loop fusion and
required analysis to use the new interfaces. No other changes are made
beyond that.
Co-authored-by: Alex Zinenko <zinenko@google.com>
Reviewed By: bondhugula, ftynse
Differential Revision: https://reviews.llvm.org/D79829
cmake does not truly support dependencies on automatically generated files
which are not in the same directory as the targets which depend on them.
It works with ninja, but doesn't work with make
This patch adds an explicit dependence so that all dialects are built
before the analysis libraries.
Differential Revision: https://reviews.llvm.org/D79805
Summary:
This makes a common pattern of
`dyn_cast_or_null<OpTy>(v.getDefiningOp())` more concise.
Differential Revision: https://reviews.llvm.org/D79681
This dialect contains various structured control flow operaitons, not only
loops, reflect this in the name. Drop the Ops suffix for consistency with other
dialects.
Note that this only moves the files and changes the C++ namespace from 'loop'
to 'scf'. The visible IR prefix remains the same and will be updated
separately. The conversions will also be updated separately.
Differential Revision: https://reviews.llvm.org/D79578
This is a wrapper around vector of NamedAttributes that keeps track of whether sorted and does some minimal effort to remain sorted (doing more, e.g., appending attributes in sorted order, could be done in follow up). It contains whether sorted and if a DictionaryAttr is queried, it caches the returned DictionaryAttr along with whether sorted.
Change MutableDictionaryAttr to always return a non-null Attribute even when empty (reserve null cases for errors). To this end change the getter to take a context as input so that the empty DictionaryAttr could be queried. Also create one instance of the empty dictionary attribute that could be reused without needing to lock context etc.
Update infer type op interface to use DictionaryAttr and use NamedAttrList to avoid incurring multiple conversion costs.
Fix bug in sorting helper function.
Differential Revision: https://reviews.llvm.org/D79463
This allows for walking the operations nested directly within a region, without traversing nested regions.
Differential Revision: https://reviews.llvm.org/D79056
- Exports MLIR targets to be used out-of-tree.
- mimicks `add_clang_library` and `add_flang_library`.
- Fixes libMLIR.so
After https://reviews.llvm.org/D77515 libMLIR.so was no longer containing
any object files. We originally had a cludge there that made it work with
the static initalizers and when switchting away from that to the way the
clang shlib does it, I noticed that MLIR doesn't create a `obj.{name}` target,
and doesn't export it's targets to `lib/cmake/mlir`.
This is due to MLIR using `add_llvm_library` under the hood, which adds
the target to `llvmexports`.
Differential Revision: https://reviews.llvm.org/D78773
[MLIR] Fix libMLIR.so and LLVM_LINK_LLVM_DYLIB
Primarily, this patch moves all mlir references to LLVM libraries into
either LLVM_LINK_COMPONENTS or LINK_COMPONENTS. This enables magic in
the llvm cmake files to automatically replace reference to LLVM components
with references to libLLVM.so when necessary. Among other things, this
completes fixing libMLIR.so, which has been broken for some configurations
since D77515.
Unlike previously, the pattern is now that mlir libraries should almost
always use add_mlir_library. Previously, some libraries still used
add_llvm_library. However, this confuses the export of targets for use
out of tree because libraries specified with add_llvm_library are exported
by LLVM. Instead users which don't need/can't be linked into libMLIR.so
can specify EXCLUDE_FROM_LIBMLIR
A common error mode is linking with LLVM libraries outside of LINK_COMPONENTS.
This almost always results in symbol confusion or multiply defined options
in LLVM when the same object file is included as a static library and
as part of libLLVM.so. To catch these errors more directly, there's now
mlir_check_all_link_libraries.
To simplify usage of add_mlir_library, we assume that all mlir
libraries depend on LLVMSupport, so it's not necessary to separately specify
it.
tested with:
BUILD_SHARED_LIBS=on,
BUILD_SHARED_LIBS=off + LLVM_BUILD_LLVM_DYLIB,
BUILD_SHARED_LIBS=off + LLVM_BUILD_LLVM_DYLIB + LLVM_LINK_LLVM_DYLIB.
By: Stephen Neuendorffer <stephen.neuendorffer@xilinx.com>
Differential Revision: https://reviews.llvm.org/D79067
[MLIR] Move from using target_link_libraries to LINK_LIBS
This allows us to correctly generate dependencies for derived targets,
such as targets which are created for object libraries.
By: Stephen Neuendorffer <stephen.neuendorffer@xilinx.com>
Differential Revision: https://reviews.llvm.org/D79243
Three commits have been squashed to avoid intermediate build breakage.
In cmake, dependencies on generated files require some sophistication in the build system. At build time, files are parsed to determine which headers they depend on and these dependencies are injected into the build system. This works well with ninja, but has some constraints with the makefile generator. According to the cmake documentation, this only works reliably within the same directory.
This patch expands the usage of mlir-headers to include all generated headers and adds an mlir-generic-headers target which triggers generation of dialect-independent headers. These targets are used to express dependencies on generated headers. This is mostly handled in AddMLIR.cmake and only a few CMakeLists.txt files need to change.
Differential Revision: https://reviews.llvm.org/D79242
These libraries are distinct from other things in Analysis in that they
operate only on core IR concepts. This also simplifies dependencies
so that Dialect -> Analysis -> Parser -> IR. Previously, the parser depended
on portions of the the Analysis directory as well, which sometimes
caused issues with the way the cmake makefile generator discovers
dependencies on generated files during compilation.
Differential Revision: https://reviews.llvm.org/D79240
Makes the relationship and function clearer. Accordingly rename getAttrList to getMutableAttrDict.
Differential Revision: https://reviews.llvm.org/D79125
The latest changes of the Liveness analysis caused a warning related to an
unused variable. This commit solves this warning.
Differential Revision: https://reviews.llvm.org/D78912
The current Liveness analysis does not support operations with nested regions.
This causes issues when querying liveness information about blocks nested within
operations. Furthermore, the live-in and live-out sets are not computed properly
in these cases.
Differential Revision: https://reviews.llvm.org/D77714
There were some unused CMakeFiles for Affine/IR and Affine/EDSC.
This change builds separate MLIRAffineOps and MLIRAffineEDSC libraries
using those CMakeFiles. This combination replaces the old MLIRAffine
library.
Differential Revision: https://reviews.llvm.org/D78317
Summary:
Modified AffineMap::get to remove support for the overload which allowed
an ArrayRef of AffineExpr but no context (and gathered the context from a
presumed first entry, resulting in bugs when there were 0 results).
Instead, we support only a ArrayRef and a context, and a version which
takes a single AffineExpr.
Additionally, removed some now needless case logic which previously
special cased which call to AffineMap::get to use.
Reviewers: flaub, bondhugula, rriddle!, nicolasvasilache, ftynse, ulysseB, mravishankar, antiagainst, aartbik
Subscribers: mehdi_amini, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, bader, grosul1, frgossen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78226
Summary: Functional.h contains many different methods that have a direct, and more efficient, equivalent in LLVM. This revision replaces all usages with the LLVM equivalent, and removes the header. This is part of larger cleanup, pr45513, merging MLIR support facilities into LLVM.
Differential Revision: https://reviews.llvm.org/D78053
Minor fixes and cleanup for ShapedType accessors, use
ShapedType::kDynamicSize, add ShapedType::isDynamicDim.
Differential Revision: https://reviews.llvm.org/D77710
Support to recognize and deal with aligned_alloc was recently added to
LLVM's TLI/MemoryBuiltins and its various optimization passes. This
revision adds support for generation of aligned_alloc's when lowering
AllocOp from std to LLVM. Setting 'use-aligned_alloc=1' will lead to
aligned_alloc being used for all heap allocations. An alignment and size
that works with the constraints of aligned_alloc is chosen.
Using aligned_alloc is preferable to "using malloc and adjusting the
allocated pointer to align for indexing" because the pointer access
arithmetic done for the latter only makes it harder for LLVM passes to
deal with for analysis, optimization, attribute deduction, and rewrites.
Differential Revision: https://reviews.llvm.org/D77528
Fix point-wise copy generation to work with bounds that have max/min.
Change structure of copy loop nest to use absolute loop indices and
subtracting base from the indexes of the fast buffers. Update supporting
utilities: Fix FlatAffineConstraints::getLowerAndUpperBound to look at
equalities as well and for a missing division. Update unionBoundingBox
to not discard common constraints (leads to a tighter system). Update
MemRefRegion::getConstantBoundingSizeAndShape to add memref dimension
constraints. Run removeTrivialRedundancy at the end of
MemRefRegion::compute. Run single iteration loop promotion and
load/store canonicalization after affine data copy (in its test pass as
well).
Differential Revision: https://reviews.llvm.org/D77320
Modernize/cleanup code in loop transforms utils - a lot of this code was
written prior to the currently available IR support / code style. This
patch also does some variable renames including inst -> op, comment
updates, turns getCleanupLoopLowerBound into a local function.
Differential Revision: https://reviews.llvm.org/D77175
This patch introduces a utility to separate full tiles from partial
tiles when tiling affine loop nests where trip counts are unknown or
where tile sizes don't divide trip counts. A conditional guard is
generated to separate out the full tile (with constant trip count loops)
into the then block of an 'affine.if' and the partial tile to the else
block. The separation allows the 'then' block (which has constant trip
count loops) to be optimized better subsequently: for eg. for
unroll-and-jam, register tiling, vectorization without leading to
cleanup code, or to offload to accelerators. Among techniques from the
literature, the if/else based separation leads to the most compact
cleanup code for multi-dimensional cases (because a single version is
used to model all partial tiles).
INPUT
affine.for %i0 = 0 to %M {
affine.for %i1 = 0 to %N {
"foo"() : () -> ()
}
}
OUTPUT AFTER TILING W/O SEPARATION
map0 = affine_map<(d0) -> (d0)>
map1 = affine_map<(d0)[s0] -> (d0 + 32, s0)>
affine.for %arg2 = 0 to %M step 32 {
affine.for %arg3 = 0 to %N step 32 {
affine.for %arg4 = #map0(%arg2) to min #map1(%arg2)[%M] {
affine.for %arg5 = #map0(%arg3) to min #map1(%arg3)[%N] {
"foo"() : () -> ()
}
}
}
}
OUTPUT AFTER TILING WITH SEPARATION
map0 = affine_map<(d0) -> (d0)>
map1 = affine_map<(d0) -> (d0 + 32)>
map2 = affine_map<(d0)[s0] -> (d0 + 32, s0)>
#set0 = affine_set<(d0, d1)[s0, s1] : (-d0 + s0 - 32 >= 0, -d1 + s1 - 32 >= 0)>
affine.for %arg2 = 0 to %M step 32 {
affine.for %arg3 = 0 to %N step 32 {
affine.if #set0(%arg2, %arg3)[%M, %N] {
// Full tile.
affine.for %arg4 = #map0(%arg2) to #map1(%arg2) {
affine.for %arg5 = #map0(%arg3) to #map1(%arg3) {
"foo"() : () -> ()
}
}
} else {
// Partial tile.
affine.for %arg4 = #map0(%arg2) to min #map2(%arg2)[%M] {
affine.for %arg5 = #map0(%arg3) to min #map2(%arg3)[%N] {
"foo"() : () -> ()
}
}
}
}
}
The separation is tested via a cmd line flag on the loop tiling pass.
The utility itself allows one to pass in any band of contiguously nested
loops, and can be used by other transforms/utilities. The current
implementation works for hyperrectangular loop nests.
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Differential Revision: https://reviews.llvm.org/D76700
The Dominance analysis currently misses a utility function to find the nearest common dominator of two given blocks. This is required for a huge variety of different control-flow analyses and transformations. This commit adds this function and moves the getNode function from DominanceInfo to DominanceInfoBase, as it also works for post dominators.
Differential Revision: https://reviews.llvm.org/D75507
- add method to get back an integer set from flat affine constraints;
this allows a round trip
- use this to complete the simplification of integer sets in
-simplify-affine-structures
- update FlatAffineConstraints::removeTrivialRedundancy to also do GCD
tightening and normalize by GCD (while still keeping it linear time).
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Summary:
Change AffineOps Dialect structure to better group both IR and Tranforms. This included extracting transforms directly related to AffineOps. Also move AffineOps to Affine.
Differential Revision: https://reviews.llvm.org/D76161
Summary: This is somewhat complex(annoying) as it involves directly tracking the uses within each of the callgraph nodes, and updating them as needed during inlining. The benefit of this is that we can have a more exact cost model, enable inlining some otherwise non-inlinable cases, and also ensure that newly dead callables are properly disposed of.
Differential Revision: https://reviews.llvm.org/D75476
Summary:
- remove stale declarations on flat affine constraints
- avoid allocating small vectors where possible
- clean up code comments, rename some variables
Differential Revision: https://reviews.llvm.org/D76117
HasNoSideEffect can now be implemented using the MemoryEffectInterface, removing the need to check multiple things for the same information. This also removes an easy foot-gun for users as 'Operation::hasNoSideEffect' would ignore operations that dynamically, or recursively, have no side effects. This also leads to an immediate improvement in some of the existing users, such as DCE, now that they have access to more information.
Differential Revision: https://reviews.llvm.org/D76036
Summary: In some situations the name of the attribute is not representable as a bare-identifier, this revision adds support for those cases by formatting the name as a string instead. This has the added benefit of removing the identifier regex from the verifier.
Differential Revision: https://reviews.llvm.org/D75973