* Update version number in DR tests from 4.0 to 4
* Teach make_cxx_dr_status script about version numbers that don't contain a
period.
* Update cxx_status.html and cxx_dr_status.html to list Clang 4 features as
"Clang 4" rather than "SVN"
Clang 4 features are still listed in yellow rather than green until release.
llvm-svn: 291871
to be specified for a template template parameter whenever the parameter is at
least as specialized as the argument (when there's an obvious and correct
mapping from uses of the parameter to uses of the argument). For example, a
template with more parameters can be passed to a template template parameter
with fewer, if those trailing parameters have default arguments.
This is disabled by default, despite being a DR resolution, as it's fairly
broken in its current state: there are no partial ordering rules to cope with
template template parameters that have different parameter lists, meaning that
code that attempts to decompose template-ids based on arity can hit unavoidable
ambiguity issues.
The diagnostics produced on a non-matching argument are also pretty bad right
now, but I aim to improve them in a subsequent commit.
llvm-svn: 290792
We continue to support dynamic exception specifications in C++1z as an
extension, but produce an error-by-default warning when we encounter one. This
allows users to opt back into the feature with a warning flag, and implicitly
opts system headers back into the feature should they happen to use it.
There is one semantic change implied by P0003R5 but not implemented here:
violating a throw() exception specification should now call std::terminate
directly instead of calling std::unexpected(), but since P0003R5 also removes
std::unexpected() and std::set_unexpected, and the default unexpected handler
calls std::terminate(), a conforming C++1z program cannot tell that we are
still calling it. The upside of this strategy is perfect backwards
compatibility; the downside is that we don't get the more efficient 'noexcept'
codegen for 'throw()'.
llvm-svn: 289019
When an object of class type is initialized from a prvalue of the same type
(ignoring cv qualifications), use the prvalue to initialize the object directly
instead of inserting a redundant elidable call to a copy constructor.
llvm-svn: 288866
on cxx-abi-dev (thread starting 2016-10-11). This is currently hidden behind a
cc1-only -m flag, pending discussion of how best to deal with language changes
that require use of new symbols from the ABI library.
llvm-svn: 285664
Instead of ignoring the evaluation order rule, ignore the "destroy parameters
in reverse construction order" rule for the small number of problematic cases.
This only causes incorrect behavior in the rare case where both parameters to
an overloaded operator <<, >>, ->*, &&, ||, or comma are of class type with
non-trivial destructor, and the program is depending on those parameters being
destroyed in reverse construction order.
We could do a little better here by reversing the order of parameter
destruction for those functions (and reversing the argument evaluation order
for all direct calls, not just those with operator syntax), but that is not a
complete solution to the problem, as the same situation can be reached by an
indirect function call.
Approach reviewed off-line by rnk.
llvm-svn: 282777
function correctly when targeting MS ABIs (this appears to have never mattered
prior to this change).
Update test case to always cover both 32-bit and 64-bit Windows ABIs, since
they behave somewhat differently from each other here.
Update test case to also cover operators , && and ||, which it appears are also
affected by P0145R3 (they're not explicitly called out by the design document,
but this is the emergent behavior of the existing wording).
Original commit message:
P0145R3 (C++17 evaluation order tweaks): evaluate the right-hand side of
assignment and compound-assignment operators before the left-hand side. (Even
if it's an overloaded operator.)
This completes the implementation of P0145R3 + P0400R0 for all targets except
Windows, where the evaluation order guarantees for <<, >>, and ->* are
unimplementable as the ABI requires the function arguments are evaluated from
right to left (because parameter destructors are run from left to right in the
callee).
llvm-svn: 282619
assignment and compound-assignment operators before the left-hand side. (Even
if it's an overloaded operator.)
This completes the implementation of P0145R3 + P0400R0 for all targets except
Windows, where the evaluation order guarantees for <<, >>, and ->* are
unimplementable as the ABI requires the function arguments are evaluated from
right to left (because parameter destructors are run from left to right in the
callee).
llvm-svn: 282556
Replace inheriting constructors implementation with new approach, voted into
C++ last year as a DR against C++11.
Instead of synthesizing a set of derived class constructors for each inherited
base class constructor, we make the constructors of the base class visible to
constructor lookup in the derived class, using the normal rules for
using-declarations.
For constructors, UsingShadowDecl now has a ConstructorUsingShadowDecl derived
class that tracks the requisite additional information. We create shadow
constructors (not found by name lookup) in the derived class to model the
actual initialization, and have a new expression node,
CXXInheritedCtorInitExpr, to model the initialization of a base class from such
a constructor. (This initialization is special because it performs real perfect
forwarding of arguments.)
In cases where argument forwarding is not possible (for inalloca calls,
variadic calls, and calls with callee parameter cleanup), the shadow inheriting
constructor is not emitted and instead we directly emit the initialization code
into the caller of the inherited constructor.
Note that this new model is not perfectly compatible with the old model in some
corner cases. In particular:
* if B inherits a private constructor from A, and C uses that constructor to
construct a B, then we previously required that A befriends B and B
befriends C, but the new rules require A to befriend C directly, and
* if a derived class has its own constructors (and so its implicit default
constructor is suppressed), it may still inherit a default constructor from
a base class
llvm-svn: 274049
Implement lambda capture of *this by copy.
For e.g.:
struct A {
int d = 10;
auto foo() { return [*this] (auto a) mutable { d+=a; return d; }; }
};
auto L = A{}.foo(); // A{}'s lifetime is gone.
// Below is still ok, because *this was captured by value.
assert(L(10) == 20);
assert(L(100) == 120);
If the capture was implicit, or [this] (i.e. *this was captured by reference), this code would be otherwise undefined.
Implementation Strategy:
- amend the parser to accept *this in the lambda introducer
- add a new king of capture LCK_StarThis
- teach Sema::CheckCXXThisCapture to handle by copy captures of the
enclosing object (i.e. *this)
- when CheckCXXThisCapture does capture by copy, the corresponding
initializer expression for the closure's data member
direct-initializes it thus making a copy of '*this'.
- in codegen, when assigning to CXXThisValue, if *this was captured by
copy, make sure it points to the corresponding field member, and
not, unlike when captured by reference, what the field member points
to.
- mark feature as implemented in svn
Much gratitude to Richard Smith for his carefully illuminating reviews!
llvm-svn: 263921