two new options –msingle-float and –mdouble-float. These options can be
used simultaneously with float ABI selection options (-mfloat-abi,
-mhard-float, -msoft-float). They mark whether a floating-point
coprocessor supports double-precision operations.
llvm-svn: 179481
Use an newly introduce ASTContext::getBaseObjCCategoriesAfterInterface() which caches its
results instead of re-calculating the categories multiple times.
llvm-svn: 179436
The main benefit is to speed-up SourceManager::isBeforeInTranslationUnit which is common to query
the included/expanded location of the same FileID multiple times.
llvm-svn: 179435
This new option is the default, but it is useful to have a flag to override
-mno-implicit-float by putting -mimplicit-float later on the command line.
llvm-svn: 179309
Summary:
Handles all inheritance models for both data and function member
pointers.
Also implements isZeroInitializable() and refactors some of the null
member pointer code.
MSVC supports converting member pointers through virtual bases, which
clang does not (yet?) support. Implementing that extension is covered
by http://llvm.org/15713
Reviewers: rjmccall
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D613
llvm-svn: 179305
For this source:
const int &ref = someStruct.bitfield;
We used to generate this AST:
DeclStmt [...]
`-VarDecl [...] ref 'const int &'
`-MaterializeTemporaryExpr [...] 'const int' lvalue
`-ImplicitCastExpr [...] 'const int' lvalue <NoOp>
`-MemberExpr [...] 'int' lvalue bitfield .bitfield [...]
`-DeclRefExpr [...] 'struct X' lvalue ParmVar [...] 'someStruct' 'struct X'
Notice the lvalue inside the MaterializeTemporaryExpr, which is very
confusing (and caused an assertion to fire in the analyzer - PR15694).
We now generate this:
DeclStmt [...]
`-VarDecl [...] ref 'const int &'
`-MaterializeTemporaryExpr [...] 'const int' lvalue
`-ImplicitCastExpr [...] 'int' <LValueToRValue>
`-MemberExpr [...] 'int' lvalue bitfield .bitfield [...]
`-DeclRefExpr [...] 'struct X' lvalue ParmVar [...] 'someStruct' 'struct X'
Which makes a lot more sense. This allows us to remove code in both
CodeGen and AST that hacked around this special case.
The commit also makes Clang accept this (legal) C++11 code:
int &&ref = std::move(someStruct).bitfield
PR15694 / <rdar://problem/13600396>
llvm-svn: 179250
constructor. This isn't quite perfect (as usual, we don't handle default
arguments correctly yet, and we don't deal with copy/move constructors for
arguments correctly either, but this will be fixed when we implement core issue
1351.
This completes our support for inheriting constructors.
llvm-svn: 179154
The GNU line marker directive was sharing code with the #line directive, but some of the warnings/errors were reporting as #line directive diagnostics in both cases.
Previously:
#line 11foo1 ==> "#line directive requires a simple digit sequence"
# 11foo1 ==> "#line directive requires a simple digit sequence"
Now, we get:
#line 11foo1 ==> "#line directive requires a simple digit sequence"
# 11foo1 ==> "GNU line marker directive requires a simple digit sequence"
llvm-svn: 179139
isVirtual - matches CXXMethodDecl nodes for virtual methods
isOverride - matches CXXMethodDecl nodes for methods that override virtual methods from a base class.
Author: Philip Dunstan <phil@philipdunstan.com>
llvm-svn: 179126
Previously, the analyzer used isIntegerType() everywhere, which uses the C
definition of "integer". The C++ predicate with the same behavior is
isIntegerOrUnscopedEnumerationType().
However, the analyzer is /really/ using this to ask if it's some sort of
"integrally representable" type, i.e. it should include C++11 scoped
enumerations as well. hasIntegerRepresentation() sounds like the right
predicate, but that includes vectors, which the analyzer represents by its
elements.
This commit audits all uses of isIntegerType() and replaces them with the
general isIntegerOrEnumerationType(), except in some specific cases where
it makes sense to exclude scoped enumerations, or any enumerations. These
cases now use isIntegerOrUnscopedEnumerationType() and getAs<BuiltinType>()
plus BuiltinType::isInteger().
isIntegerType() is hereby banned in the analyzer - lib/StaticAnalysis and
include/clang/StaticAnalysis. :-)
Fixes real assertion failures. PR15703 / <rdar://problem/12350701>
llvm-svn: 179081
When two template decls with the same name are used in this diagnostic,
force them to print their qualified names. This changes the bad message of:
candidate template ignored: could not match 'array' against 'array'
to the better message of:
candidate template ignored: could not match 'NS2::array' against 'NS1::array'
llvm-svn: 179056
This slightly propagates an existing hack that delays when we provide
access specifiers for the visible conversion functions of a class by
copying the available access specifier early. The only client this
affects is LLDB, which tends to discover and add conversion functions
after the class is technically "complete". As such, the only
observable difference is in LLDB, so the testing will go there.
llvm-svn: 179029
Added TBAABaseType and TBAAOffset in LValue. These two fields are initialized to
the actual type and 0, and are updated in EmitLValueForField.
Path-aware TBAA tags are enabled for EmitLoadOfScalar and EmitStoreOfScalar.
Added command line option -struct-path-tbaa.
llvm-svn: 178797
This mostly reverts 178733, but keeps the tests.
I don't claim to understand how hidden sub modules work or when we need to see
them (is that documented?), but this has the same semantics and avoids adding
hasExternalLinkageUncached which has the same foot gun potential as the old
hasExternalLinkage.
Last but not least, not computing linkage when it is not needed is more
efficient.
llvm-svn: 178739
caching the linkage for a declaration before we set up its redeclaration chain,
when determining whether a declaration could be a redeclaration of something
from an unimported submodule. We actually want to look at the declaration as if
it were not a redeclaration here, so compute the linkage but don't cache it.
llvm-svn: 178733
of a property just in case the property's getter happens to be +1.
We won't synthesize a getter for such a property, but we will allow
the user to define a +1 method for it.
rdar://13115896
llvm-svn: 178731
don't serialize a lookup map for the translation unit outside C++ mode, so we
can't tell when lookup within the TU needs to look within modules. Only apply
the fix outside C++ mode, and only to the translation unit.
llvm-svn: 178706