Mostly just to silence a warning about an unhandled case. There don't seem to
be any tests for this operator (at least that I could find).
llvm-svn: 308901
This includes the hash table, the address map, and the thunk table and
section offset table. The last two are only used for incremental
linking, which LLD doesn't support, so they are less interesting. The
hash table is particularly important to get right, since this is the one
of the streams that debuggers use to translate addresses to symbols.
llvm-svn: 308764
Summary:
This removes the CVTypeVisitor updater and verifier classes. They were
made dead by the minimal type dumping refactoring. Replace them with a
single function that takes a type record and produces a hash. Call this
from the minimal type dumper and compare the hash.
I also noticed that the microsoft-pdb reference repository uses a basic
CRC32 for records that aren't special. We already have an implementation
of that CRC ready to use, because it's used in COFF for ICF.
I'll make LLD call this hashing utility in a follow-up change. We might
also consider using this same hash in type stream merging, so that we
don't have to hash our records twice.
Reviewers: inglorion, ruiu
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D35515
llvm-svn: 308240
Summary:
We were treating the GUIDs in TypeServer2Record as strings, and the
non-ASCII bytes in the GUID would not round-trip through YAML.
We already had the PDB_UniqueId type portably represent a Windows GUID,
but we need to hoist that up to the DebugInfo/CodeView library so that
we can use it in the TypeServer2Record as well as in PDB parsing code.
Reviewers: inglorion, amccarth
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D35495
llvm-svn: 308234
Summary:
Instead of wiring these through the CVTypeVisitor interface, clients
should inspect the CVTypeArray before visiting it and potentially load
up the type server's TPI stream if they need it.
No tests relied on this functionality because LLD was the only client.
Reviewers: ruiu
Subscribers: mgorny, hiraditya, zturner, llvm-commits
Differential Revision: https://reviews.llvm.org/D35394
llvm-svn: 308212
Summary:
This fixes type indices for SDK or CRT static archives. Previously we'd
try to look next to the archive object file path, which would not exist
on the local machine.
Also error out if we can't resolve a type server record. Hypothetically
we can recover from this error by discarding debug info for this object,
but that is not yet implemented.
Reviewers: ruiu, amccarth
Subscribers: aprantl, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D35369
llvm-svn: 307946
Summary:
There is a reserved range of type indexes for built-in types (like integers).
This will create a symbol for a built-in type if the caller askes for one by
type index. This is also plumbing for being able to recall symbols by type
index in general, but user-defined types will come in subsequent patches.
Reviewers: rnk, zturner
Subscribers: mgorny, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D35163
llvm-svn: 307834
This is part of the continuing effort to increase parity between
LLD and MSVC PDBs. link still doesn't like our PDBs, so the most
obvious thing to check was whether adding an empty publics stream
would get it to do something else. It still fails in the same way
but at least this removes one more variable from the equation.
The next logical step would be to try creating an empty globals
stream.
Differential Revision: https://reviews.llvm.org/D35224
llvm-svn: 307598
1) Don't write a /src/headerblock stream. This appears to be
written conditionally by MSVC, but it's not clear what the
condition is. For now, just remove it since we dont' know
what it is anyway and the particular pdb we've checked in
for the test doesn't have one.
2) Write a valid timestamp for the PDB file signature. This
leads to non-reproducible builds, but it matches the default
behavior of link, so it should be out default as well. If
we need reproducibility, we should add a separate command
line option for it that is off by default.
3) Write an empty FPO stream. MSVC seems to always write an
FPO stream. This change makes the stream directory match
up, although we still need to make the contents of the FPO
stream match.
llvm-svn: 307436
A couple of things were different about our generated PDBs.
1) We were outputting the wrong Version on the PDB Stream.
The version we were setting was newer than what MSVC is setting.
It's not clear what the implications are, but we change LLD
to use PdbImplVC70, as MSVC does.
2) For the optional debug stream indices in the DBI Stream, we
were outputting 0 to mean "the stream is not present". MSVC
outputs uint16_t(-1), which is the "correct" way to specify
that a stream is not present. So we fix that as well.
3) We were setting the PDB Stream signature to 0. This is supposed
to be the result of calling time(nullptr). Although this leads
to non-deterministic builds, a better way to solve that is by
having a command line option explicitly for generating a
reproducible build, and have the default behavior of lld-link
match the default behavior of link.
To test this, I'm making use of the new and improved `pdb diff`
sub command. To make it suitable for writing tests against, I had
to modify the diff subcommand slightly to print less verbose output.
Previously it would always print | <column> | <value1> | <value2> |
which is quite verbose, and the values are fragile. All we really
want to know is "did we produce the same value as link?" So I added
command line options to print a single character representing the
result status (different, identical, equivalent), and another to
hide the value display. Note that just inspecting the diff output
used to write the test, you can see some things that are obviously
wrong. That is just reflective of the fact that this is the state
of affairs today, not that we're asserting that this is "correct".
We can use this as a starting point to discover differences, fix
them, and update the test.
Differential Revision: https://reviews.llvm.org/D35086
llvm-svn: 307422
We're getting to the point that some MS tools (e.g. DIA) can recognize
our PDBs but others (e.g. link.exe) cannot. I think the way forward is
to improve our tooling to help us find differences more easily. For
example, if we can compile the same program with clang-cl and cl and
have a tool tell us all the places where the PDBs differ, this could
tell us what we're doing wrong. It's tricky though, because there are a
lot of "benign" differences in a PDB. For example, if the string table
in one PDB consists of "foo" followed by "bar" and in the other PDB it
consists of "bar" followed by "foo", this is not necessarily a critical
difference, as long as the uses of these strings also refer to the
correct location. On the other hand, if the second PDB doesn't even
contain the string "foo" at all, this is a critical difference.
diff mode has been in llvm-pdbutil for quite a while, but because of the
above challenge along with some others, it's been hard to make it
useful. I think this patch addresses that. It looks for all the same
things, but it now prints the output in tabular format (carefully
formatted and aligned into tables and fields), and it highlights
critical differences in red, non-critical differences in yellow, and
identical fields in green. This makes it easy to spot the places we
differ, and the general concept of outputting arbitrary fields in
tabular format can be extended to provide analysis into many of the
different types of information that show up in a PDB.
Differential Revision: https://reviews.llvm.org/D35039
llvm-svn: 307421
Based strictly on the name, this seems to have something to do
width edit & continue. The goal of this patch has nothing to do
with supporting edit and continue though. msvc link.exe writes
very basic information into this area even when *not* compiling
with support for E&C, and so the goal here is to bring lld-link
to parity. Since we cannot know what assumptions standard tools
make about the content of PDB files, we need to be as close as
possible.
This ECNames data structure is a standard PDB string hash table.
link.exe puts a single string into this hash table, which is the
full path to the PDB file on disk. It then references this string
from the module descriptor for the compiler generated `* Linker *`
module.
With this patch, lld-link will generate the exact same sequence of
bytes as MSVC link for this subsection for a given object file
input (as reported by `llvm-pdbutil bytes -ec`).
llvm-svn: 307356
Instead of creating symbols directly in the findChildren methods of the native
symbol implementations, they will rely on the NativeSession to act as a factory
for these types. This lets NativeSession cache the NativeRawSymbols in its
new symbol cache and makes that cache the source of unique IDs for the symbols.
Right now, this affects only NativeCompilandSymbols. There's no external
change yet, so I think the existing tests are still sufficient. Coming soon
are patches to extend this to built-in types and enums.
llvm-svn: 306610
If you dump a pdb to yaml, and then round-trip it back to a pdb,
and run cvdump -l <file> on the new pdb, cvdump will generate
output such as this.
*** LINES
** Module: "d:\src\llvm\test\DebugInfo\PDB\Inputs\empty.obj"
Error: Line number corrupted: invalid file id 0
<Unknown> (MD5), 0001:00000010-0000001A, line/addr pairs = 3
5 00000010 6 00000013 7 00000018
Note the error message about the corrupted line number.
It turns out that the problem is that cvdump cannot find the
/names stream (e.g. the global string table), and the reason it
can't find the /names stream is because it doesn't understand
the NameMap that we serialize which tells pdb consumers which
stream has the string table.
Some experimentation shows that if we add items to the hash
table in a specific order before serializing it, cvdump can read
it. This suggests that either we're using the wrong hash function,
or we're serializing something incorrectly, but it will take some
deeper investigation to figure out how / why. For now, this at
least allows cvdump to read our line information (and incidentally,
produces an identical byte sequence to what Microsoft tools
produce when writing the named stream map).
Differential Revision: https://reviews.llvm.org/D34491
llvm-svn: 306233
This patch dumps the raw bytes of the pdb name map which contains
the mapping of stream name to stream index for the string table
and other reserved streams.
llvm-svn: 306148
The goal here is to make it possible to display absolute
file offsets when dumping byets from an MSF. The problem is
that when dumping bytes from an MSF, often the bytes will
cross a block boundary and encounter a discontinuity. We
can't use the normal formatBinary() function for this because
this would just treat the sequence as entirely ascending, and
not account out-of-order blocks.
This patch adds a formatMsfData() function to our printer, and
then uses this function to improve the output of the -stream-data
command line option for dumping bytes from a particular stream.
Test coverage is also expanded to make sure to include all possible
scenarios of offsets, sizes, and crossing block boundaries.
llvm-svn: 306141
All NativeRawSymbols will have a unique symbol ID (retrievable via
getSymIndexId). For now, these are initialized to 0, but soon the
NativeSession will be responsible for creating the raw symbols, and it will
assign unique IDs.
The symbol cache in the NativeSession will also require the ability to clone
raw symbols, so I've provided implementations for that as well.
llvm-svn: 306042
There doesn't seem to be a compelling reason why this method should be const
other than it was possible with the DIA implementation. The native session
is going to act as a symbol factory and cache. This could be acheived with
mutable (and the existing const_cast), but it seems cleaner to accept that
this method affects the state of the session.
This change eliminates an existing const_cast.
llvm-svn: 306041
There were certain fields that we didn't know how to write, as
well as various padding bytes that we would ignore. This leads
to garbage data in the PDB. While not strictly necessary, we
should initialize these bytes to something meaningful, as it
makes for easier binary comparison between PDBs.
llvm-svn: 305819
Summary:
This is a first step towards getting line info to show up in VS and
windbg. So far, only llvm-pdbutil can parse the PDBs that we produce.
cvdump doesn't like something about our file checksum tables. I'll have
to dig into that next.
This patch adds a new DebugSubsectionRecordBuilder which takes bytes
directly from some other producer, such as a linker, and sticks it into
the PDB. Line tables only need to be relocated. No data needs to be
rewritten.
File checksums and string tables, on the other hand, need to be re-done.
Reviewers: zturner, ruiu
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D34257
llvm-svn: 305713
This resubmits commit c0c249e9f2ef83e1d1e5f166b50673d92f3579d7.
It was broken due to some weird template issues, which have
since been fixed.
llvm-svn: 305517
This reverts commit 83ea17ebf2106859a51fbc2a86031b44d33696ad.
This is failing due to some strange template problems, so reverting
until it can be straightened out.
llvm-svn: 305505
After some internal discussions, we agreed that the raw output style had
outlived its usefulness. It was originally created before we had even
thought of dumping to YAML, and it was intended to give us some insight
into the internals of a PDB file. Now we have YAML mode which does
almost exactly this but is more powerful in that it can round-trip back
to a PDB, which the raw mode could not do. So the raw mode had become
purely a maintenance burden.
One option was to just delete it. However, its original goal was to be
as readable as possible while staying close to the "metal" - i.e.
presenting the output in a way that maps directly to the underlying file
format. We don't actually need that last requirement anymore since it's
covered by the yaml mode, so we could repurpose "raw" mode to actually
just be as readable as possible.
This patch implements about 80% of the functionality previously in raw
mode, but in a completely different style that is more akin to what
cvdump outputs. Records are very compressed, often times appearing on
just one line. One nice thing about this is that it makes full record
matching easier, because you can grep for indices, names, and leaf types
on a single line often.
See the tests for some examples of what the new output looks like.
Note that this patch actually regresses the functionality of raw mode in
a few areas, but only because the patch was already unreasonably large
and going 100% would have been even worse. Specifically, this patch is
missing:
The ability to dump module debug subsections (checksums, lines, etc)
The ability to dump section headers
Aside from that everything is here. While goign through the tests fixing
them all up, I found many duplicate tests. They've been deleted. In
subsequent patches I will go through and re-add the missing
functionality.
Differential Revision: https://reviews.llvm.org/D34191
llvm-svn: 305495
This was originally reverted because of some non-deterministic
failures on certain buildbots. Luckily ASAN eventually caught
this as a stack-use-after-scope, so the fix is included in
this patch.
llvm-svn: 305393
This is causing failures on linux bots with an invalid stream
read. It doesn't repro in any configuration on Windows, so
reverting until I have a chance to investigate on Linux.
llvm-svn: 305371
This allows us to use yaml2obj and obj2yaml to round-trip CodeView
symbol and type information without having to manually specify the bytes
of the section. This makes for much easier to maintain tests. See the
tests under lld/COFF in this patch for example. Before they just said
SectionData: <blob> whereas now we can use meaningful record
descriptions. Note that it still supports the SectionData yaml field,
which could be useful for initializing a section to invalid bytes for
testing, for example.
Differential Revision: https://reviews.llvm.org/D34127
llvm-svn: 305366
Summary:
Expose the module descriptor index and fill it in for section
contributions.
Reviewers: zturner
Subscribers: llvm-commits, ruiu, hiraditya
Differential Revision: https://reviews.llvm.org/D34126
llvm-svn: 305296
The last fix required the user to manually add the required
feature. This caused an LLD test to fail because I failed to
update LLD. In practice we can hide this logic so it can just
be transparently added when we write the PDB.
llvm-svn: 305236
Older PDBs don't have this. Its presence is detected by using
the various "feature" flags that come at the end of the PDB
Stream. Detect this, and don't try to dump the ID stream if the
features tells us it's not present.
llvm-svn: 305235
Static data members were causing a problem because I mistakenly
assumed all members would affect a class's layout and so the
Layout member would be non-null.
llvm-svn: 305229
Apparently support for /debug:fastlink PDBs isn't part of the
DIA SDK (!), and it was causing llvm-pdbdump to crash because
we weren't checking for a null pointer return value. This
manifests when calling findChildren on the IDiaSymbol, and
it returns E_NOTIMPL.
llvm-svn: 304982
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
While it's not entirely clear why a compiler or linker might
put this information into an object or PDB file, one has been
spotted in the wild which was causing llvm-pdbdump to crash.
This patch adds support for reading-writing these sections.
Since I don't know how to get one of the native tools to
generate this kind of debug info, the only test here is one
in which we feed YAML into the tool to produce a PDB and
then spit out YAML from the resulting PDB and make sure that
it matches.
llvm-svn: 304738
Previously MappedBlockStream owned its own BumpPtrAllocator that
it would allocate from when a read crossed a block boundary. This
way it could still return the user a contiguous buffer of the
requested size. However, It's not uncommon to open a stream, read
some stuff, close it, and then save the information for later.
After all, since the entire file is mapped into memory, the data
should always be available as long as the file is open.
Of course, the exception to this is when the data isn't *in* the
file, but rather in some buffer that we temporarily allocated to
present this contiguous view. And this buffer would get destroyed
as soon as the strema was closed.
The fix here is to force the user to specify the allocator, this
way it can provide an allocator that has whatever lifetime it
chooses.
Differential Revision: https://reviews.llvm.org/D33858
llvm-svn: 304623
Previously we would expect certain subsections to appear
in a certain order because some subsections would reference
other subsections, but in practice we need to support
arbitrary orderings since some object file and PDB file
producers generate them this way. This also paves the
way for supporting Yaml <-> Object File conversion of
CodeView, since Object Files typically have quite a
large number of subsections in their debug info.
Differential Revision: https://reviews.llvm.org/D33807
llvm-svn: 304588
Object files have symbol records not aligned to any particular
boundary (e.g. 1-byte aligned), while PDB files have symbol
records padded to 4-byte aligned boundaries. Since they share
the same reading / writing code, we have to provide an option to
specify the alignment and propagate it up to the producer or
consumer who knows what the alignment is supposed to be for the
given container type.
Added a test for this by modifying the existing PDB -> YAML -> PDB
round-tripping code to round trip symbol records as well as types.
Differential Revision: https://reviews.llvm.org/D33785
llvm-svn: 304484
This commit introduces a structure that holds all the flags that
control the pretty printing of dwarf output.
Patch by Spyridoula Gravani!
Differential Revision: https://reviews.llvm.org/D33749
llvm-svn: 304446
Originally this was intended to be set up so that when linking
a PDB which refers to a type server, it would only visit the
PDB once, and on subsequent visitations it would just skip it
since all the records had already been added.
Due to some C++ scoping issues, this was not occurring and it
was revisiting the type server every time, which caused every
record to end up being thrown away on all subsequent visitations.
This doesn't affect the performance of linking clang-cl generated
object files because we don't use type servers, but when linking
object files and libraries generated with /Zi via MSVC, this means
only 1 object file has to be linked instead of N object files, so
the speedup is quite large.
llvm-svn: 303920
Summary:
DbiStreamBuilder calculated the offset of the source file names inside
the file info substream as the size of the file info substream minus
the size of the file names. Since the file info substream is padded to
a multiple of 4 bytes, this caused the first file name to be aligned
on a 4-byte boundary. By contrast, DbiModuleList would read the file
names immediately after the file name offset table, without skipping
to the next 4-byte boundary. This change makes it so that the file
names are written to the location where DbiModuleList expects them,
and puts any necessary padding for the file info substream after the
file names instead of before it.
Reviewers: amccarth, rnk, zturner
Reviewed By: amccarth, zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33475
llvm-svn: 303917
A profile shows the majority of time doing type merging is spent
deserializing records from sequences of bytes into friendly C++ structures
that we can easily access members of in order to find the type indices to
re-write.
Records are prefixed with their length, however, and most records have
type indices that appear at fixed offsets in the record. For these
records, we can save some cycles by just looking at the right place in the
byte sequence and re-writing the value, then skipping the record in the
type stream. This saves us from the costly deserialization of examining
every field, including potentially null terminated strings which are the
slowest, even though it was unnecessary to begin with.
In addition, we apply another optimization. Previously, after
deserializing a record and re-writing its type indices, we would
unconditionally re-serialize it in order to compute the hash of the
re-written record. This would result in an alloc and memcpy for every
record. If no type indices were re-written, however, this was an
unnecessary allocation. In this patch re-writing is made two phase. The
first phase discovers the indices that need to be rewritten and their new
values. This information is passed through to the de-duplication code,
which only copies and re-writes type indices in the serialized byte
sequence if at least one type index is different.
Some records have type indices which only appear after variable length
strings, or which have lists of type indices, or various other situations
that can make it tricky to make this optimization. While I'm not giving up
on optimizing these cases as well, for now we can get the easy cases out
of the way and lay the groundwork for more complicated cases later.
This patch yields another 50% speedup on top of the already large speedups
submitted over the past 2 days. In two tests I have run, I went from 9
seconds to 3 seconds, and from 16 seconds to 8 seconds.
Differential Revision: https://reviews.llvm.org/D33480
llvm-svn: 303914
Previous algotirhm assumed that types and ids are in a single
unified stream. For inputs that come from object files, this
is the case. But if the input is already a PDB, or is the result
of a previous merge, then the types and ids will already have
been split up, in which case we need an algorithm that can
accept operate on independent streams of types and ids that
refer across stream boundaries to each other.
Differential Revision: https://reviews.llvm.org/D33417
llvm-svn: 303577
This was originally reverted because it was a breaking a bunch
of bots and the breakage was not surfacing on Windows. After much
head-scratching this was ultimately traced back to a bug in the
lit test runner related to its pipe handling. Now that the bug
in lit is fixed, Windows correctly reports these test failures,
and as such I have finally (hopefully) fixed all of them in this
patch.
llvm-svn: 303446
This is a squash of ~5 reverts of, well, pretty much everything
I did today. Something is seriously broken with lit on Windows
right now, and as a result assertions that fire in tests are
triggering failures. I've been breaking non-Windows bots all
day which has seriously confused me because all my tests have
been passing, and after running lit with -a to view the output
even on successful runs, I find out that the tool is crashing
and yet lit is still reporting it as a success!
At this point I don't even know where to start, so rather than
leave the tree broken for who knows how long, I will get this
back to green, and then once lit is fixed on Windows, hopefully
hopefully fix the remaining set of problems for real.
llvm-svn: 303409
Merging PDBs is a feature that will be used heavily by
the linker. The functionality already exists but does not
have deep test coverage because it's not easily exposed through
any tools. This patch aims to address that by adding the
ability to merge PDBs via llvm-pdbdump. It takes arbitrarily
many PDBs and outputs a single PDB.
Using this new functionality, a test is added for merging
type records. Future patches will add the ability to merge
symbol records, module information, etc.
llvm-svn: 303389
Right now we have multiple notions of things that represent collections of
types. Most commonly used are TypeDatabase, which is supposed to keep
mappings from TypeIndex to type name when reading a type stream, which
happens when reading PDBs. And also TypeTableBuilder, which is used to
build up a collection of types dynamically which we will later serialize
(i.e. when writing PDBs).
But often you just want to do some operation on a collection of types, and
you may want to do the same operation on any kind of collection. For
example, you might want to merge two TypeTableBuilders or you might want
to merge two type streams that you loaded from various files.
This dichotomy between reading and writing is responsible for a lot of the
existing code duplication and overlapping responsibilities in the existing
CodeView library classes. For example, after building up a
TypeTableBuilder with a bunch of type records, if we want to dump it we
have to re-invent a bunch of extra glue because our dumper takes a
TypeDatabase or a CVTypeArray, which are both incompatible with
TypeTableBuilder.
This patch introduces an abstract base class called TypeCollection which
is shared between the various type collection like things. Wherever we
previously stored a TypeDatabase& in some common class, we now store a
TypeCollection&.
The advantage of this is that all the details of how the collection are
implemented, such as lazy deserialization of partial type streams, is
completely transparent and you can just treat any collection of types the
same regardless of where it came from.
Differential Revision: https://reviews.llvm.org/D33293
llvm-svn: 303388
1) Until now I'd never seen a valid PDB where the DBI stream and
the PDB Stream disagreed on the "Age" field. Because of that,
we had code to assert that they matched. Recently though I was
given a PDB where they disagreed, so this assumption has proven
to be incorrect. Remove this check.
2) We were walking the entire list of hash values for types up front
and then throwing away the values. For large PDBs this was a
significant slow down. Remove this.
With this patch, I can dump the list of all compilands from a
1.5GB PDB file in just a few seconds.
llvm-svn: 303351
Summary:
llvm-pdbdump yaml2pdb used to fail with a misleading error
message ("An I/O error occurred on the file system") if no output file
was specified. This change adds an assert to PDBFileBuilder to check
that an output file name is specified, and makes llvm-pdbdump generate
an output file name based on the input file name if no output file
name is explicitly specified.
Reviewers: amccarth, zturner
Reviewed By: zturner
Subscribers: fhahn, llvm-commits
Differential Revision: https://reviews.llvm.org/D33296
llvm-svn: 303299
There is often a lot of boilerplate code required to visit a type
record or type stream. The #1 use case is that you have a sequence
of bytes that represent one or more records, and you want to
deserialize each one, switch on it, and call a callback with the
deserialized record that the user can examine. Currently this
requires at least 6 lines of code:
codeview::TypeVisitorCallbackPipeline Pipeline;
Pipeline.addCallbackToPipeline(Deserializer);
Pipeline.addCallbackToPipeline(MyCallbacks);
codeview::CVTypeVisitor Visitor(Pipeline);
consumeError(Visitor.visitTypeRecord(Record));
With this patch, it becomes one line of code:
consumeError(codeview::visitTypeRecord(Record, MyCallbacks));
This is done by having the deserialization happen internally inside
of the visitTypeRecord function. Since this is occasionally not
desirable, the function provides a 3rd parameter that can be used
to change this behavior.
Hopefully this can significantly reduce the barrier to entry
to using the visitation infrastructure.
Differential Revision: https://reviews.llvm.org/D33245
llvm-svn: 303271
This adds a visitor that is capable of accessing type
records randomly and caching intermediate results that it
learns about during partial linear scans. This yields
amortized O(1) access to a type stream even though type
streams cannot normally be indexed.
Differential Revision: https://reviews.llvm.org/D33009
llvm-svn: 302936
Verifying the hash values as we are currently doing
results in iterating every type record before the user
even tries to access the first one, and the API user
has no control over, or ability to hook into this
process.
As a result, when the user wants to iterate over types
to print them or index them, this results in a second
iteration over the same list of types. When there's
upwards of 1,000,000 type records, this is obviously
quite undesirable.
This patch raises the verification outside of TpiStream
, and llvm-pdbdump hooks a hash verification visitor
into the normal dumping process. So we still verify
the hash records, but we can do it while not requiring
a second iteration over the type stream.
Differential Revision: https://reviews.llvm.org/D32873
llvm-svn: 302206
I tried to run llvm-pdbdump on a very large (~1.5GB) PDB to
try and identify show-stopping performance problems. This
patch addresses the first such problem.
When loading the DBI stream, before anyone has even tried to
access a single record, we build an in memory map of every
source file for every module. In the particular PDB I was
using, this was over 85 million files. Specifically, the
complexity is O(m*n) where m is the number of modules and
n is the average number of source files (including headers)
per module.
The whole reason for doing this was so that we could have
constant time access to any module and any of its source
file lists. However, we can still get O(1) access to the
source file list for a given module with a simple O(m)
precomputation, and access to the list of modules is
already O(1) anyway.
So this patches reduces the O(m*n) up-front precomputation
to an O(m) one, where n is ~6,500 and n*m is about 85 million
in my pathological test case.
Differential Revision: https://reviews.llvm.org/D32870
llvm-svn: 302205
llvm-readobj hand rolls some CodeView parsing code for string
tables, so this patch updates it to re-use some of the newly
introduced parsing code in LLVMDebugInfoCodeView.
Differential Revision: https://reviews.llvm.org/D32772
llvm-svn: 302052
This was reverted due to a "missing" file, but in reality
what happened was that I renamed a file, and then due to
a merge conflict both the old file and the new file got
added to the repository. This led to an unused cpp file
being in the repo and not referenced by any CMakeLists.txt
but #including a .h file that wasn't in the repo. In an
even more unfortunate coincidence, CMake didn't report the
unused cpp file because it was in a subdirectory of the
folder with the CMakeLists.txt, and not in the same directory
as any CMakeLists.txt.
The presence of the unused file was then breaking certain
tools that determine file lists by globbing rather than
by what's specified in CMakeLists.txt
In any case, the fix is to just remove the unused file from
the patch set.
llvm-svn: 302042
The patch is failing to add StringTableStreamBuilder.h, but that isn't
even discovered because the corresponding StringTableStreamBuilder.cpp
isn't added to any CMakeLists.txt file and thus never built. I think
this patch is just incomplete.
llvm-svn: 302002
This was reported by the ASAN bot, and it turned out to be
a fairly fundamental problem with the design of VarStreamArray
and the way it passes context information to the extractor.
The fix was cumbersome, and I'm not entirely pleased with it,
so I plan to revisit this design in the future when I'm not
pressed to get the bots green again. For now, this fixes
the issue by storing the context information by value instead
of by reference, and introduces some impossibly-confusing
template magic to make things "work".
llvm-svn: 301999
Previously we had knowledge of how to serialize and deserialize
a string table inside of DebugInfo/PDB, but the string table
that it serializes contains a piece that is actually considered
CodeView and can appear outside of a PDB. We already have logic
in llvm-readobj and MCCodeView to read and write this format,
so it doesn't make sense to duplicate the logic in DebugInfoPDB
as well.
This patch makes codeview::StringTable (for writing) and
codeview::StringTableRef (for reading), updates DebugInfoPDB
to use these classes for its own writing, and updates llvm-readobj
to additionally use StringTableRef for reading.
It's a bit more difficult to get MCCodeView to use this for
writing, but it's a logical next step.
llvm-svn: 301986
With the forthcoming codeview::StringTable which a pdb::StringTable
would hold an instance of as one member, this ambiguity becomes
confusing. Rename to PDBStringTable to avoid this.
llvm-svn: 301948
Previously we wrote line information and file checksum
information, but we did not write information about inlinee
lines and functions. This patch adds support for that.
llvm-svn: 301936
In preparation for introducing writing capabilities for each of
these classes, I would like to adopt a Foo / FooRef naming
convention, where Foo indicates that the class can manipulate and
serialize Foos, and FooRef indicates that it is an immutable view of
an existing Foo. In other words, Foo is a writer and FooRef is a
reader. This patch names some existing readers to conform to the
FooRef convention, while offering no functional change.
llvm-svn: 301810
There is a lot of duplicate code for printing line info between
YAML and the raw output printer. This introduces a base class
that can be shared between the two, and makes some minor
cleanups in the process.
llvm-svn: 301728
The llvm-readobj parsing code currently exists in our CodeView
library, so we use that to parse instead of re-writing the logic
in the tool.
llvm-svn: 301718
Previously parsing of these were all grouped together into a
single master class that could parse any type of debug info
fragment.
With writing forthcoming, the complexity of each individual
fragment is enough to warrant them having their own classes so
that reading and writing of each fragment type can be grouped
together, but isolated from the code for reading and writing
other fragment types.
In doing so, I found a place where parsing code was duplicated
for the FileChecksums fragment, across llvm-readobj and the
CodeView library, and one of the implementations had a bug.
Now that the codepaths are merged, the bug is resolved.
Differential Revision: https://reviews.llvm.org/D32547
llvm-svn: 301557
We have a lot of very similarly named classes related to
dealing with module debug info. This patch has NFC, it just
renames some classes to be more descriptive (albeit slightly
more to type). The mapping from old to new class names is as
follows:
Old | New
ModInfo | DbiModuleDescriptor
ModuleSubstream | ModuleDebugFragment
ModStream | ModuleDebugStream
With the corresponding Builder classes renamed accordingly.
Differential Revision: https://reviews.llvm.org/D32506
llvm-svn: 301555
We were already parsing and dumping this to the human readable
format, but not to the YAML format. This does so, in preparation
for reading it in and reconstructing the line information from
YAML.
llvm-svn: 301357
This reworks the way virtual bases are handled, and also the way
padding is detected across multiple levels of aggregates, producing
a much more accurate result.
llvm-svn: 301203
In a followup patch I intend to introduce an additional dumping
mode which dumps a graphical representation of a class's layout.
In preparation for this, the text-based layout printer needs to
be split out from the graphical layout printer, and both need
to be able to use the same code for printing the intro and outro
of a class's definition (e.g. base class list, etc).
This patch does so, and in the process introduces a skeleton
definition for the graphical printer, while currently making
the graphical printer just print nothing.
NFC
llvm-svn: 300134
Previously the dumping of class definitions was very primitive,
and it made it hard to do more than the most trivial of output
formats when dumping. As such, we would only dump one line for
each field, and then dump non-layout items like nested types
and enums.
With this patch, we do a complete analysis of the object
hierarchy including aggregate types, bases, virtual bases,
vftable analysis, etc. The only immediately visible effects
of this are that a) we can now dump a line for the vfptr where
before we would treat that as padding, and b) we now don't
treat virtual bases that come at the end of a class as padding
since we have a more detailed analysis of the class's storage
usage.
In subsequent patches, we should be able to use this analysis
to display a complete graphical view of a class's layout including
recursing arbitrarily deep into an object's base class / aggregate
member hierarchy.
llvm-svn: 300133
Summary:
This lets PDB readers lookup type record data by type index in O(log n)
time. It also enables makes `cvdump -t` work on PDBs produced by LLD.
cvdump will not dump a PDB that doesn't have an index-to-offset table.
The table is sorted by type index, and has an entry every 8KB. Looking
up a type record by index is a binary search of this table, followed by
a scan of at most 8KB.
Reviewers: ruiu, zturner, inglorion
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31636
llvm-svn: 299958
* Adds support for pointers to arrays, which was missing
* Adds some tests
* Improves consistency of const and volatile qualifiers
* Eliminates non-composable special case code for arrays and function by using
a more general recursive approach
* Has a hack for getting the calling convention into the right spot for
pointer-to-functions
Given the rapid changes happenning in llvm-pdbdump, this may be difficult to
merge.
Differential Revision: https://reviews.llvm.org/D31832
llvm-svn: 299848
1. Added some asserts to make sure concrete symbol types don't
get constructed with RawSymbols that have an incompatible
SymTag enum value.
2. Added new forwarding macros that auto-define an Id/Sym method
pair whenever there is a method that returns a SymIndexId.
Previously we would just provide one method that returned only
the SymIndexId and it was up to the caller to use the Session
object to get a pointer to the symbol. Now we automatically
get both the method that returns the Id, as well as a method
that returns the pointer directly with just one macro.
3. Added some methods for dumping straight to stdout that can
be used from inside the debugger for diagnostics during a
debug session.
4. Added a clone() method and a cast<T>() method to PDBSymbol
that can shorten some usage patterns.
llvm-svn: 299831
Summary:
The TypeTableBuilder provides stable storage for type records. We don't
need to copy all of the bytes into a flat vector before adding it to the
TpiStreamBuilder.
This makes addTypeRecord take an ArrayRef<uint8_t> and a hash code to go
with it, which seems like a simplification.
Reviewers: ruiu, zturner, inglorion
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31634
llvm-svn: 299406
This should work on all platforms now that r299006 has landed. Tested locally
on Windows and Linux.
This moves exe symbol-specific method implementations out of NativeRawSymbol
into a concrete subclass. Also adds implementations for hasCTypes and
hasPrivateSymbols and a simple test to ensure the native reader can access the
summary information for the executable from the PDB.
Original Differential Revision: https://reviews.llvm.org/D31059
llvm-svn: 299019
Reverting until I can figure out the root cause.
Revert "Re-land: Make NativeExeSymbol a concrete subclass of NativeRawSymbol [PDB]"
This reverts commit f461a70cc376f0f91c8b4917be79479cc86330a5.
llvm-svn: 298626
The new test should pass on all platforms now that llvm-pdbdump has the
`-color-output` option.
This moves exe symbol-specific method implementations out of NativeRawSymbol
into a concrete subclass. Also adds implementations for hasCTypes and
hasPrivateSymbols and a simple test to ensure the native reader can access
the summary information for the executable from the PDB.
Original Differential Revision: https://reviews.llvm.org/D31059
llvm-svn: 298623
This moves exe symbol-specific method implementations out of NativeRawSymbol
into a concrete subclass. Also adds implementations for hasCTypes and
hasPrivateSymbols and a simple test to ensure the native reader can access
the summary information for the executable from the PDB.
Differential Revision: https://reviews.llvm.org/D31059
llvm-svn: 298005
This was discovered when running `llvm-pdbdump diff` against
two files, the second of which was generated by running the
first one through pdb2yaml and then yaml2pdb.
The second one was missing some bytes from the PDB Stream, and
tracking this down showed that at the end of the PDB Stream were
some additional bytes that we were ignoring. Looking back
to the reference code, these seem to specify some additional
flags that indicate whether the PDB supports various optional
features.
This patch adds support for reading, writing, and round-tripping
these flags through YAML and the raw dumper, and updates the
tests accordingly.
llvm-svn: 297984
In doing so I discovered that we completely ignore some bytes
of the PDB Stream after we "finish" loading it. These bytes
seem to specify some additional information about what kind
of data is present in the PDB. A subsequent patch will add
code to read in those fields and store their values.
llvm-svn: 297983
Previously we did not have support for writing detailed
module information for each module, as well as the symbol
records. This patch adds support for this, and in doing
so enables the ability to construct minimal PDBs from
just a few lines of YAML. A test is added to illustrate
this functionality.
llvm-svn: 297900
Together, these allow lldb-pdbdump to list all the modules from a PDB using a
native reader (rather than DIA).
Note that I'll probably be specializing NativeRawSymbol in a subsequent patch.
Differential Revision: https://reviews.llvm.org/D30956
llvm-svn: 297883
After several smaller patches to get most of the core improvements
finished up, this patch is a straight move and header fixup of
the source.
Differential Revision: https://reviews.llvm.org/D30266
llvm-svn: 296810
Before the endianness was specified on each call to read
or write of the StreamReader / StreamWriter, but in practice
it's extremely rare for streams to have data encoded in
multiple different endiannesses, so we should optimize for the
99% use case.
This makes the code cleaner and more general, but otherwise
has NFC.
llvm-svn: 296415
This was reverted because it was breaking some builds, and
because of incorrect error code usage. Since the CL was
large and contained many different things, I'm resubmitting
it in pieces.
This portion is NFC, and consists of:
1) Renaming classes to follow a consistent naming convention.
2) Fixing the const-ness of the interface methods.
3) Adding detailed doxygen comments.
4) Fixing a few instances of passing `const BinaryStream& X`. These
are now passed as `BinaryStreamRef X`.
llvm-svn: 296394
r296215, "[PDB] General improvements to Stream library."
r296217, "Disable BinaryStreamTest.StreamReaderObject temporarily."
r296220, "Re-enable BinaryStreamTest.StreamReaderObject."
r296244, "[PDB] Disable some tests that are breaking bots."
r296249, "Add static_cast to silence -Wc++11-narrowing."
std::errc::no_buffer_space should be used for OS-oriented errors for socket transmission.
(Seek discussions around llvm/xray.)
I could substitute s/no_buffer_space/others/g, but I revert whole them ATM.
Could we define and use LLVM errors there?
llvm-svn: 296258
This adds various new functionality and cleanup surrounding the
use of the Stream library. Major changes include:
* Renaming of all classes for more consistency / meaningfulness
* Addition of some new methods for reading multiple values at once.
* Full suite of unit tests for reader / writer functionality.
* Full set of doxygen comments for all classes.
* Streams now store their own endianness.
* Fixed some bugs in a few of the classes that were discovered
by the unit tests.
llvm-svn: 296215
This is part of a larger effort to get the Stream code moved
up to Support. I don't want to do it in one large patch, in
part because the changes are so big that it will treat everything
as file deletions and add, losing history in the process.
Aside from that though, it's just a good idea in general to
make small changes.
So this change only changes the names of the Stream related
source files, and applies necessary source fix ups.
llvm-svn: 296211
This allows the ability to call IPDBSession::getGlobalScope with a NativeSession and
to then query it for some basic fields from the PDB's InfoStream.
Note that the symbols now have non-const references back to the Session so that
NativeRawSymbol can access the PDBFile through the Session.
Differential Revision: https://reviews.llvm.org/D30314
llvm-svn: 296049
Some PDBs or object files can contain references to other PDBs
where the real type information lives. When this happens,
all type indices in the original PDB are meaningless because
their records are not there.
With this patch we add the ability to pull type info from those
secondary PDBs.
Differential Revision: https://reviews.llvm.org/D29973
llvm-svn: 295382
This is a stub for a new concrete implementation of IPDBRawSymbol.
Nothing uses this uses this implementation yet. My plan is to
locally switch lldb-pdbdump from the DIA reader to the Native one
and flesh out the implementations of these method stubs in the order
they're needed.
llvm-svn: 294633
This is not a list of pairs, it is a hash table data structure. We now
correctly parse this out and dump it from llvm-pdbdump.
We still need to understand the conditions that lead to a type
getting an entry in the hash adjuster table. That will be done
in a followup investigation / patch.
Differential Revision: https://reviews.llvm.org/D29090
llvm-svn: 293090
While the builder pattern has proven useful for certain other
larger types, in this case it was hampering the ability to use
the data structure, as for runtime access we need a map that
we can efficiently read from and write to. So the two are merged
into a single data structure that can efficiently be read to,
written from, deserialized from bytes, and serialized to bytes.
llvm-svn: 292664
This was being parsed / serialized ad-hoc inside the code
for a specific PDB stream. But this data structure is used
in multiple ways / places within the PDB format. To be able
to re-use it we need to raise this code out and make it more
generic. In doing so, a number of bugs are fixed in the
original implementation, and support is added for growing
the hash table and deleting items from the hash table,
which had either been omitted or incorrect implemented in
the initial version.
Differential Revision: https://reviews.llvm.org/D28715
llvm-svn: 292535
This patch adds a new class NameHashTableBuilder which creates /names streams.
This patch contains a test to confirm that a stream created by
NameHashTableBuilder can be read by NameHashTable reader class.
Differential Revision: https://reviews.llvm.org/D28707
llvm-svn: 292040
Add an explicit LLVM_ENABLE_DIA_SDK option to control building support
for DIA SDK-based debugging. Control its value to match whether DIA SDK
support was found and expose it in LLVMConfig (alike LLVM_ENABLE_ZLIB).
Its value is needed for LLDB to determine whether to run tests requiring
DIA support. Currently it is obtained from llvm/Config/config.h;
however, this file is not available for standalone builds. Following
this change, LLDB will be modified to use the value from LLVMConfig.
Differential Revision: https://reviews.llvm.org/D26255
llvm-svn: 290818
Long is not the same size across a number of the platforms we support.
Use unsigned int here instead, it is more appropriate because
overflow/wrap-around is possible and, in this case, expected.
llvm-svn: 290068
Summary: The code we use to read PDBs assumed that streams we ask it to read exist, and would read memory outside a vector and crash if this wasn't the case. This would, for example, cause llvm-pdbdump to crash on PDBs generated by lld. This patch handles such cases more gracefully: the PDB reading code in LLVM now reports errors when asked to get a stream that is not present, and llvm-pdbdump will report missing streams and continue processing streams that are present.
Reviewers: ruiu, zturner
Subscribers: thakis, amccarth
Differential Revision: https://reviews.llvm.org/D27325
llvm-svn: 288722
PDBFileBuilder supports two different ways to create files.
One is PDBFileBuilder::commit. That function takes a filename
and write a result to the file. The other is PDBFileBuilder::build.
That returns a new PDBFile object.
This patch removes the latter because no one is using it and
in a real life situation we are very unlikely to need it.
Even if you need it, it'd be easy to write a new PDB to a memory
buffer and read it back.
Removing PDBFileBuilder::build enables us to remove other classes
build transitively.
Differential Revision: https://reviews.llvm.org/D26987
llvm-svn: 287697
This is required by DbiStream, but DbiStreamBuilder didn't align
these substreams, so the output of DbiSTreamBuilder couldn't be
read by DbiStream.
Test will be added to LLD.
llvm-svn: 287067
These numbers are intended to be capped at 65535, but
`std::max<uint16_t>(UINT16_MAX, N)` always returns N for any N because
the expression is the same as `std::max((uint16_t)UINT16_MAX, (uint16_t)N)`.
llvm-svn: 287060
This patch defines a new function to add a SectionContribs stream
to a PDB file. Unlike SectionMap, SectionContribs contains a list
of input sections as opposed to output sections.
Note that this patch needs improving because currently we do not
set Module field in SectionContribs entries. In a follow-up patch,
I'll add Modules and then fix it after that.
Differential Revision: https://reviews.llvm.org/D26210
llvm-svn: 286677
This change enables LLD to construct a Section Map stream in a PDB file.
I do not understand all these fields in the Section Map yet, but it seems
like a copy of a COFF section header in another format.
With this patch, DbiStreamBuilder can emit a Section Map which
llvm-pdbdump can dump.
Differential Revision: https://reviews.llvm.org/D26112
llvm-svn: 285606
Summary: This adds support for dumping the globals stream from PDB files using llvm-pdbdump, similar to the support we have for the publics stream.
Reviewers: ruiu, zturner
Subscribers: beanz, mgorny, modocache
Differential Revision: https://reviews.llvm.org/D25801
llvm-svn: 284861
This is just a quick utility handy for getting rough summaries of types
in a given object or dwo file. I've been using it to investigate the
amount of type info redundancy across a project build, for example.
llvm-svn: 284537
The previous commit was failing because we filled empty slots of
the debug stream index with kInvalidStreamIndex. It should've been 0.
llvm-svn: 283925
Previously, there is no way to create a stream other than pre-defined
special stream such as DBI or IPI. This patch adds a new method,
addDbgStream, to add a debug stream to a PDB file.
Differential Revision: https://reviews.llvm.org/D25356
llvm-svn: 283823
This is the first step towards round-tripping symbol information,
and thusly being able to write symbol information to a PDB.
This patch writes the symbol information for each compiland to
the Yaml when running in pdb2yaml mode. There's still some loose
ends, such as what to do about relocations (necessary in order to
print linkage names), how to print enums with friendly names, and
how to give the dumper access to the StringTable, but this is a
good first start.
llvm-svn: 283641
When we create a PDB file using PDBFileBuilder, the information
in the superblock, such as the size of the resulting file, is not
available.
Previously, PDBFileBuilder::initialize took a superblock assuming
that all the members of the struct are correct. That is useful when
you want to restore the exact information from a YAML file, but
that's probably the only use case in which that is useful.
When we are creating a PDB file on the fly, we have to backfill the
members.
This patch redefines PDBFileBuilder::initialize to take only a
block size. Now all the other members are left as default values,
so that they'll be updated when commit() is called.
Differential Revision: https://reviews.llvm.org/D25108
llvm-svn: 282944
WritableStream needs the exact file size to open a file, but
until we fix the final layout of a PDB file, we don't know the
size of the file.
This patch changes the parameter type of PDBFileBuilder::commit
to solve that chiecken-and-egg problem. Now the function opens
a file after fixing the layout, so it can create a file with the
exact size.
Differential Revision: https://reviews.llvm.org/D25107
llvm-svn: 282940
The IPI stream is structurally identical to the TPI stream, but it
contains different record types. So we just re-use the TPI writing
code.
llvm-svn: 281638
We were inadvertently adding the size of the hash value stream to
the size of the TPI stream, even though the hash value stream is
an entirely separate stream.
llvm-svn: 281636
The `CVType` had two redundant fields which were confusing and
error-prone to fill out. By treating member records as a distinct
type from leaf records, we are able to simplify this quite a bit.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D24432
llvm-svn: 281556
This completes being able to write all the interesting
values of a PDB TPI stream.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D24370
llvm-svn: 281555
This simplifies a lot of code, and will actually be necessary for
an upcoming patch to serialize TPI record hash values.
The idea before was that visitors should be examining records, not
modifying them. But this is no longer true with a visitor that
constructs a CVRecord from Yaml. To handle this until now, we
were doing some fixups on CVRecord objects at a higher level, but
the code is really awkward, and it makes sense to just have the
visitor write the bytes into the CVRecord. In doing so I uncovered
a few bugs related to `Data` and `RawData` and fixed those.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D24362
llvm-svn: 281067
This writes the full sequence of type records described in
Yaml to the TPI stream of the PDB file.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D24316
llvm-svn: 281063
Previously we were assuming that any visitation of types would
necessarily be against a type we had binary data for. Reasonable
assumption when were just reading PDBs and dumping them, but once
we start writing PDBs from Yaml this breaks down, because we have
no binary data yet, only Yaml, and from that we need to read the
record kind and perform the switch based on that.
So this patch does that. Instead of having the visitor switch
on the kind that is already in the CVType record, we change the
visitTypeBegin() method to return the Kind, and switch on the
returned value. This way, the default implementation can still
return the value from the CVType, but the implementation which
visits Yaml records and serializes binary PDB type records can
use the field in the Yaml as the source of the switch.
llvm-svn: 280307
We were kind of hacking this together before by embedding the
ability to forward requests into the TypeDeserializer. When
we want to start adding more different kinds of visitor callback
interfaces though, this doesn't scale well and is very inflexible.
So introduce the notion of a pipeline, which itself implements
the TypeVisitorCallbacks interface, but which contains an internal
list of other callbacks to invoke in sequence.
Also update the existing uses of CVTypeVisitor to use this new
pipeline class for deserializing records before visiting them
with another visitor.
llvm-svn: 280293
Until now, our use case for the visitor has been to take a stream of bytes
representing a type stream, deserialize the records in sequence, and do
something with them, where "something" is determined by how the user
implements a particular set of callbacks on an abstract class.
For actually writing PDBs, however, we want to do the reverse. We have
some kind of description of the list of records in their in-memory format,
and we want to process each one. Perhaps by serializing them to a byte
stream, or perhaps by converting them from one description format (Yaml)
to another (in-memory representation).
This was difficult in the current model because deserialization and
invoking the callbacks were tightly coupled.
With this patch we change this so that TypeDeserializer is itself an
implementation of the particular set of callbacks. This decouples
deserialization from the iteration over a list of records and invocation
of the callbacks. TypeDeserializer is initialized with another
implementation of the callback interface, so that upon deserialization it
can pass the deserialized record through to the next set of callbacks. In
a sense this is like an implementation of the Decorator design pattern,
where the Deserializer is a decorator.
This will be useful for writing Pdbs from yaml, where we have a
description of the type records in Yaml format. In this case, the visitor
implementation would have each visitation callback method implemented in
such a way as to extract the proper set of fields from the Yaml, and it
could maintain state that builds up a list of these records. Finally at
the end we can pass this information through to another set of callbacks
which serializes them into a byte stream.
Reviewed By: majnemer, ruiu, rnk
Differential Revision: https://reviews.llvm.org/D23177
llvm-svn: 277871
pdbdump calls DbiStreamBuilder::commit through PDBFileBuilder::commit
without calling DbiStreamBuilder::finalize. Because `finalize` initializes
`Header` member, `Header` remained nullptr which caused a crash bug.
Differential Revision: https://reviews.llvm.org/D23143
llvm-svn: 277681
MappedBlockSTream can work with any sequence of block data where
the ordering is specified by a list of block numbers. So rather
than manually stitch them together in the case of the FPM, reuse
this functionality so that we can treat the FPM as if it were
contiguous.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D23066
llvm-svn: 277609
The FPM is split at regular intervals across the MSF file, as the MS code
suggests. It turns out that the value of the interval is precisely the
block size. If the block size is 4096, then there are two Fpm pages every
4096 blocks.
So here we teach the PDBFile class to parse a split FPM, and also add more
options when dumping the FPM to display some additional information such
as orphaned pages (pages which the FPM says are allocated, but which
nothing appears to use), use after free pages (pages which the FPM says
are not allocated, but which are referenced by a stream), and multiple use
pages (pages which the FPM says are allocated but are used more than
once).
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D23022
llvm-svn: 277388
Previously this change was submitted from a Windows machine, so
changes made to the case of filenames and directory names did
not survive the commit, and as a result the CMake source file
names and the on-disk file names did not match on case-sensitive
file systems.
I'm resubmitting this patch from a Linux system, which hopefully
allows the case changes to make it through unfettered.
llvm-svn: 277213
In a previous patch, it was suggested to use all caps instead of
rolling caps for initialisms, so this patch changes everything
to do this.
llvm-svn: 277190
This was a pure virtual base class whose purpose was to abstract
away the notion of how you retrieve the layout of a discontiguous
stream of blocks in an Msf file. This led to too many layers of
abstraction making it difficult to figure out what was going on
and extend things. Ultimately, a stream's layout is decided by
its length and the array of block numbers that it lives on. So
rather than have an abstract base class which can return this in
any number of ways, it's more straightforward to simply store them
as fields of a trivial struct, and also to give a more appropriate
name.
This patch does that. It renames IMsfStreamData to MsfStreamLayout,
and deletes the 2 concrete implementations, DirectoryStreamData
and IndexedStreamData. MsfStreamLayout is a trivial struct
with the necessary data.
llvm-svn: 277018
Previously it was storing all the fields of an msf::Layout as
separate members. This is a trivial cleanup to make it store
an msf::Layout directly. This makes the code more readable
since it becomes clear which fields of PDBFile are actually the
msf specific layout information in a sea of other bookkeeping
fields.
llvm-svn: 276460
This makes it easier to have the writable and readable PDB
interfaces share code since the read/write and write-only
interfaces now share a single allocator, you don't have to worry
about a builder building a read only interface and then having
the read-only interface's data become corrupt when the builder
goes out of scope. Now the allocator is specified explicitly
to all constructors, so all interfaces can share a single allocator
that is scoped appropriately.
llvm-svn: 276459
This provides a better layering of responsibilities among different
aspects of PDB writing code. Some of the MSF related code was
contained in CodeView, and some was in PDB prior to this. Further,
we were often saying PDB when we meant MSF, and the two are
actually independent of each other since in theory you can have
other types of data besides PDB data in an MSF. So, this patch
separates the MSF specific code into its own library, with no
dependencies on anything else, and DebugInfoCodeView and
DebugInfoPDB take dependencies on DebugInfoMsf.
llvm-svn: 276458
This facilitates code reuse between the builder classes and the
"frozen" read only versions of the classes used for parsing
existing PDB files.
llvm-svn: 276427
This implements support for writing compiland and compiland source
file info to a binary PDB. This is tested by adding support for
dumping these fields from an existing PDB to yaml, reading them
back in, and dumping them again and verifying the values are as
expected.
llvm-svn: 276426
Block 1 and 2 of an MSF file are bit vectors that represent the
list of blocks allocated and free in the file. We had been using
these blocks to write stream data and other data, so we mark them
as the free page map now. We don't yet serialize these pages to
the disk, but at least we make a note of what it is, and avoid
writing random data to them.
Doing this also necessitated cleaning up some of the tests to be
more general and hardcode fewer values, which is nice.
llvm-svn: 275629
Previously we would read a PDB, then write some of it back out,
but write the directory, super block, and other pertinent metadata
back out unchanged. This generates incorrect PDBs since the amount
of data written was not always the same as the amount of data read.
This patch changes things to use the newly introduced `MsfBuilder`
class to write out a correct and accurate set of Msf metadata for
the data *actually* written, which opens up the door for adding and
removing type records, symbol records, and other types of data to
an existing PDB.
llvm-svn: 275627
Some abstractions in LLVM "know" that they are reading in-bounds,
FixedStreamArray, and provide a simple result. This breaks down if the
stream map is bogus.
llvm-svn: 275010
This issue was encountered on libcmt.pdb, which has a type record that
looks like this:
Struct (0x1094) {
TypeLeafKind: LF_STRUCTURE (0x1505)
MemberCount: 3
Properties [ (0x200)
HasUniqueName (0x200)
]
FieldList: <field list> (0x1093)
DerivedFrom: 0x0
VShape: 0x0
SizeOf: 4
Name: <unnamed-tag>
LinkageName: .?AU<unnamed-tag>@@
}
The checks for startswith/endswith "<unnamed-tag>" should look at the
display name, not the linkage name.
llvm-svn: 274376
Somehow all the functionality to write PDB files got removed,
probably accidentally when uploading the patch perhaps the wrong
one got uploaded. This re-adds all the code, as well as the
corresponding test.
llvm-svn: 274248
This allows better catching of compiler errors since we can use
the override keyword to verify that methods are actually
overridden.
Also in this patch I've changed from storing a boolean Error
code everywhere to returning an llvm::Error, to propagate richer
error information up the call stack.
Reviewed By: ruiu, rnk
Differential Revision: http://reviews.llvm.org/D21410
llvm-svn: 272926
Both parameters to visitTypeBegin are actually members of CVRecord,
so we can just pass CVRecord instead of destructuring it.
Differential Revision: http://reviews.llvm.org/D21435
llvm-svn: 272899
This reverts commit 879139e1c6577b09df52de56a6bab856a19ed185.
This was committed accidentally when I blindly typed git svn
dcommit instead of the command to generate a patch.
llvm-svn: 272693
This fixes an alignment issue by forcing all cached allocations
to be 8 byte aligned, and also fixes an issue arising on big
endian systems by writing ulittle32_t's instead of uint32_t's
in the test.
llvm-svn: 272437
This is the next step towards being able to write PDBs.
MemoryBuffer is immutable, and StreamInterface is our replacement
which can be any combination of read-only, read-write, or write-only
depending on the particular implementation.
The one place where we were creating a PDBFile (in RawSession) is
updated to subclass ByteStream with a simple adapter that holds
a MemoryBuffer, and initializes the superclass with the buffer's
array, so that all the functionality of ByteStream works
transparently.
llvm-svn: 272370
This adds method and tests for writing to a PDB stream. With
this, even a PDB stream which is discontiguous can be treated
as a sequential stream of bytes for the purposes of writing.
Reviewed By: ruiu
Differential Revision: http://reviews.llvm.org/D21157
llvm-svn: 272369
TPI hash table contains a parallel array for the type records.
For each type record R, a hash value is calculated by `H(R) % NumBuckets`
where H is a hash function, and the result is stored to a bucket element.
H is TPI1::hashPrec function in microsoft-pdb repository.
Our hash function does not support all type record types yet.
Currently it supports only records for line number.
I'll extend it in a follow up patch.
The aim of verify the hash table is not only detect corrupted files.
It ensures that our understanding of how the hash values are calculated
is correct.
llvm-svn: 272229
In order to efficiently write PDBs, we need to be able to make a
StreamWriter class similar to a StreamReader, which can transparently deal
with writing to discontiguous streams, and we need to use this for all
writing, similar to how we use StreamReader for all reading.
Most discontiguous streams are the typical numbered streams that appear in
a PDB file and are described by the directory, but the exception to this,
that until now has been parsed by hand, is the directory itself.
MappedBlockStream works by querying the directory to find out which blocks
a stream occupies and various other things, so naturally the same logic
could not possibly work to describe the blocks that the directory itself
resided on.
To solve this, I've introduced an abstraction IPDBStreamData, which allows
the client to query for the list of blocks occupied by the stream, as well
as the stream length. I provide two implementations of this: one which
queries the directory (for indexed streams), and one which queries the
super block (for the directory stream).
This has the side benefit of vastly simplifying the code to parse the
directory. Whereas before a mini state machine was rolled by hand, now we
simply use FixedStreamArray to read out the stream sizes, then build a
vector of FixedStreamArrays for the stream map, all in just a few lines of
code.
Reviewed By: ruiu
Differential Revision: http://reviews.llvm.org/D21046
llvm-svn: 271982
The data strucutre in the new FPO stream is described in the
PE/COFF spec. There is one record per function if frame pointer
is omitted.
Differential Revision: http://reviews.llvm.org/D20999
llvm-svn: 271926
When printing line information and file checksums, we were printing
the file offset field from the struct header. This teaches
llvm-pdbdump how to turn those numbers into the filename. In the
case of file checksums, this is done by looking in the global
string table. In the case of line contributions, this is done
by indexing into the file names buffer of the DBI stream. Why
they use a different technique I don't know.
llvm-svn: 271630
To facilitate this, a couple of changes had to be made:
1. `ModuleSubstream` got moved from `DebugInfo/PDB` to
`DebugInfo/CodeView`, and various codeview related types are defined
there. It turns out `DebugInfo/CodeView/Line.h` already defines many of
these structures, but this is really old code that is not endian aware,
doesn't interact well with `StreamInterface` and not very helpful for
getting stuff out of a PDB. Eventually we should migrate the old readobj
`COFFDumper` code to these new structures, or at least merge their
functionality somehow.
2. A `ModuleSubstream` visitor is introduced. Depending on where your
module substream array comes from, different subsets of record types can
be expected. We are already hand parsing these substream arrays in many
places especially in `COFFDumper.cpp`. In the future we can migrate these
paths to the visitor as well, which should reduce a lot of code in
`COFFDumper.cpp`.
Differential Revision: http://reviews.llvm.org/D20936
Reviewed By: ruiu, majnemer
llvm-svn: 271621
This first pass only splits apart the records and dumps the line
info kinds and binary data. Subsequent patches will parse out
the binary data into more useful information and dump it in
detail.
llvm-svn: 271576
Unlike other sections that can grow to any size, the COFF section header
stream has maximum length because each record is fixed size and the COFF
file format limits the maximum number of sections. So I decided to not
create a specific stream class for it. Instead, I added a member function
to DbiStream class which returns a vector of COFF headers.
Differential Revision: http://reviews.llvm.org/D20717
llvm-svn: 271557
This converts remaining uses of ByteStream, which was still
left in the symbol stream and type stream, to using the new
StreamInterface zero-copy classes.
RecordIterator is finally deleted, so this is the only way left
now. Additionally, more error checking is added when iterating
the various streams.
With this, the transition to zero copy pdb access is complete.
llvm-svn: 271101
Due to differences in template instantiation rules, it is not
portable to static_assert(false) inside of an invalid specialization
of a template. Instead I just =delete the method so that it can't
be used, and leave a comment that it must be explicitly specialized.
llvm-svn: 271027
This reverts commit r271024 due to error: static_assert failed
"You must either provide a specialization of VarStreamArrayExtractor
or a custom extractor"
llvm-svn: 271026
This reduces the amount of memory used by llvm-pdbdump by roughly
1/3 of the size of the PDB file.
Differential Revision: http://reviews.llvm.org/D20724
Reviewed By: ruiu
llvm-svn: 271025