Commit Graph

117812 Commits

Author SHA1 Message Date
Bryan Chan bfd32d4377 [AArch64] Rename FP16FML instruction format (NFC)
Rename SIMDThreeSameMult (etc.) to SIMDThreeSameVectorFML (etc.) to follow
usual naming convention, and add some comments in the .td files.

llvm-svn: 345515
2018-10-29 17:27:34 +00:00
Stanislav Mekhanoshin 79080ecd82 [AMDGPU] Match v_swap_b32
Differential Revision: https://reviews.llvm.org/D52677

llvm-svn: 345514
2018-10-29 17:26:01 +00:00
Francis Visoiu Mistrih 61c9de7565 [X86] Enable the MachineVerifier by default
The machine verifier was disabled for x86 by default. There are now only
9 tests failing, compared to what previously was between 20 and 30.

This is a good opportunity to file bugs for all the remaining issues,
then explicitly disable the failing tests and enabling the machine
verifier by default.

This allows us to avoid adding new tests that break the verifier.

PR27481

llvm-svn: 345513
2018-10-29 16:57:43 +00:00
Leonard Chan 905abe5b5d [Intrinsic] Signed and Unsigned Saturation Subtraction Intirnsics
Add an intrinsic that takes 2 integers and perform saturation subtraction on
them.

This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.

Differential Revision: https://reviews.llvm.org/D53783

llvm-svn: 345512
2018-10-29 16:54:37 +00:00
Luke Cheeseman 71c989ae1f [AArch64] Return address signing B key support
- Add support to generate AUTIBSP, PACIBSP, RETAB instructions for return
  address signing
- The key used to sign the function is controlled by the function attribute
  "sign-return-address-key"

Differential Revision: https://reviews.llvm.org/D51427

llvm-svn: 345511
2018-10-29 16:26:58 +00:00
Robert Widmann 98640f8456 [LLVM-C] Add Builder Bindings to Common Memory Intrinsics
Summary: Add IRBuilder bindings for memmove, memcpy, and memset.

Reviewers: whitequark, deadalnix

Reviewed By: whitequark

Subscribers: harlanhaskins, llvm-commits

Differential Revision: https://reviews.llvm.org/D53555

llvm-svn: 345508
2018-10-29 15:31:40 +00:00
Craig Topper aa5eb2fbaa [X86] Force floating point values in constant pool decoding to print in scientific notation so they can't be confused with integers.
When the floating point constants are whole numbers they have no decimal point so look like integers, but mean something very different in something like an 'and' instruction.

Ideally we would just print a decimal point and a 0, but I couldn't see how to make APFloat::toString do that.

llvm-svn: 345488
2018-10-29 04:52:04 +00:00
Craig Topper 42aa87143d [X86] Recognize constant splats in LowerFCOPYSIGN.
llvm-svn: 345484
2018-10-28 23:51:35 +00:00
Saleem Abdulrasool ec77a6517f Revert "Revert "DebugInfo: reduce DIE range verification on object files""
This reverts commit 836c763dadbd9478fa35b1a291a38bf17aa206ba.  Default
initialize the values that MSAN caught.

llvm-svn: 345482
2018-10-28 22:30:48 +00:00
Craig Topper 7a18b4bc51 [SelectionDAG] Fix bad indentation. NFC
llvm-svn: 345481
2018-10-28 21:24:20 +00:00
Simon Pilgrim 3497d536f7 [TargetLowering] Move i64/vXi64 to f32/vXf32 UINT_TO_FP handling to TargetLowering::expandUINT_TO_FP.
llvm-svn: 345478
2018-10-28 15:34:35 +00:00
Simon Pilgrim 9b77f0c291 [VectorLegalizer] Enable TargetLowering::expandFP_TO_UINT support.
Add vector support to TargetLowering::expandFP_TO_UINT.

This exposes an issue in X86TargetLowering::LowerVSELECT which was assuming that the select mask was the same width as the LHS/RHS ops - as long as the result is a sign splat we can easily sext/trunk this.

llvm-svn: 345473
2018-10-28 13:07:25 +00:00
Craig Topper c4b785ae1e [DAGCombiner] Better constant vector support for FCOPYSIGN.
Enable constant folding when both operands are vectors of constants.

Turn into FNEG/FABS when the RHS is a splat constant vector.

llvm-svn: 345469
2018-10-28 01:32:49 +00:00
Renato Golin 53bd4f4832 Revert r344172: [LV] Add a new reduction pattern match
This patch has caused fast-math issues in the reduction pattern.

Will re-work and land again.

llvm-svn: 345465
2018-10-27 22:13:43 +00:00
Roman Lebedev a5baf86744 AMD BdVer2 (Piledriver) Initial Scheduler model
Summary:
# Overview
This is somewhat partial.
* Latencies are good {F7371125}
  * All of these remaining inconsistencies //appear// to be noise/noisy/flaky.
* NumMicroOps are somewhat good {F7371158}
  * Most of the remaining inconsistencies are from `Ld` / `Ld_ReadAfterLd` classes
* Actual unit occupation (pipes, `ResourceCycles`) are undiscovered lands, i did not really look there.
  They are basically verbatum copy from `btver2`
* Many `InstRW`. And there are still inconsistencies left...

To be noted:
I think this is the first new schedule profile produced with the new next-gen tools like llvm-exegesis!

# Benchmark
I realize that isn't what was suggested, but i'll start with some "internal" public real-world benchmark i understand - [[ https://github.com/darktable-org/rawspeed | RawSpeed raw image decoding library ]].
Diff (the exact clang from trunk without/with this patch):
```
Comparing /home/lebedevri/rawspeed/build-old/src/utilities/rsbench/rsbench to /home/lebedevri/rawspeed/build-new/src/utilities/rsbench/rsbench
Benchmark                                                                                        Time             CPU      Time Old      Time New       CPU Old       CPU New
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Canon/EOS 5D Mark II/09.canon.sraw1.cr2/threads:8/real_time_pvalue                             0.0000          0.0000      U Test, Repetitions: 25 vs 25
Canon/EOS 5D Mark II/09.canon.sraw1.cr2/threads:8/real_time_mean                              -0.0607         -0.0604           234           219           233           219
Canon/EOS 5D Mark II/09.canon.sraw1.cr2/threads:8/real_time_median                            -0.0630         -0.0626           233           219           233           219
Canon/EOS 5D Mark II/09.canon.sraw1.cr2/threads:8/real_time_stddev                            +0.2581         +0.2587             1             2             1             2
Canon/EOS 5D Mark II/10.canon.sraw2.cr2/threads:8/real_time_pvalue                             0.0000          0.0000      U Test, Repetitions: 25 vs 25
Canon/EOS 5D Mark II/10.canon.sraw2.cr2/threads:8/real_time_mean                              -0.0770         -0.0767           144           133           144           133
Canon/EOS 5D Mark II/10.canon.sraw2.cr2/threads:8/real_time_median                            -0.0767         -0.0763           144           133           144           133
Canon/EOS 5D Mark II/10.canon.sraw2.cr2/threads:8/real_time_stddev                            -0.4170         -0.4156             1             0             1             0
Canon/EOS 5DS/2K4A9927.CR2/threads:8/real_time_pvalue                                          0.0000          0.0000      U Test, Repetitions: 25 vs 25
Canon/EOS 5DS/2K4A9927.CR2/threads:8/real_time_mean                                           -0.0271         -0.0270           463           450           463           450
Canon/EOS 5DS/2K4A9927.CR2/threads:8/real_time_median                                         -0.0093         -0.0093           453           449           453           449
Canon/EOS 5DS/2K4A9927.CR2/threads:8/real_time_stddev                                         -0.7280         -0.7280            13             4            13             4
Canon/EOS 5DS/2K4A9928.CR2/threads:8/real_time_pvalue                                          0.0004          0.0004      U Test, Repetitions: 25 vs 25
Canon/EOS 5DS/2K4A9928.CR2/threads:8/real_time_mean                                           -0.0065         -0.0065           569           565           569           565
Canon/EOS 5DS/2K4A9928.CR2/threads:8/real_time_median                                         -0.0077         -0.0077           569           564           569           564
Canon/EOS 5DS/2K4A9928.CR2/threads:8/real_time_stddev                                         +1.0077         +1.0068             2             5             2             5
Canon/EOS 5DS/2K4A9929.CR2/threads:8/real_time_pvalue                                          0.0220          0.0199      U Test, Repetitions: 25 vs 25
Canon/EOS 5DS/2K4A9929.CR2/threads:8/real_time_mean                                           +0.0006         +0.0007           312           312           312           312
Canon/EOS 5DS/2K4A9929.CR2/threads:8/real_time_median                                         +0.0031         +0.0032           311           312           311           312
Canon/EOS 5DS/2K4A9929.CR2/threads:8/real_time_stddev                                         -0.7069         -0.7072             4             1             4             1
Canon/EOS 10D/CRW_7673.CRW/threads:8/real_time_pvalue                                          0.0004          0.0004      U Test, Repetitions: 25 vs 25
Canon/EOS 10D/CRW_7673.CRW/threads:8/real_time_mean                                           -0.0015         -0.0015           141           141           141           141
Canon/EOS 10D/CRW_7673.CRW/threads:8/real_time_median                                         -0.0010         -0.0011           141           141           141           141
Canon/EOS 10D/CRW_7673.CRW/threads:8/real_time_stddev                                         -0.1486         -0.1456             0             0             0             0
Canon/EOS 40D/_MG_0154.CR2/threads:8/real_time_pvalue                                          0.6139          0.8766      U Test, Repetitions: 25 vs 25
Canon/EOS 40D/_MG_0154.CR2/threads:8/real_time_mean                                           -0.0008         -0.0005            60            60            60            60
Canon/EOS 40D/_MG_0154.CR2/threads:8/real_time_median                                         -0.0006         -0.0002            60            60            60            60
Canon/EOS 40D/_MG_0154.CR2/threads:8/real_time_stddev                                         -0.1467         -0.1390             0             0             0             0
Canon/EOS 77D/IMG_4049.CR2/threads:8/real_time_pvalue                                          0.0137          0.0137      U Test, Repetitions: 25 vs 25
Canon/EOS 77D/IMG_4049.CR2/threads:8/real_time_mean                                           +0.0002         +0.0002           275           275           275           275
Canon/EOS 77D/IMG_4049.CR2/threads:8/real_time_median                                         -0.0015         -0.0014           275           275           275           275
Canon/EOS 77D/IMG_4049.CR2/threads:8/real_time_stddev                                         +3.3687         +3.3587             0             2             0             2
Canon/PowerShot G1/crw_1693.crw/threads:8/real_time_pvalue                                     0.4041          0.3933      U Test, Repetitions: 25 vs 25
Canon/PowerShot G1/crw_1693.crw/threads:8/real_time_mean                                      +0.0004         +0.0004            67            67            67            67
Canon/PowerShot G1/crw_1693.crw/threads:8/real_time_median                                    -0.0000         -0.0000            67            67            67            67
Canon/PowerShot G1/crw_1693.crw/threads:8/real_time_stddev                                    +0.1947         +0.1995             0             0             0             0
Fujifilm/GFX 50S/20170525_0037TEST.RAF/threads:8/real_time_pvalue                              0.0074          0.0001      U Test, Repetitions: 25 vs 25
Fujifilm/GFX 50S/20170525_0037TEST.RAF/threads:8/real_time_mean                               -0.0092         +0.0074           547           542            25            25
Fujifilm/GFX 50S/20170525_0037TEST.RAF/threads:8/real_time_median                             -0.0054         +0.0115           544           541            25            25
Fujifilm/GFX 50S/20170525_0037TEST.RAF/threads:8/real_time_stddev                             -0.4086         -0.3486             8             5             0             0
Fujifilm/X-Pro2/_DSF3051.RAF/threads:8/real_time_pvalue                                        0.3320          0.0000      U Test, Repetitions: 25 vs 25
Fujifilm/X-Pro2/_DSF3051.RAF/threads:8/real_time_mean                                         +0.0015         +0.0204           218           218            12            12
Fujifilm/X-Pro2/_DSF3051.RAF/threads:8/real_time_median                                       +0.0001         +0.0203           218           218            12            12
Fujifilm/X-Pro2/_DSF3051.RAF/threads:8/real_time_stddev                                       +0.2259         +0.2023             1             1             0             0
GoPro/HERO6 Black/GOPR9172.GPR/threads:8/real_time_pvalue                                      0.0000          0.0001      U Test, Repetitions: 25 vs 25
GoPro/HERO6 Black/GOPR9172.GPR/threads:8/real_time_mean                                       -0.0209         -0.0179            96            94            90            88
GoPro/HERO6 Black/GOPR9172.GPR/threads:8/real_time_median                                     -0.0182         -0.0155            95            93            90            88
GoPro/HERO6 Black/GOPR9172.GPR/threads:8/real_time_stddev                                     -0.6164         -0.2703             2             1             2             1
Kodak/DCS Pro 14nx/D7465857.DCR/threads:8/real_time_pvalue                                     0.0000          0.0000      U Test, Repetitions: 25 vs 25
Kodak/DCS Pro 14nx/D7465857.DCR/threads:8/real_time_mean                                      -0.0098         -0.0098           176           175           176           175
Kodak/DCS Pro 14nx/D7465857.DCR/threads:8/real_time_median                                    -0.0126         -0.0126           176           174           176           174
Kodak/DCS Pro 14nx/D7465857.DCR/threads:8/real_time_stddev                                    +6.9789         +6.9157             0             2             0             2
Nikon/D850/Nikon-D850-14bit-lossless-compressed.NEF/threads:8/real_time_pvalue                 0.0000          0.0000      U Test, Repetitions: 25 vs 25
Nikon/D850/Nikon-D850-14bit-lossless-compressed.NEF/threads:8/real_time_mean                  -0.0237         -0.0238           474           463           474           463
Nikon/D850/Nikon-D850-14bit-lossless-compressed.NEF/threads:8/real_time_median                -0.0267         -0.0267           473           461           473           461
Nikon/D850/Nikon-D850-14bit-lossless-compressed.NEF/threads:8/real_time_stddev                +0.7179         +0.7178             3             5             3             5
Olympus/E-M1MarkII/Olympus_EM1mk2__HIRES_50MP.ORF/threads:8/real_time_pvalue                   0.6837          0.6554      U Test, Repetitions: 25 vs 25
Olympus/E-M1MarkII/Olympus_EM1mk2__HIRES_50MP.ORF/threads:8/real_time_mean                    -0.0014         -0.0013          1375          1373          1375          1373
Olympus/E-M1MarkII/Olympus_EM1mk2__HIRES_50MP.ORF/threads:8/real_time_median                  +0.0018         +0.0019          1371          1374          1371          1374
Olympus/E-M1MarkII/Olympus_EM1mk2__HIRES_50MP.ORF/threads:8/real_time_stddev                  -0.7457         -0.7382            11             3            10             3
Panasonic/DC-G9/P1000476.RW2/threads:8/real_time_pvalue                                        0.0000          0.0000      U Test, Repetitions: 25 vs 25
Panasonic/DC-G9/P1000476.RW2/threads:8/real_time_mean                                         -0.0080         -0.0289            22            22            10            10
Panasonic/DC-G9/P1000476.RW2/threads:8/real_time_median                                       -0.0070         -0.0287            22            22            10            10
Panasonic/DC-G9/P1000476.RW2/threads:8/real_time_stddev                                       +1.0977         +0.6614             0             0             0             0
Panasonic/DC-GH5/_T012014.RW2/threads:8/real_time_pvalue                                       0.0000          0.0000      U Test, Repetitions: 25 vs 25
Panasonic/DC-GH5/_T012014.RW2/threads:8/real_time_mean                                        +0.0132         +0.0967            35            36            10            11
Panasonic/DC-GH5/_T012014.RW2/threads:8/real_time_median                                      +0.0132         +0.0956            35            36            10            11
Panasonic/DC-GH5/_T012014.RW2/threads:8/real_time_stddev                                      -0.0407         -0.1695             0             0             0             0
Panasonic/DC-GH5S/P1022085.RW2/threads:8/real_time_pvalue                                      0.0000          0.0000      U Test, Repetitions: 25 vs 25
Panasonic/DC-GH5S/P1022085.RW2/threads:8/real_time_mean                                       +0.0331         +0.1307            13            13             6             6
Panasonic/DC-GH5S/P1022085.RW2/threads:8/real_time_median                                     +0.0430         +0.1373            12            13             6             6
Panasonic/DC-GH5S/P1022085.RW2/threads:8/real_time_stddev                                     -0.9006         -0.8847             1             0             0             0
Pentax/645Z/IMGP2837.PEF/threads:8/real_time_pvalue                                            0.0016          0.0010      U Test, Repetitions: 25 vs 25
Pentax/645Z/IMGP2837.PEF/threads:8/real_time_mean                                             -0.0023         -0.0024           395           394           395           394
Pentax/645Z/IMGP2837.PEF/threads:8/real_time_median                                           -0.0029         -0.0030           395           394           395           393
Pentax/645Z/IMGP2837.PEF/threads:8/real_time_stddev                                           -0.0275         -0.0375             1             1             1             1
Phase One/P65/CF027310.IIQ/threads:8/real_time_pvalue                                          0.0232          0.0000      U Test, Repetitions: 25 vs 25
Phase One/P65/CF027310.IIQ/threads:8/real_time_mean                                           -0.0047         +0.0039           114           113            28            28
Phase One/P65/CF027310.IIQ/threads:8/real_time_median                                         -0.0050         +0.0037           114           113            28            28
Phase One/P65/CF027310.IIQ/threads:8/real_time_stddev                                         -0.0599         -0.2683             1             1             0             0
Samsung/NX1/2016-07-23-142101_sam_9364.srw/threads:8/real_time_pvalue                          0.0000          0.0000      U Test, Repetitions: 25 vs 25
Samsung/NX1/2016-07-23-142101_sam_9364.srw/threads:8/real_time_mean                           +0.0206         +0.0207           405           414           405           414
Samsung/NX1/2016-07-23-142101_sam_9364.srw/threads:8/real_time_median                         +0.0204         +0.0205           405           414           405           414
Samsung/NX1/2016-07-23-142101_sam_9364.srw/threads:8/real_time_stddev                         +0.2155         +0.2212             1             1             1             1
Samsung/NX30/2015-03-07-163604_sam_7204.srw/threads:8/real_time_pvalue                         0.0000          0.0000      U Test, Repetitions: 25 vs 25
Samsung/NX30/2015-03-07-163604_sam_7204.srw/threads:8/real_time_mean                          -0.0109         -0.0108           147           145           147           145
Samsung/NX30/2015-03-07-163604_sam_7204.srw/threads:8/real_time_median                        -0.0104         -0.0103           147           145           147           145
Samsung/NX30/2015-03-07-163604_sam_7204.srw/threads:8/real_time_stddev                        -0.4919         -0.4800             0             0             0             0
Samsung/NX3000/_3184416.SRW/threads:8/real_time_pvalue                                         0.0000          0.0000      U Test, Repetitions: 25 vs 25
Samsung/NX3000/_3184416.SRW/threads:8/real_time_mean                                          -0.0149         -0.0147           220           217           220           217
Samsung/NX3000/_3184416.SRW/threads:8/real_time_median                                        -0.0173         -0.0169           221           217           220           217
Samsung/NX3000/_3184416.SRW/threads:8/real_time_stddev                                        +1.0337         +1.0341             1             3             1             3
Sony/DSLR-A350/DSC05472.ARW/threads:8/real_time_pvalue                                         0.0001          0.0001      U Test, Repetitions: 25 vs 25
Sony/DSLR-A350/DSC05472.ARW/threads:8/real_time_mean                                          -0.0019         -0.0019           194           193           194           193
Sony/DSLR-A350/DSC05472.ARW/threads:8/real_time_median                                        -0.0021         -0.0021           194           193           194           193
Sony/DSLR-A350/DSC05472.ARW/threads:8/real_time_stddev                                        -0.4441         -0.4282             0             0             0             0
Sony/ILCE-7RM2/14-bit-compressed.ARW/threads:8/real_time_pvalue                                0.0000          0.4263      U Test, Repetitions: 25 vs 25
Sony/ILCE-7RM2/14-bit-compressed.ARW/threads:8/real_time_mean                                 +0.0258         -0.0006            81            83            19            19
Sony/ILCE-7RM2/14-bit-compressed.ARW/threads:8/real_time_median                               +0.0235         -0.0011            81            82            19            19
Sony/ILCE-7RM2/14-bit-compressed.ARW/threads:8/real_time_stddev                               +0.1634         +0.1070             1             1             0             0
```
{F7443905}
If we look at the `_mean`s, the time column, the biggest win is `-7.7%` (`Canon/EOS 5D Mark II/10.canon.sraw2.cr2`),
and the biggest loose is `+3.3%` (`Panasonic/DC-GH5S/P1022085.RW2`);
Overall: mean `-0.7436%`, median `-0.23%`, `cbrt(sum(time^3))` = `-8.73%`
Looks good so far i'd say.

llvm-exegesis details:
{F7371117} {F7371125}
{F7371128} {F7371144} {F7371158}

Reviewers: craig.topper, RKSimon, andreadb, courbet, avt77, spatel, GGanesh

Reviewed By: andreadb

Subscribers: javed.absar, gbedwell, jfb, llvm-commits

Differential Revision: https://reviews.llvm.org/D52779

llvm-svn: 345463
2018-10-27 20:46:30 +00:00
Simon Pilgrim a365719a24 [X86][SSE] LowerVSELECT - pull out repeated getOperand(). NFCI.
llvm-svn: 345458
2018-10-27 18:37:59 +00:00
Vlad Tsyrklevich 50d2683a00 Revert "DebugInfo: reduce DIE range verification on object files"
This reverts commits r345441 and r345444, they were causing msan
buildbot failures.

llvm-svn: 345457
2018-10-27 17:39:13 +00:00
Florian Hahn fc7654a67b [Local] Keep K's range if K does not move when combining metadata.
As K has to dominate I, IIUC I's range metadata must be a subset of
K's. After Eli's recent clarification to the LangRef, loading a value
outside of the range is undefined behavior.
Therefore if I's range contains elements outside of K's range and we would load
one such value, K would cause undefined behavior.

In cases like hoisting/sinking, we still want the most generic range
over all code paths to/from the hoist/sink point. As suggested in the
patches related to D47339, I will refactor the handling of those
scenarios and try to decouple it from this function as follow up, once
we switched to a similar handling of metadata in most of
combineMetadata.

I updated some tests checking mostly the merging of metadata to keep the
metadata of to dominating load. The most interesting one is probably test8 in
test/Transforms/JumpThreading/thread-loads.ll. It contained a comment
about the alias metadata preventing us to eliminate the branch, but it
seem like the actual problem currently is that we merge the ranges of
both loads and cannot eliminate the icmp afterwards. With this patch, we
manage to eliminate the icmp, as the range of the first load excludes 8.

Reviewers: efriedma, nlopes, davide

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D51629

llvm-svn: 345456
2018-10-27 16:53:45 +00:00
Simon Pilgrim a132016d4d Fix -Wdocumentation warning. NFCI.
llvm-svn: 345454
2018-10-27 15:14:42 +00:00
Simon Pilgrim 3cf33fcdd6 [TargetLowering] Move LegalizeDAG FP_TO_UINT handling to TargetLowering::expandFP_TO_UINT. NFCI.
First step towards fixing PR17686 and adding vector support.

llvm-svn: 345452
2018-10-27 12:15:58 +00:00
Simon Pilgrim 88116e905e Revert rL345395: [X86][SSE] Move 2-input limit up from getFauxShuffleMask to resolveTargetShuffleInputs
Makes no difference to actual shuffle decoding yet, but merges all the existing limits in one place for when proper support is fixed.
........
Its been reported that this is causing out of trunk failures.

llvm-svn: 345451
2018-10-27 07:10:48 +00:00
Sanjin Sijaric 96f2ea3dd4 [ARM64][Windows] MCLayer support for exception handling
Add ARM64 unwind codes to MCLayer, as well SEH directives that will be emitted
by the frame lowering patch to follow.  We only emit unwind codes into object
object files for now.

Differential Revision: https://reviews.llvm.org/D50166

llvm-svn: 345450
2018-10-27 06:13:06 +00:00
Craig Topper 4b89647b79 [X86] Add some isel patterns for scalar_to_vector/extract_vector_element that use the avx512 extended register classes when they are available.
llvm-svn: 345448
2018-10-27 05:35:20 +00:00
Alina Sbirlea bdb16f0519 Revert r345169 [along with its llvm counterpart r345170] as it makes Halide builds timeout.
llvm-svn: 345447
2018-10-27 04:51:12 +00:00
Brendon Cahoon aa783dfd6e [Hexagon] Add missing assignment to Itinerary in Call_nr
The class definition for Call_nr has the itinerary as a
parameter, but the value is never assigned to the Itinerary
field for the instruction. This means the compiler is unable
to schedule and packetize the instruction correctly because
these instrution will not have any resource descritions.
I don't have a specific test case, but the ps_call_nr.ll
test failed with a proposed patch.

llvm-svn: 345442
2018-10-27 00:50:29 +00:00
Saleem Abdulrasool b342446fe0 DebugInfo: reduce DIE range verification on object files
Relocatable content may have overlapping ranges until the sections are
finalized.  This reduces the amount of verification that is done on an object
file so that invalid errors are not raised.

llvm-svn: 345441
2018-10-27 00:49:33 +00:00
Leonard Chan eebecb3214 Revert "[PassManager/Sanitizer] Enable usage of ported AddressSanitizer passes with -fsanitize=address"
This reverts commit 8d6af840396f2da2e4ed6aab669214ae25443204 and commit
b78d19c287b6e4a9abc9fb0545de9a3106d38d3d which causes slower build times
by initializing the AddressSanitizer on every function run.

The corresponding revisions are https://reviews.llvm.org/D52814 and
https://reviews.llvm.org/D52739.

llvm-svn: 345433
2018-10-26 22:51:51 +00:00
Volodymyr Sapsai 91e131649f [VFS] Add property 'fallthrough' that controls fallback to real file system.
Default property value 'true' preserves current behavior. Value 'false' can be
used to create VFS "root", file system that gives better control over which
files compiler can use during compilation as there are no unpredictable
accesses to real file system.

Non-fallthrough use case changes how we treat multiple VFS overlay
files. Instead of all of them being at the same level just above a real
file system, now they are nested and subsequent overlays can refer to
files in previous overlays.

rdar://problem/39465552

Reviewers: bruno, benlangmuir

Reviewed By: bruno

Subscribers: dexonsmith, cfe-commits, hiraditya

Differential Revision: https://reviews.llvm.org/D50539

llvm-svn: 345431
2018-10-26 22:14:33 +00:00
Sanjay Patel 0eddd4730f [DAGCombiner] rearrange code in narrowExtractedVectorBinOp(); NFC
We can extend this code to handle many more cases 
if an extract is cheap, so prepping for that change.

llvm-svn: 345430
2018-10-26 21:32:04 +00:00
Sanjay Patel cc9e401e3c [ValueTracking] peek through shuffles in ComputeNumSignBits (PR37549)
The motivating case is from PR37549:
https://bugs.llvm.org/show_bug.cgi?id=37549

The analysis improvement allows us to form a vector 'select' out of 
bitwise logic (the use of ComputeNumSignBits was added at rL345149).

The smaller test shows another InstCombine improvement - we use 
ComputeNumSignBits to add 'nsw' to shift-left. But the negative
test shows an example where we must not add 'nsw' - when the shuffle
mask contains undef elements.

Differential Revision: https://reviews.llvm.org/D53659

llvm-svn: 345429
2018-10-26 21:05:14 +00:00
Craig Topper 7bf85f5c8d [LegalizeTypes] Stop DAGTypeLegalizer::getSETCCWidenedResultTy from creating illegal setccs. Add checks for valid setccs
The DAGTypeLegalizer::getSETCCWidenedResultTy was widening the MaskVT, but the code in convertMask called after getSETCCWidenedResultTy had no idea this widening had occurred. So none of the operands were widened when convertMask created new setccs with the widened VT.

This patch removes the widening and adds some asserts to getNode to validate the types of setccs to prevent issues like this in the future.

Differential Revision: https://reviews.llvm.org/D53743

llvm-svn: 345428
2018-10-26 20:59:55 +00:00
Reid Kleckner 98d880fbd7 [Spectre] Fix MIR verifier errors in retpoline thunks
Summary:
The main challenge here is that X86InstrInfo::AnalyzeBranch doesn't
understand the way we're using a CALL instruction as a branch, so we
can't list the CallTarget MBB as a successor of the entry block. If we
don't list it as a successor, then the AsmPrinter doesn't print a label
for the MBB.

Fix the issue by inserting our own label at the beginning of the call
target block. We can rely on the AsmPrinter to always emit it, even
though the block appears to be unreachable, but address-taken.

Fixes PR38391.

Reviewers: thegameg, chandlerc, echristo

Subscribers: hiraditya, llvm-commits

Differential Revision: https://reviews.llvm.org/D53653

llvm-svn: 345426
2018-10-26 20:26:36 +00:00
Eli Friedman 2ac1162917 [ARM] Make InstrEmitter mark CPSR defs dead for Thumb1.
The "dead" markings allow existing target-independent optimizations,
like MachineSink, to trigger more frequently. The CPSR defs would have
eventually been marked dead by LiveVariables, so this only affects
optimizations before regalloc.

The ARMBaseInstrInfo.cpp change is fixing a bug which is only visible
with this change: the transform adds a use to an otherwise dead def
of CPSR. This is covered by existing regression tests.

thumb2-tbh.ll breaks for Thumb1 due to MachineLICM changing the
generated code; I'll fix it in D53452.

Differential Revision: https://reviews.llvm.org/D53453

llvm-svn: 345420
2018-10-26 19:32:24 +00:00
Yi Kong f609590469 [XRay] Use std::errc::invalid_argument instead of std::errc::bad_message
This change should appease the mingw32 builds.

Similar to r293725.

Differential Revision: https://reviews.llvm.org/D53742

llvm-svn: 345416
2018-10-26 18:25:27 +00:00
Lei Huang de20843f6f [PowerPC] Improve BUILD_VECTOR of 4 i32s
Currently, for this node:
  vector int test(int a, int b, int c, int d) {
    return (vector int) { a, b, c, d };
  }

we get this on Power9:
  mtvsrdd 34, 5, 3
  mtvsrdd 35, 6, 4
  vmrgow 2, 3, 2

and this on Power8:
  mtvsrwz 0, 3
  mtvsrwz 1, 5
  mtvsrwz 2, 4
  mtvsrwz 3, 6
  xxmrghd 34, 1, 0
  xxmrghd 35, 3, 2
  vmrgow 2, 3, 2

This can be improved to this on LE Power9:
  rldimi 3, 4, 32, 0
  rldimi 5, 6, 32, 0
  mtvsrdd 34, 5, 3

and this on LE Power8
  rldimi 3, 4, 32, 0
  rldimi 5, 6, 32, 0
  mtvsrd 34, 3
  mtvsrd 35, 5
  xxpermdi 34, 35, 34, 0

This patch updates the TD pattern to generate the optimized sequence for both
Power8 and Power9 on LE and BE.

Differential Revision: https://reviews.llvm.org/D53494

llvm-svn: 345414
2018-10-26 18:09:36 +00:00
Christy Lee 3cc0e935c4 Pointer types were treated as zero-size by MergeICmps
Summary:
The visitICmp analysis function would record compares of pointer types, as size 0. This causes the resulting memcmp() call to have the wrong total size.
Found with "self-build" of clang/LLVM on Windows.

Reviewers: christylee, trentxintong, courbet

Reviewed By: courbet

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D53536

llvm-svn: 345413
2018-10-26 18:02:06 +00:00
Craig Topper 8315d9990c [X86] Stop promoting vector and/or/xor/andn to vXi64.
These promotions add additional bitcasts to the SelectionDAG that can pessimize computeKnownBits/computeNumSignBits. It also seems to interfere with broadcast formation.

This patch removes the promotion and adds isel patterns instead.

The increased table size is more than I would like, but hopefully we can find some canonicalizations or other tricks to start pruning out patterns going forward.

Differential Revision: https://reviews.llvm.org/D53268

llvm-svn: 345408
2018-10-26 17:21:26 +00:00
Wolfgang Pieb d57b5251d4 [DWARF][NFC] cleanup (mostly leftovers from the implementation of string offsets tables)
Majority of the patch by David Blaikie.

Differential Revision: https://reviews.llvm.org/D53741

llvm-svn: 345404
2018-10-26 17:14:46 +00:00
Simon Pilgrim 5d1be4f8d4 [X86][SSE] Move 2-input limit up from getFauxShuffleMask to resolveTargetShuffleInputs
Makes no difference to actual shuffle decoding yet, but merges all the existing limits in one place for when proper support is fixed.

llvm-svn: 345395
2018-10-26 15:19:02 +00:00
Sanjay Patel 6b40768f5a [x86] commute blendvb with constant condition op to allow load folding
This is a narrow fix for 1 of the problems mentioned in PR27780:
https://bugs.llvm.org/show_bug.cgi?id=27780

I looked at more general solutions, but it's a mess. We canonicalize shuffle masks
based on the number of elements accessed from each operand, and that's not optional.
If you remove that, we'll crash because we fail to match isel patterns. So I'm
waiting until we're sure that we have blendvb with constant condition and then
commuting based on the load potential. Other cases like blend-with-immediate are
already handled elsewhere, so this is probably not a common problem anyway.

I didn't use "MayFoldLoad" because that checks for one-use and in these cases, we've
screwed that up by creating a temporary PSHUFB using these operands that we're counting
on to be killed later. Undoing that didn't look like a simple task because it's
intertwined with determining if we actually use both operands of the shuffle or not.a

Differential Revision: https://reviews.llvm.org/D53737

llvm-svn: 345390
2018-10-26 14:58:13 +00:00
Simon Pilgrim 7575c6d01b [X86] Use existing pulled out VT variables. NFCI.
llvm-svn: 345388
2018-10-26 14:39:28 +00:00
Max Kazantsev 619a83463f [SimpleLoopUnswitch] Unswitch by experimental.guard intrinsics
This patch adds support of `llvm.experimental.guard` intrinsics to non-trivial
simple loop unswitching. These intrinsics represent implicit control flow which
has pretty much the same semantics as usual conditional branches. The
algorithm of dealing with them is following:

- Consider guards as unswitching candidates;
- If a guard is considered the best candidate, turn it into a branch;
- Apply normal unswitching algorithm on this branch.

The patch has no compile time effect on code that does not contain any guards.

Differential Revision: https://reviews.llvm.org/D53744
Reviewed By: chandlerc

llvm-svn: 345387
2018-10-26 14:20:11 +00:00
Scott Linder 11ef7984b0 [AMDGPU] Add a pass to promote bitcast calls
AMDGPU currently only supports direct calls, but at lower optimisation levels it
fails to lower statically direct calls which appear indirect due to a bitcast.

Add a pass to visit all CallSites and use CallPromotionUtils to "devirtualize"
calls.

Differential Revision: https://reviews.llvm.org/D52741

llvm-svn: 345382
2018-10-26 13:18:36 +00:00
George Rimar 088d96b43d [Codegen] - Implement basic .debug_loclists section emission (DWARF5).
.debug_loclists is the DWARF 5 version of the .debug_loc.
With that patch, it will be emitted when DWARF 5 is used.

Differential revision: https://reviews.llvm.org/D53365

llvm-svn: 345377
2018-10-26 11:25:12 +00:00
Max Kazantsev bde31000b1 [SimpleLoopUnswitch] Make all checks before actual non-trivial unswitch
We should be able to make all relevant checks before we actually start the non-trivial
unswitching, so that we could guarantee that once we have started the transform,
it will always succeed.

Reviewed By: chandlerc
Differential Revision: https://reviews.llvm.org/D53747

llvm-svn: 345375
2018-10-26 09:52:58 +00:00
Fangrui Song 065c3610ad [SystemZ] Fix -Wcovered-switch-default as coding standard regulates
llvm-svn: 345369
2018-10-26 06:59:08 +00:00
Li Jia He f6fb752fe8 [PowerPC] Fix some missed optimization opportunities in combineSetCC
For both operands are bool, short, int, long, long long, add the following optimization.
1. 0-x == y --> x+y ==0
2. 0-x != y --> x+y != 0

Review: nemanjai
Differential Revision: https://reviews.llvm.org/D53360

llvm-svn: 345366
2018-10-26 06:48:53 +00:00
Nemanja Ivanovic 6a74bfba20 [PowerPC] Keep vector int to fp conversions in vector domain
At present a v2i16 -> v2f64 convert is implemented by extracts to scalar,
scalar converts, and merge back into a vector. Use vector converts instead,
with the int data permuted into the proper position and extended if necessary.

Patch by RolandF.

Differential revision: https://reviews.llvm.org/D53346

llvm-svn: 345361
2018-10-26 03:19:13 +00:00
Fangrui Song 61ea8dae2e Add dependency from SystemZAsmParser to SystemZAsmPrinter after rL345349
This fixes -DBUILD_SHARED_LIBS=on build. The dependency is similar to that of X86's.

llvm-svn: 345358
2018-10-26 03:04:54 +00:00
Vlad Tsyrklevich 21beeb29ea Revert "[AArch64] Create proper memoperand for multi-vector stores"
This reverts commit r345315, it was causing test failures on
sanitizer-x86_64-linux-fast.

llvm-svn: 345356
2018-10-26 02:00:14 +00:00