After this patch clang will ignore -fdwarf2-cfi-asm and -ffno-dwarf2-cfi-asm and
always print assembly that uses cfi directives.
In llvm, MC itself supports cfi since the end of 2010 (support started
in r119972, is reported in the 2.9 release notes).
In binutils the support has been around for much longer. It looks like
support started to be added in May 2003. It is available in 2.15
(31-Aug-2011, 2.14 is from 12-Jun-2003).
llvm-svn: 207602
Summary:
This patch adds a new flag -Rpass=. The flag indicates the name
of the optimization pass that should emit remarks stating when it
made a transformation to the code.
This implements the design I proposed in:
https://docs.google.com/document/d/1FYUatSjZZO-zmFBxjOiuOzAy9mhHA8hqdvklZv68WuQ/edit?usp=sharing
Other changes:
- Add DiagnosticIDs::isRemark(). Use it in printDiagnosticOptions to
print "-R" instead of "-W" in the diagnostic message.
- In BackendConsumer::OptimizationRemarkHandler, get a SourceLocation
object out of the file name, line and column number. Use that location
in the call to Diags.Report().
- When -Rpass is used without debug info a note is emitted alerting
the user that they need to use -gline-tables-only -gcolumn-info to
get this information.
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D3226
llvm-svn: 206401
This introduces the definitions needed for the Windows on ARM target. Add
target definitions for both the MSVC environment and the MSVC + Itanium C++ ABI
environment. The Visual Studio definitions correspond to the definitions
provided by Visual Studio 2012.
llvm-svn: 205650
This adds Clang support for the ARM64 backend. There are definitely
still some rough edges, so please bring up any issues you see with
this patch.
As with the LLVM commit though, we think it'll be more useful for
merging with AArch64 from within the tree.
llvm-svn: 205100
-u behaviour is apparently not portable between linkers (see cfe-commits
discussions for r204379 and r205012). I've moved the logic to IRGen,
where it should have been in the first place.
I don't have a Linux system to test this on, so it's possible this logic
*still* doesn't pull in the instrumented profiling runtime on Linux.
I'm in the process of getting tests going on the compiler-rt side
(llvm-commits "[PATCH] InstrProf: Add initial compiler-rt test"). Once
we have tests for the full flow there, the runtime logic should get a
whole lot less brittle.
<rdar://problem/16458307>
llvm-svn: 205023
This follows the LLVM change to canonicalise the Windows target triple
spellings. Rather than treating each Windows environment as a single entity,
the environments are now modelled properly as an environment. This is a
mechanical change to convert the triple use to reflect that change.
llvm-svn: 204978
In gcc using -Ofast forces linking of crtfastmath.o.
In the current clang crtfastmath.o is only linked when -ffast-math/-funsafe-math-optimizations passed. It can lead to performance issues, when using only -Ofast without explicit -ffast-math (I faced with it).
My patch fixes inconsistency with gcc behaviour and also introduces few tests on it.
Patch by Zinovy Nis!
Differential Revision: http://llvm-reviews.chandlerc.com/D3114
llvm-svn: 204742
This is because the PCH is tied to the module files, if one of the module files changes or gets removed
the build system should re-build the PCH file.
rdar://16321245
llvm-svn: 203885
When enabled, always validate the system headers when loading a module.
The end result of this is that when these headers change, we will notice
and rebuild the module.
llvm-svn: 203630