- References to ObjC bit-field ivars are bit-field lvalues;
fixes rdar://13794269, which got me started down this.
- Introduce Expr::refersToBitField, switch a couple users to
it where semantically important, and comment the difference
between this and the existing API.
- Discourage Expr::getBitField by making it a bit longer and
less general-sounding.
- Lock down on const_casts of bit-field gl-values until we
hear back from the committee as to whether they're allowed.
llvm-svn: 181252
Summary:
No functionality change. The existing tests for this pragma only verify
that we can preprocess it.
Reviewers: rsmith
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D751
llvm-svn: 181246
The alignment is just a byte in the middle of Characteristics, not an
independent flag. Making it an independent field in the yaml
representation makes it more yamlio friendly.
llvm-svn: 181243
If the LoopConvert Transform detects an alias for the loop variable, it
attempts to use that name in the resulting range-based for loop while removing
the original DeclStmt for the variable. That removal produced bad code when the
declaration was in the condition of an if, switch, while, or for stmt. This
revision fixes the problem by simply replacing the declaration with a use of
the alias variable.
llvm-svn: 181242
Make a summary format for libc++ STL containers that shows the number of items as before, but also shows the pointer value for pointer-to-container
llvm-svn: 181236
Test case by Michele Scandale!
Fixes PR10293: Load not hoisted out of loop with multiple exits.
There are few regressions with this patch, now tracked by
rdar:13817079, and a roughly equal number of improvements. The
regressions are almost certainly back luck because LoopRotate has very
little idea of whether rotation is profitable. Doing better requires a
more comprehensive solution.
This checkin is a quick fix that lacks generality (PR10293 has
a counter-example). But it trivially fixes the case in PR10293 without
interfering with other cases, and it does satify the criteria that
LoopRotate is a loop canonicalization pass that should avoid
heuristics and special cases.
I can think of two approaches that would probably be better in
the long run. Ultimately they may both make sense.
(1) LoopRotate should check that the current header would make a good
loop guard, and that the loop does not already has a sufficient
guard. The artifical SimplifiedLoopLatch check would be unnecessary,
and the design would be more general and canonical. Two difficulties:
- We need a strong guarantee that we won't endlessly rotate, so the
analysis would need to be precise in order to avoid the
SimplifiedLoopLatch precondition.
- Analysis like this are usually based on SCEV, which we don't want to
rely on.
(2) Rotate on-demand in late loop passes. This could even be done by
shoving the loop back on the queue after the optimization that needs
it. This could work well when we find LICM opportunities in
multi-branch loops. This requires some work, and it doesn't really
solve the problem of SCEV wanting a loop guard before the analysis.
llvm-svn: 181230
As pointed out by Rafael Espindola, we should match the DWARF encodings
produced by GCC in both pic and non-pic modes. This was not the case
for the non-pic case.
This patch changes all DWARF encodings to DW_EH_PE_absptr for the
non-pic case, just like GCC does. The test case is updated to check
for both variants.
llvm-svn: 181222
If a NullTo(Member)Pointer cast results from a macro arg expansion, all uses of
the arg must result in such casts or else the macro arg cannot be replaced with
'nullptr' safely. This revision adds logic and tests to ensure the safety of
replacing macro args in the Use-Nullptr Transform.
Fixes: PR15816
llvm-svn: 181221
A * (1 - (uitofp i1 C)) -> select C, 0, A
B * (uitofp i1 C) -> select C, B, 0
select C, 0, A + select C, B, 0 -> select C, B, A
These come up in code that has been hand-optimized from a select to a linear blend,
on platforms where that may have mattered. We want to undo such changes
with the following transform:
A*(1 - uitofp i1 C) + B*(uitofp i1 C) -> select C, A, B
llvm-svn: 181216
The one user has been changed to use getLValue on the compound literal
expression and then use the normal bindLoc to assign a value. No need
to special case this in the StoreManager.
llvm-svn: 181214
This occurs because in C++11 the compound literal syntax can trigger a
constructor call via list-initialization. That is, "Point{x, y}" and
"(Point){x, y}" end up being equivalent. If this occurs, the inner
CXXConstructExpr will have already handled the object construction; the
CompoundLiteralExpr just needs to propagate that value forwards.
<rdar://problem/13804098>
llvm-svn: 181213
Previously, this compound literal expression (a GNU extension in C++):
(AggregateWithDtor){1, 2}
resulted in this AST:
`-CXXBindTemporaryExpr [...] 'struct Point' (CXXTemporary [...])
`-CompoundLiteralExpr [...] 'struct AggregateWithDtor'
`-CXXBindTemporaryExpr [...] 'struct AggregateWithDtor' (CXXTemporary [...])
`-InitListExpr [...] 'struct AggregateWithDtor'
|-IntegerLiteral [...] 'int' 1
`-IntegerLiteral [...] 'int' 2
Note the two CXXBindTemporaryExprs. The InitListExpr is really part of the
CompoundLiteralExpr, not an object in its own right. By introducing a new
entity initialization kind in Sema specifically for compound literals, we
avoid the treatment of the inner InitListExpr as a temporary.
`-CXXBindTemporaryExpr [...] 'struct Point' (CXXTemporary [...])
`-CompoundLiteralExpr [...] 'struct AggregateWithDtor'
`-InitListExpr [...] 'struct AggregateWithDtor'
|-IntegerLiteral [...] 'int' 1
`-IntegerLiteral [...] 'int' 2
llvm-svn: 181212
This patch then adds all the usual platform-specific pieces for SystemZ:
driver support, basic target info, register names and constraints,
ABI info and vararg support. It also adds new tests to verify pre-defined
macros and inline asm, and updates a test for the minimum alignment change.
This version of the patch incorporates feedback from reviews by
Eric Christopher and John McCall. Thanks to all reviewers!
Patch by Richard Sandiford.
llvm-svn: 181211
This patch adds a new common code feature that allows platform code to
request minimum alignment of global symbols. The background for this is
that on SystemZ, the most efficient way to load addresses of global symbol
is the LOAD ADDRESS RELATIVE LONG (LARL) instruction. This instruction
provides PC-relative addressing, but only to *even* addresses. For this
reason, existing compilers will guarantee that global symbols are always
aligned to at least 2. [ Since symbols would otherwise already use a
default alignment based on their type, this will usually only affect global
objects of character type or character arrays. ] GCC also allows creating
symbols without that extra alignment by using explicit "aligned" attributes
(which then need to be used on both definition and each use of the symbol).
To enable support for this with Clang, this patch adds a
TargetInfo::MinGlobalAlign variable that provides a global minimum for the
alignment of every global object (unless overridden via explicit alignment
attribute), and adds code to respect this setting. Within this patch, no
platform actually sets the value to anything but the default 1, resulting
in no change in behaviour on any existing target.
This version of the patch incorporates feedback from reviews by
Eric Christopher and John McCall. Thanks to all reviewers!
Patch by Richard Sandiford.
llvm-svn: 181210
This patch wires up the SystemZ target in configure, so that it can now be
built using --enable-targets=systemz. It is not yet included in the default
build (--enable-targets=all); this will be done by a follow-up patch.
Patch by Richard Sandiford.
llvm-svn: 181208
This patch adds the necessary configuration bits and #ifdef's to set up
the JIT/MCJIT test cases for SystemZ. Like other recent targets, we do
fully support MCJIT, but do not support the old JIT at all. Set up the
lit config files accordingly, and disable old-JIT unit tests.
Patch by Richard Sandiford.
llvm-svn: 181207
This adds all DebugInfo tests for the SystemZ target.
This version of the patch incorporates feedback from reviews by
Eric Christopher and Rafael Espindola. Thanks to all reviewers!
Patch by Richard Sandiford.
llvm-svn: 181205
This adds all CodeGen tests for the SystemZ target.
This version of the patch incorporates feedback from a review by
Sean Silva. Thanks to all reviewers!
Patch by Richard Sandiford.
llvm-svn: 181204
This adds the actual lib/Target/SystemZ target files necessary to
implement the SystemZ target. Note that at this point, the target
cannot yet be built since the configure bits are missing. Those
will be provided shortly by a follow-on patch.
This version of the patch incorporates feedback from reviews by
Chris Lattner and Anton Korobeynikov. Thanks to all reviewers!
Patch by Richard Sandiford.
llvm-svn: 181203
We've added the RS880 variant in the LLVM backend to represent an R600
GPU with no vertex cache, so we need to update the GPU mappings for
-mcpu.
llvm-svn: 181202