This is because -print-multi-lib depends on them being flags for correctness.
Fixes a case of this in the arm-android multilib selection logic.
llvm-svn: 302207
Verifying the hash values as we are currently doing
results in iterating every type record before the user
even tries to access the first one, and the API user
has no control over, or ability to hook into this
process.
As a result, when the user wants to iterate over types
to print them or index them, this results in a second
iteration over the same list of types. When there's
upwards of 1,000,000 type records, this is obviously
quite undesirable.
This patch raises the verification outside of TpiStream
, and llvm-pdbdump hooks a hash verification visitor
into the normal dumping process. So we still verify
the hash records, but we can do it while not requiring
a second iteration over the type stream.
Differential Revision: https://reviews.llvm.org/D32873
llvm-svn: 302206
I tried to run llvm-pdbdump on a very large (~1.5GB) PDB to
try and identify show-stopping performance problems. This
patch addresses the first such problem.
When loading the DBI stream, before anyone has even tried to
access a single record, we build an in memory map of every
source file for every module. In the particular PDB I was
using, this was over 85 million files. Specifically, the
complexity is O(m*n) where m is the number of modules and
n is the average number of source files (including headers)
per module.
The whole reason for doing this was so that we could have
constant time access to any module and any of its source
file lists. However, we can still get O(1) access to the
source file list for a given module with a simple O(m)
precomputation, and access to the list of modules is
already O(1) anyway.
So this patches reduces the O(m*n) up-front precomputation
to an O(m) one, where n is ~6,500 and n*m is about 85 million
in my pathological test case.
Differential Revision: https://reviews.llvm.org/D32870
llvm-svn: 302205
Building the type database is expensive, and can take multiple
minutes for large PDBs. But we only need it in certain cases
depending on what command line options are specified. So only
build it when we know we're about to need it.
llvm-svn: 302204
During legalization, targets can create Pseudo Instructions with
generic types. We shouldn't try to legalize them.
Reviewed by Quentin, dsanders
https://reviews.llvm.org/D32575
llvm-svn: 302199
Compares always return a scalar integer or vector of integers. isIntegerTy returns false for vectors, but that's not completely obvious. So using isVectorTy is less confusing.
llvm-svn: 302198
The whitespace should come from the argument name in the macro
expansion, rather than from the token passed to the macro (same as it
does when not pasting).
Added a new test case for the change in behavior to stringize_space.c.
FileCheck'ized macro_paste_commaext.c, tweaked the test case, and
added a comment; no behavioral change to this test.
Differential Revision: https://reviews.llvm.org/D30427
llvm-svn: 302195
Summary:
Add a simple documentation page for Clangd.
This will be useful for interested users and contributors to get basic information about how
to get started and the progress of Clangd.
Reviewers: krasimir, bkramer
Reviewed By: krasimir
Subscribers: Prazek, jbcoe, JDevlieghere, mgehre, JonasToth, kromanenkov, xazax.hun, cfe-commits
Tags: #clang-tools-extra
Differential Revision: https://reviews.llvm.org/D31887
llvm-svn: 302191
clang-cl already errs or warns on everything that cl
warns on in /permissive- mode, except for enum foward
declarations (and ATL attributes).
So warn on enum forward declarations by default.
llvm-svn: 302190
The sibling folds for 'and' with casts were added with https://reviews.llvm.org/rL273200.
This is a preliminary step for adding the 'or' variants for the folds added with https://reviews.llvm.org/rL301260.
The reason for the strange form with constant LHS in the 1st test is because there's another missing fold in that
case for the inverted predicate. That should be fixed when we add the ConstantRange functionality for 'or-of-icmps'
that already exists for 'and-of-icmps'.
I'm hoping to share more code for the and/or cases, so we won't have these differences. This will allow us to remove
code from InstCombine. It's also possible that we can remove some code here in InstSimplify. I think we have some
duplicated folds because patterns are not matched in a general way.
Differential Revision: https://reviews.llvm.org/D32876
llvm-svn: 302189
Summary:
First, getCurFunction looks through blocks and lambdas, which is wrong.
Inside a lambda, va_start should refer to the lambda call operator
prototype. This fixes PR32737.
Second, we shouldn't use any of the getCur* methods, because they look
through contexts that we don't want to look through (EnumDecl,
CapturedStmtDecl). We can use CurContext directly as the calling
context.
Finally, this code assumed that CallExprs would never appear outside of
code contexts (block, function, obj-c method), which is wrong. Struct
member initializers are an easy way to create and parse exprs in a
non-code context.
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D32761
llvm-svn: 302188
The warning is currently way too noisy to be useful. The plan is
to make it warn when an MS enum that's negative is compared to
something, but until that's done the warning shouldn't default
to on.
llvm-svn: 302187
In the non linker script case we would try very early to find out if
we could allocate the headers. Failing to do that would add extra
alignment to the first ro section, since we would set PageAlign
thinking it was the first section in the PT_LOAD.
In the linker script case the header allocation must be done in the
end, causing some duplication.
We now tentatively add the headers to the first PT_LOAD and if it
turns out they don't fit, remove them. With this we only need to
allocate the headers in one place in the code.
llvm-svn: 302186
When building with libc++ don't bother with injecting the libstdc++
search paths into the linker search path. This will make it easier to
switch between ld and lld.
llvm-svn: 302184
This happened on the PPC32/SVR4 path and was discovered when building
FreeBSD on PPC32. It was a typo-class error in the frame lowering code.
This fixes PR26519.
llvm-svn: 302183
This avoids problems on code like this:
char buf[16];
__asm {
movups xmm0, [buf]
mov [buf], eax
}
The frontend size in this case (1) is wrong, and the register makes the
instruction matching unambiguous. There are also enough bytes available
that we shouldn't complain to the user that they are potentially using
an incorrectly sized instruction to access the variable.
Supersedes D32636 and D26586 and fixes PR28266
llvm-svn: 302179
Putting these next to each other should make it easier to see
what's missing from each side. Patch to plug one of those holes
should be posted soon.
llvm-svn: 302178
Libc++ is used as a system library on macOS and iOS (amongst others). In order
for users to be able to compile a binary that is intended to be deployed to an
older version of the platform, clang provides the
availability attribute <https://clang.llvm.org/docs/AttributeReference.html#availability>_
that can be placed on declarations to describe the lifecycle of a symbol in the
library.
See docs/DesignDocs/AvailabilityMarkup.rst for more information.
Differential Revision: https://reviews.llvm.org/D31739
llvm-svn: 302172
Currently multiply is implemented in operator*=. Operator* makes a copy and uses operator*= to modify the copy.
Operator*= itself allocates a temporary buffer to hold the multiply result as it computes it. Then copies it to the buffer in *this.
Operator*= attempts to bound the size of the result based on the number of active bits in its inputs. It also has a couple special cases to handle 0 inputs without any memory allocations or multiply operations. The best case is that it calculates a single word regardless of input bit width. The worst case is that it calculates the a 2x input width result and drop the upper bits.
Since operator* uses operator*= it incurs two allocations, one for a copy of *this and one for the temporary allocation. Neither of these allocations are kept after the method operation is done.
The main usage in the backend appears to be ConstantRange::multiply which uses operator* rather than operator*=.
This patch moves the multiply operation to operator* and implements operator*= using it. This avoids the copy in operator*. operator* now allocates a result buffer sized the same width as its inputs no matter what. This buffer will be used as the buffer for the returned APInt. Finally, we reuse tcMultiply to implement the multiply operation. This function is capable of not calculating additional upper words that will be discarded.
This change does lose the special optimizations for the inputs using less words than their size implies. But it also removed the getActiveBits calls from all multiplies. If we think those optimizations are important we could look at providing additional bounds to tcMultiply to limit the computations.
Differential Revision: https://reviews.llvm.org/D32830
llvm-svn: 302171
Summary: Add an entry to the Lexicon for "BDCE."
Reviewers: jmolloy, hfinkel
Reviewed By: jmolloy
Differential Revision: https://reviews.llvm.org/D31861
llvm-svn: 302169