carry setting flag from the mnemonic.
Note that this currently involves me disabling a number of working cases in
arm_instructions.s, this is a hopefully short term evil which will be rapidly
fixed (and greatly surpassed), assuming my current approach flies.
llvm-svn: 123238
point values to their integer representation through the SSE intrinsic
calls. This is the last part of a README.txt entry for which I have real
world examples.
llvm-svn: 123206
There's an inherent tension in DAGCombine between assuming
that things will be put in canonical form, and the Depth
mechanism that disables transformations when recursion gets
too deep. It would not surprise me if there's a lot of little
bugs like this one waiting to be discovered. The mechanism
seems fragile and I'd suggest looking at it from a design viewpoint.
llvm-svn: 123191
larger memsets. Among other things, this fixes rdar://8760394 and
allows us to handle "Example 2" from http://blog.regehr.org/archives/320,
compiling it into a single 4096-byte memset:
_mad_synth_mute: ## @mad_synth_mute
## BB#0: ## %entry
pushq %rax
movl $4096, %esi ## imm = 0x1000
callq ___bzero
popq %rax
ret
llvm-svn: 123089
1. Rip out LoopRotate's domfrontier updating code. It isn't
needed now that LICM doesn't use DF and it is super complex
and gross.
2. Make DomTree updating code a lot simpler and faster. The
old loop over all the blocks was just to find a block??
3. Change the code that inserts the new preheader to just use
SplitCriticalEdge instead of doing an overcomplex
reimplementation of it.
No behavior change, except for the name of the inserted preheader.
llvm-svn: 123072
Add a unnamed_addr bit to global variables and functions. This will be used
to indicate that the address is not significant and therefore the constant
or function can be merged with others.
If an optimization pass can show that an address is not used, it can set this.
Examples of things that can have this set by the FE are globals created to
hold string literals and C++ constructors.
Adding unnamed_addr to a non-const global should have no effect unless
an optimization can transform that global into a constant.
Aliases are not allowed to have unnamed_addr since I couldn't figure
out any use for it.
llvm-svn: 123063
them into the loop preheader, eliminating silly instructions like
"icmp i32 0, 100" in fixed tripcount loops. This also better exposes the
bigger problem with loop rotate that I'd like to fix: once this has been
folded, the duplicated conditional branch *often* turns into an uncond branch.
Not aggressively handling this is pessimizing later loop optimizations
somethin' fierce by making "dominates all exit blocks" checks fail.
llvm-svn: 123060
Instead encode llvm IR level property "HasSideEffects" in an operand (shared
with IsAlignStack). Added MachineInstrs::hasUnmodeledSideEffects() to check
the operand when the instruction is an INLINEASM.
This allows memory instructions to be moved around INLINEASM instructions.
llvm-svn: 123044
X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
Instead of calculating this with mixed types promote all to the
larger type. This enables scalar evolution to analyze this
expression. PR8866
llvm-svn: 123034
Also fix an off-by-one in SelectionDAGBuilder that was preventing shuffle
vectors from being translated to EXTRACT_SUBVECTOR.
Patch by Tim Northover.
The test changes are needed to keep those spill-q tests from testing aligned
spills and restores. If the only aligned stack objects are spill slots, we
no longer realign the stack frame. Prior to this patch, an EXTRACT_SUBVECTOR
was legalized by loading from the stack, which created an aligned frame index.
Now, however, there is nothing except the spill slot in the stack frame, so
I added an aligned alloca.
llvm-svn: 122995
The theory is it's still faster than a pair of movq / a quad of movl. This
will probably hurt older chips like P4 but should run faster on current
and future Intel processors. rdar://8817010
llvm-svn: 122955
ret i64 ptrtoint (i8* getelementptr ([1000 x i8]* @X, i64 1, i64 sub (i64 0, i64 ptrtoint ([1000 x i8]* @X to i64))) to i64)
to "ret i64 1000". This allows us to correctly compute the trip count
on a loop in PR8883, which occurs with std::fill on a char array. This
allows us to transform it into a memset with a constant size.
llvm-svn: 122950
up freebsd bootloader. However, this doesn't make much sense for Darwin, whose
-Os is meant to optimize for size only if it doesn't hurt performance.
rdar://8821501
llvm-svn: 122936
when safe.
The testcase is basically this nested loop:
void foo(char *X) {
for (int i = 0; i != 100; ++i)
for (int j = 0; j != 100; ++j)
X[j+i*100] = 0;
}
which gets turned into a single memset now. clang -O3 doesn't optimize
this yet though due to a phase ordering issue I haven't analyzed yet.
llvm-svn: 122806
prologue and epilogue if the adjustment is 8. Similarly, use pushl / popl if
the adjustment is 4 in 32-bit mode.
In the epilogue, takes care to pop to a caller-saved register that's not live
at the exit (either return or tailcall instruction).
rdar://8771137
llvm-svn: 122783
sure that the loop we're promoting into a memcpy doesn't mutate the input
of the memcpy. Before we were just checking that the dest of the memcpy
wasn't mod/ref'd by the loop.
llvm-svn: 122712
This allows us to compile:
void test(char *s, int a) {
__builtin_memset(s, a, 15);
}
into 1 mul + 3 stores instead of 3 muls + 3 stores.
llvm-svn: 122710
We could implement a DAGCombine to turn x * 0x0101 back into logic operations
on targets that doesn't support the multiply or it is slow (p4) if someone cares
enough.
Example code:
void test(char *s, int a) {
__builtin_memset(s, a, 4);
}
before:
_test: ## @test
movzbl 8(%esp), %eax
movl %eax, %ecx
shll $8, %ecx
orl %eax, %ecx
movl %ecx, %eax
shll $16, %eax
orl %ecx, %eax
movl 4(%esp), %ecx
movl %eax, 4(%ecx)
movl %eax, (%ecx)
ret
after:
_test: ## @test
movzbl 8(%esp), %eax
imull $16843009, %eax, %eax ## imm = 0x1010101
movl 4(%esp), %ecx
movl %eax, 4(%ecx)
movl %eax, (%ecx)
ret
llvm-svn: 122707
in the PR, the pass could break LCSSA form when inserting preheaders. It probably
would be easy enough to fix this, but since currently we always go into LCSSA form
after running this pass, doing so is not urgent.
llvm-svn: 122695
header for now for memset/memcpy opportunities. It turns out that loop-rotate
is successfully rotating loops, but *DOESN'T MERGE THE BLOCKS*, turning "for
loops" into 2 basic block loops that loop-idiom was ignoring.
With this fix, we form many *many* more memcpy and memsets than before, including
on the "history" loops in the viterbi benchmark, which look like this:
for (j=0; j<MAX_history; ++j) {
history_new[i][j+1] = history[2*i][j];
}
Transforming these loops into memcpy's speeds up the viterbi benchmark from
11.98s to 3.55s on my machine. Woo.
llvm-svn: 122685
numbering, in which it considers (for example) "%a = add i32 %x, %y" and
"%b = add i32 %x, %y" to be equal because the operands are equal and the
result of the instructions only depends on the values of the operands.
This has almost no effect (it removes 4 instructions from gcc-as-one-file),
and perhaps slows down compilation: I measured a 0.4% slowdown on the large
gcc-as-one-file testcase, but it wasn't statistically significant.
llvm-svn: 122654