If a G_SHL is fed by a G_CONSTANT, the lower and upper bits of the source can be
shifted individually by the constant shift amount.
However in case the shift amount came from a G_TRUNC(G_CONSTANT), the generic shift legalization
code was used, producing intermediate shifts that are potentially illegal on some targets.
This change teaches narrowScalarShift to look through G_TRUNCs and G_*EXTs.
Reviewed By: paquette
Differential Revision: https://reviews.llvm.org/D89100
SelectionDAG's equivalents in ISD::InputArg/OutputArg track the
original argument index. Mips relies on this, and its currently
reinventing its own parallel CallLowering infrastructure which tracks
these indexes on the side. Add this to help move towards deleting the
custom mips handling.
This will currently accept the old number of bytes syntax, and convert
it to a scalar. This should be removed in the near future (I think I
converted all of the tests already, but likely missed a few).
Not sure what the exact syntax and policy should be. We can continue
printing the number of bytes for non-generic instructions to avoid
test churn and only allow non-scalar types for generic instructions.
This will currently print the LLT in parentheses, but accept parsing
the existing integers and implicitly converting to scalar. The
parentheses are a bit ugly, but the parser logic seems unable to deal
without either parentheses or some keyword to indicate the start of a
type.
This also adds new interfaces for the fixed- and scalable case:
* LLT::fixed_vector
* LLT::scalable_vector
The strategy for migrating to the new interfaces was as follows:
* If the new LLT is a (modified) clone of another LLT, taking the
same number of elements, then use LLT::vector(OtherTy.getElementCount())
or if the number of elements is halfed/doubled, it uses .divideCoefficientBy(2)
or operator*. That is because there is no reason to specifically restrict
the types to 'fixed_vector'.
* If the algorithm works on the number of elements (as unsigned), then
just use fixed_vector. This will need to be fixed up in the future when
modifying the algorithm to also work for scalable vectors, and will need
then need additional tests to confirm the behaviour works the same for
scalable vectors.
* If the test used the '/*Scalable=*/true` flag of LLT::vector, then
this is replaced by LLT::scalable_vector.
Reviewed By: aemerson
Differential Revision: https://reviews.llvm.org/D104451
G_INSERT legalization is incomplete and doesn't work very
well. Instead try to use sequences of G_MERGE_VALUES/G_UNMERGE_VALUES
padding with undef values (although this can get pretty large).
For the case of load/store narrowing, this is still performing the
load/stores in irregularly sized pieces. It might be cleaner to split
this down into equal sized pieces, and rely on load/store merging to
optimize it.
It's still in use in a few places so we can't delete it yet but there's not
many at this point.
Differential Revision: https://reviews.llvm.org/D103352
Also, make it structurally required so it can't be forgotten and re-introduce
the bug that led to the rotten green tests.
Differential Revision: https://reviews.llvm.org/D99692
It is good to have a combined `divrem` instruction when the
`div` and `rem` are computed from identical input operands.
Some targets can lower them through a single expansion that
computes both division and remainder. It effectively reduces
the number of instructions than individually expanding them.
Reviewed By: arsenm, paquette
Differential Revision: https://reviews.llvm.org/D96013
This merges more AMDGPU ABI lowering code into the generic call
lowering. Start cleaning up by factoring away more of the pack/unpack
logic into the buildCopy{To|From}Parts functions. These could use more
improvement, and the SelectionDAG versions are significantly more
complex, and we'll eventually have to emulate all of those cases too.
This is mostly NFC, but does result in some minor instruction
reordering. It also removes some of the limitations with mismatched
sizes the old code had. However, similarly to the merge on the input,
this is forcing gfx6/gfx7 to use the gfx8+ ABI (which is what we
actually want, but SelectionDAG is stuck using the weird emergent
ABI).
This also changes the load/store size for stack passed EVTs for
AArch64, which makes it consistent with the DAG behavior.
Some of these accidentally disabled tests failed as a result; updated
tests per @qcolombet instructions. A small number needed additional
updates because legalization has actually changed since they were
written.
Found by the Rotten Green Tests project.
Differential Revision: https://reviews.llvm.org/D95257
These are widened to a wider UADDE/USUBE, with the overflow value
unused, and with the same synthesis of a new overflow value as for the
O operations.
Reviewed By: paquette
Differential Revision: https://reviews.llvm.org/D95326
The widenScalar implementation for signed and unsigned overflowing
operations were very similar: both are checked by truncating the result
and then re-sign/zero-extending it and checking that it matches the
computed operation.
Using a truncate + zero-extend for the unsigned case instead of manually
producing the AND instruction like before leads to an extra copy
instruction during legalization, but this should be harmless.
Differential Revision: https://reviews.llvm.org/D95035
Fix creation of illegal unmerge when widen was requested to a type which
is not a multiple of the destination type. E.g. when trying to widen
an s48 unmerge to s64 the existing code would create an illegal unmerge
from s64 to s48.
Instead, create further unmerges to a GCD type, then use this to remerge
these intermediate results to the actual destinations.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D88422
Use pad with undef and unmerge with unused results. This is annoyingly
similar to several other places in LegalizerHelper, but they're all
slightly different.
It was annoying enough that every custom lowering needed to set the
insert point, but this was made worse since now these all needed to be
updated to setInstrAndDebugLoc. Consolidate these so every
legalization action has the right insert position by default.
This should fix dropping debug info in every custom AMDGPU
legalization.
Summary:
When narrowing G_IMPLICIT_DEF where the original size is not a multiple
of the narrow size, emit a smaller G_IMPLICIT_DEF and use G_ANYEXT.
To prevent a potential endless loop in the legalizer, the condition
to combine G_ANYEXT(G_IMPLICIT_DEF) is changed from isInstUnsupported
to !isInstLegal, since in this case the combine is only valid if
consequent legalization of the newly combined G_IMPLICIT_DEF does not
introduce G_ANYEXT due to narrowing.
Although this legalization for G_IMPLICIT_DEF would also be valid for
the general case, it actually caused a lot of code regressions when
tried due to superfluous COPYs and combines not getting hit anymore.
Reviewers: dsanders, aemerson, volkan, arsenm, aditya_nandakumar
Reviewed By: arsenm
Subscribers: jvesely, nhaehnle, kerbowa, wdng, rovka, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76598
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: jyknight, sdardis, nemanjai, hiraditya, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, jfb, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77059
Summary:
The existing helper function can only create a libcall to functions available in
RTLIB. Add a helper function that can create a libcall to a given function name
using the provided calling convention.
Reviewers: aditya_nandakumar, t.p.northover, rovka, arsenm, dsanders
Reviewed By: arsenm
Subscribers: wdng, hiraditya, volkan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76845
For some operations, the type is unimportant and only the number of
bits matters. For example I don't want to treat <4 x s8> as a legal
type, but I also don't want to decompose loads of this into smaller
pieces to get legal register types.
On AMDGPU in SelectionDAG, we legalize a number of operations (most
notably load and store) by coercing all types to vectors of i32. For
GlobalISel, I'm trying very hard to avoid doing this for every type,
but I don't think this strategy can be completely avoided. I'm trying
to avoid bitcasts for any legitimately legal type we can operate on,
since the intervening bitcasts have proven to be a hassle.
For loads, I think I can get away without ever casting the result
type, and handling any arbitrary bitwidth during selection (I will
eventually want new tablegen support to help with this, rather than
having to add every possible type as legal). The unmerge required to
do anything with the value should expand to the expected shifts. This
is trickier for stores, since it would now require handling a wide
array of truncates during selection which I don't want.
Future potentially interesting case are for vector indexing, where
sub-dword type should be indexed in s32 pieces.
Summary:
Widening G_UNMERGE_VALUES to a type which is larger than the
original source type is the same as widening it to the same
type as the source type: in both cases, G_UNMERGE_VALUES has
to be replaced with bit arithmetic which. Although the arithmetic
itself is independent of whether the source type is smaller
or equal to the widen type, widening the source type to the
widen type should result in less artifacts being emitted,
since this is the type that the user explicitly requested.
Reviewers: arsenm, dsanders, aemerson, aditya_nandakumar
Reviewed By: arsenm, dsanders
Subscribers: jvesely, wdng, nhaehnle, rovka, hiraditya, volkan, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76494
I used the implementation for floor instead of round. It also turns
out the OpenCL builtin library wasn't using the round builtin, but
implemented the expanded form.
Summary: When narrowing a scalar G_EXTRACT where the destination lines up perfectly with a single result of the emitted G_UNMERGE_VALUES a COPY should be emitted instead of unconditionally trying to emit a G_MERGE_VALUES.
Reviewers: arsenm, dsanders
Reviewed By: arsenm
Subscribers: wdng, rovka, hiraditya, volkan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75743
Allows more flexible use of buildMerge in places where
use operands are available as SrcOp since it does not
require explicit conversion to Register.
Simplify code with new buildMerge.
Differential Revision: https://reviews.llvm.org/D74223
The type passed to lower was invalid, so I'm not sure how this was
even working before. The source and destination type also do not have
to match, so make sure to use the right ones.
Summary:
Targets often have instructions that can sign-extend certain cases faster
than the equivalent shift-left/arithmetic-shift-right. Such cases can be
identified by matching a shift-left/shift-right pair but there are some
issues with this in the context of combines. For example, suppose you can
sign-extend 8-bit up to 32-bit with a target extend instruction.
%1:_(s32) = G_SHL %0:_(s32), i32 24 # (I've inlined the G_CONSTANT for brevity)
%2:_(s32) = G_ASHR %1:_(s32), i32 24
%3:_(s32) = G_ASHR %2:_(s32), i32 1
would reasonably combine to:
%1:_(s32) = G_SHL %0:_(s32), i32 24
%2:_(s32) = G_ASHR %1:_(s32), i32 25
which no longer matches the special case. If your shifts and extend are
equal cost, this would break even as a pair of shifts but if your shift is
more expensive than the extend then it's cheaper as:
%2:_(s32) = G_SEXT_INREG %0:_(s32), i32 8
%3:_(s32) = G_ASHR %2:_(s32), i32 1
It's possible to match the shift-pair in ISel and emit an extend and ashr.
However, this is far from the only way to break this shift pair and make
it hard to match the extends. Another example is that with the right
known-zeros, this:
%1:_(s32) = G_SHL %0:_(s32), i32 24
%2:_(s32) = G_ASHR %1:_(s32), i32 24
%3:_(s32) = G_MUL %2:_(s32), i32 2
can become:
%1:_(s32) = G_SHL %0:_(s32), i32 24
%2:_(s32) = G_ASHR %1:_(s32), i32 23
All upstream targets have been configured to lower it to the current
G_SHL,G_ASHR pair but will likely want to make it legal in some cases to
handle their faster cases.
To follow-up: Provide a way to legalize based on the constant. At the
moment, I'm thinking that the best way to achieve this is to provide the
MI in LegalityQuery but that opens the door to breaking core principles
of the legalizer (legality is not context sensitive). That said, it's
worth noting that looking at other instructions and acting on that
information doesn't violate this principle in itself. It's only a
violation if, at the end of legalization, a pass that checks legality
without being able to see the context would say an instruction might not be
legal. That's a fairly subtle distinction so to give a concrete example,
saying %2 in:
%1 = G_CONSTANT 16
%2 = G_SEXT_INREG %0, %1
is legal is in violation of that principle if the legality of %2 depends
on %1 being constant and/or being 16. However, legalizing to either:
%2 = G_SEXT_INREG %0, 16
or:
%1 = G_CONSTANT 16
%2:_(s32) = G_SHL %0, %1
%3:_(s32) = G_ASHR %2, %1
depending on whether %1 is constant and 16 does not violate that principle
since both outputs are genuinely legal.
Reviewers: bogner, aditya_nandakumar, volkan, aemerson, paquette, arsenm
Subscribers: sdardis, jvesely, wdng, nhaehnle, rovka, kristof.beyls, javed.absar, hiraditya, jrtc27, atanasyan, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61289
llvm-svn: 368487
https://reviews.llvm.org/D65698
This adds a KnownBits analysis pass for GISel. This was done as a
pass (compared to static functions) so that we can add other features
such as caching queries(within a pass and across passes) in the future.
This patch only adds the basic pass boiler plate, and implements a lazy
non caching knownbits implementation (ported from SelectionDAG). I've
also hooked up the AArch64PreLegalizerCombiner pass to use this - there
should be no compile time regression as the analysis is lazy.
llvm-svn: 368065