Having nested macros in the C code could cause clangd to fail an assert in clang::Preprocessor::setLoadedMacroDirective() and crash.
#1 0x00000000007ace30 PrintStackTraceSignalHandler(void*) /qdelacru/llvm-project/llvm/lib/Support/Unix/Signals.inc:632:1
#2 0x00000000007aaded llvm::sys::RunSignalHandlers() /qdelacru/llvm-project/llvm/lib/Support/Signals.cpp:76:20
#3 0x00000000007ac7c1 SignalHandler(int) /qdelacru/llvm-project/llvm/lib/Support/Unix/Signals.inc:407:1
#4 0x00007f096604db20 __restore_rt (/lib64/libpthread.so.0+0x12b20)
#5 0x00007f0964b307ff raise (/lib64/libc.so.6+0x377ff)
#6 0x00007f0964b1ac35 abort (/lib64/libc.so.6+0x21c35)
#7 0x00007f0964b1ab09 _nl_load_domain.cold.0 (/lib64/libc.so.6+0x21b09)
#8 0x00007f0964b28de6 (/lib64/libc.so.6+0x2fde6)
#9 0x0000000001004d1a clang::Preprocessor::setLoadedMacroDirective(clang::IdentifierInfo*, clang::MacroDirective*, clang::MacroDirective*) /qdelacru/llvm-project/clang/lib/Lex/PPMacroExpansion.cpp:116:5
An example of the code that causes the assert failure:
```
...
```
During code completion in clangd, the macros will be loaded in loadMainFilePreambleMacros() by iterating over the macro names and calling PreambleIdentifiers->get(). Since these macro names are store in a StringSet (has StringMap underlying container), the order of the iterator is not guaranteed to be same as the order seen in the source code.
When clangd is trying to resolve nested macros it sometimes attempts to load them out of order which causes a macro to be stored twice. In the example above, ECHO2 macro gets resolved first, but since it uses another macro that has not been resolved it will try to resolve/store that as well. Now there are two MacroDirectives stored in the Preprocessor, ECHO and ECHO2. When clangd tries to load the next macro, ECHO, the preprocessor fails an assert in clang::Preprocessor::setLoadedMacroDirective() because there is already a MacroDirective stored for that macro name.
In this diff, I check if the macro is already inside the IdentifierTable and if it is skip it so that it is not resolved twice.
Reviewed By: kadircet
Differential Revision: https://reviews.llvm.org/D101870
The current code accounts for two possible layouts, but there is at
least a third supported layout: clang-tools-extra may also be checked
out as clang/tools/extra with the releases, which was not yet handled.
Rather than treating that as a special case, use the location of
CompletionModel.cmake to handle all three cases. This should address the
problems that prompted D96787 and the problems that prompted the
proposed revert D100625.
Reviewed By: usaxena95
Differential Revision: https://reviews.llvm.org/D101851
Change instances where options which are boolean are assigned the value 1|0 to use true|false instead.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D101721
This commit fixes cppcoreguidelines-pro-type-vararg false positives on
'char *' variables.
The incorrect warnings generated by clang-tidy can be illustrated with
the following minimal example:
```
goid foo(char* in) {
char *tmp = in;
}
```
The problem is that __builtin_ms_va_list desugared as 'char *', which
leads to false positives.
Fixes bugzilla issue 48042.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D101259
Due to a somewhat annoying, but necessary, shortfall in -Wunused-lambda-capture, These unused captures aren't warned about.
Reviewed By: kadircet
Differential Revision: https://reviews.llvm.org/D101611
Class properties are always implicit short-hands for the getter/setter
class methods.
We need to explicitly visit the interface decl `UIColor` in `UIColor.blueColor`,
otherwise we instead show the method decl even while hovering over
`UIColor` in the expression.
Differential Revision: https://reviews.llvm.org/D99975
This is useful for running in batch mode.
Getting the SymbolID from via getSymbolInfo may give SymbolID
of a symbol different from that located by LocateSymbolAt (they
have different semantics of choosing the symbol.)
Differential Revision: https://reviews.llvm.org/D101388
Checks if introspection support is available set output kind parser.
If it isn't present the auto complete will not suggest `srcloc` and an error query will be reported if a user tries to access it.
Reviewed By: steveire
Differential Revision: https://reviews.llvm.org/D101365
This is fix for some timeouts and OOM problems faced while indexing an
auto-generated file with thousands of nested lambdas.
Differential Revision: https://reviews.llvm.org/D101066
If no range is given, return the translation unit AST.
This is useful for tooling operations that require e.g. the full path to
a node.
Reviewed By: sammccall
Differential Revision: https://reviews.llvm.org/D101057
Mishandling of variadic arguments in a function call caused a crash
(runtime assert fail) in bugprone-infinite-loop tidy checker. Fix
is to limit argument matching to the lesser of the number of variadic
params in the prototype or the number of actual args in the call.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D101108
When building preamble, clangd truncates file contents. This yielded
errnous warnings in some cases.
This patch fixes the issue by turning off no-newline-at-eof warnings whenever
the file has more contents than the preamble.
Fixes https://github.com/clangd/clangd/issues/744.
Differential Revision: https://reviews.llvm.org/D100501
clang-tidy should not generate warnings for the goto argument without
parentheses, because it would be a syntax error.
The only valid case where an argument can be enclosed in parentheses is
"Labels as Values" gcc extension: https://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html.
This commit adds support for the label-as-values extension as implemented in clang.
Fixes bugzilla issue 49634.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D99924
Cross file tweaks can now use the dirty buffer contents easily when performing cross file effects.
This can be noted on the DefineOutline tweak, now working when the target file is unsaved
Reviewed By: sammccall
Differential Revision: https://reviews.llvm.org/D93978
Overflows are never fun.
In most cases (in most of the code), they are rare,
because usually you e.g. don't have as many elements.
However, it's exceptionally easy to fall into this pitfail
in code that deals with images, because, assuming 4-channel 32-bit FP data,
you need *just* ~269 megapixel image to case an overflow
when computing at least the total byte count.
In [[ https://github.com/darktable-org/darktable | darktable ]], there is a *long*, painful history of dealing with such bugs:
* https://github.com/darktable-org/darktable/pull/7740
* https://github.com/darktable-org/darktable/pull/7419
* eea1989f2c
* 70626dd95b
* https://github.com/darktable-org/darktable/pull/670
* 38c69fb1b2
and yet they clearly keep resurfacing still.
It would be immensely helpful to have a diagnostic for those patterns,
which is what this change proposes.
Currently, i only diagnose the most obvious case, where multiplication
is directly widened with no other expressions inbetween,
(i.e. `long r = (int)a * (int)b` but not even e.g. `long r = ((int)a * (int)b)`)
however that might be worth relaxing later.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D93822
These can be invoked at different stages while building an AST to let
FeatureModules implement features on top of it. The patch also
introduces a sawDiagnostic hook, which can mutate the final clangd::Diag
while reading a clang::Diagnostic.
Differential Revision: https://reviews.llvm.org/D98499
First patch to enable diagnostic fix generation through modules. The
workflow will look like:
- ASTWorker letting modules know about diagnostics while building AST,
modules can read clang::Diagnostic and mutate clangd::Diagnostic through
that hook.
- Modules can implement and expose tweaks to fix diagnostics or act as
general refactorings.
- Tweak::Selection will contain information about the diagnostic
associated with the codeAction request to enable modules to fail their
diagnostic fixing tweakson prepare if need be.
Differential Revision: https://reviews.llvm.org/D98498
This is the only remaining check that creates `std::move` includes but doesn't add a `<utility>` include.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D97683
This reverts commit 63bc9e4435.
This breaks llvm-project/clang-tools-extra/clangd/tool/ClangdMain.cpp:570:11:
with error: enumeration value 'None' not handled in switch [-Werror,-Wswitch]
(this was originally part of https://reviews.llvm.org/D96281 and has been split off into its own patch)
If a macro is used within a function, the code inside the macro
doesn't make the code less readable. Instead, for a reader a macro is
more like a function that is called. Thus the code inside a macro
shouldn't increase the complexity of the function in which it is called.
Thus the flag 'IgnoreMacros' is added. If set to 'true' code inside
macros isn't considered during analysis.
This isn't perfect, as now the code of a macro isn't considered at all,
even if it has a high cognitive complexity itself. It might be better if
a macro is considered in the analysis like a function and gets its own
cognitive complexity. Implementing such an analysis seems to be very
complex (if possible at all with the given AST), so we give the user the
option to either ignore macros completely or to let the expanded code
count to the calling function's complexity.
See the code example from vgeof (originally added as note in https://reviews.llvm.org/D96281)
bool doStuff(myClass* objectPtr){
if(objectPtr == nullptr){
LOG_WARNING("empty object");
return false;
}
if(objectPtr->getAttribute() == nullptr){
LOG_WARNING("empty object");
return false;
}
use(objectPtr->getAttribute());
}
The LOG_WARNING macro itself might have a high complexity, but it do not make the
the function more complex to understand like e.g. a 'printf'.
By default 'IgnoreMacros' is set to 'false', which is the original behavior of the check.
Reviewed By: lebedev.ri, alexfh
Differential Revision: https://reviews.llvm.org/D98070
Users can reset any external index set by previous fragments by
putting a `None` for the external block, e.g:
```
Index:
External: None
```
Differential Revision: https://reviews.llvm.org/D100106