latency for certain models of the Intel Atom family, by converting
instructions into their equivalent LEA instructions, when it is both
useful and possible to do so.
llvm-svn: 180573
indirect through a memory address is to load the memory address into
a register and then call indirect through the register.
This patch implements this improvement by modifying SelectionDAG to
force a function address which is a memory reference to be loaded
into a virtual register.
Patch by Sriram Murali.
llvm-svn: 178171
If two functions require different features (e.g., `-mno-sse' vs. `-msse') then
we want to honor that, especially during LTO. We can do that by resetting the
subtarget's features depending upon the 'target-feature' attribute.
llvm-svn: 175314
conditions are met:
1. They share the same operand and are in the same BB.
2. Both outputs are used.
3. The target has a native instruction that maps to ISD::FSINCOS node or
the target provides a sincos library call.
Implemented the generic optimization in sdisel and enabled it for
Mac OSX. Also added an additional optimization for x86_64 Mac OSX by
using an alternative entry point __sincos_stret which returns the two
results in xmm0 / xmm1.
rdar://13087969
PR13204
llvm-svn: 173755
The current Intel Atom microarchitecture has a feature whereby
when a function returns early then it is slightly faster to execute
a sequence of NOP instructions to wait until the return address is ready,
as opposed to simply stalling on the ret instruction until
the return address is ready.
When compiling for X86 Atom only, this patch will run a pass,
called "X86PadShortFunction" which will add NOP instructions where less
than four cycles elapse between function entry and return.
It includes tests.
This patch has been updated to address Nadav's review comments
- Optimize only at >= O1 and don't do optimization if -Os is set
- Stores MachineBasicBlock* instead of BBNum
- Uses DenseMap instead of std::map
- Fixes placement of braces
Patch by Andy Zhang.
llvm-svn: 171879
URL: http://llvm.org/viewvc/llvm-project?rev=171524&view=rev
Log:
The current Intel Atom microarchitecture has a feature whereby when a function
returns early then it is slightly faster to execute a sequence of NOP
instructions to wait until the return address is ready,
as opposed to simply stalling on the ret instruction
until the return address is ready.
When compiling for X86 Atom only, this patch will run a pass, called
"X86PadShortFunction" which will add NOP instructions where less than four
cycles elapse between function entry and return.
It includes tests.
Patch by Andy Zhang.
llvm-svn: 171603
returns early then it is slightly faster to execute a sequence of NOP
instructions to wait until the return address is ready,
as opposed to simply stalling on the ret instruction
until the return address is ready.
When compiling for X86 Atom only, this patch will run a pass, called
"X86PadShortFunction" which will add NOP instructions where less than four
cycles elapse between function entry and return.
It includes tests.
Patch by Andy Zhang.
llvm-svn: 171524
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
Intel chips.
The model number rules were determined by inspecting Intel's
documentation for their newer chip model numbers. My understanding is
that all of the newer Intel chips have fast unaligned memory access, but
if anyone is concerned about a particular chip, just shout.
No tests updated; it's not clear we have dedicated tests for the chips'
various features, but if anyone would like tests (or can point me at
some existing ones), I'm happy to oblige.
llvm-svn: 169730
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
- Add RTM code generation support throught 3 X86 intrinsics:
xbegin()/xend() to start/end a transaction region, and xabort() to abort a
tranaction region
llvm-svn: 167573
- CodeGenPrepare pass for identifying div/rem ops
- Backend specifies the type mapping using addBypassSlowDivType
- Enabled only for Intel Atom with O2 32-bit -> 8-bit
- Replace IDIV with instructions which test its value and use DIVB if the value
is positive and less than 256.
- In the case when the quotient and remainder of a divide are used a DIV
and a REM instruction will be present in the IR. In the non-Atom case
they are both lowered to IDIVs and CSE removes the redundant IDIV instruction,
using the quotient and remainder from the first IDIV. However,
due to this optimization CSE is not able to eliminate redundant
IDIV instructions because they are located in different basic blocks.
This is overcome by calculating both the quotient (DIV) and remainder (REM)
in each basic block that is inserted by the optimization and reusing the result
values when a subsequent DIV or REM instruction uses the same operands.
- Test cases check for the presents of the optimization when calculating
either the quotient, remainder, or both.
Patch by Tyler Nowicki!
llvm-svn: 163150
FeatureFastUAMem for Nehalem, Westmere and Sandy Bridge.
FeatureFastUAMem is already on if we pass in nehalem or westmere as a command
argument.
rdar: 7252306
llvm-svn: 161717
This allows codegen passes to query properties like
InstrItins->SchedModel->IssueWidth. It also ensure's that
computeOperandLatency returns the X86 defaults for loads and "high
latency ops". This should have no significant impact on existing
schedulers because X86 defaults happen to be the same as global
defaults.
llvm-svn: 161370
when run on an Intel Atom processor. The failures have arisen due
to changes elsewhere in the trunk over the past 8 weeks or so.
These failures were not detected by the Atom buildbot because the
CPU on the Atom buildbot was not being detected as an Atom CPU.
The fix for this problem is in Host.cpp and X86Subtarget.cpp, but
shall remain commented out until the current set of Atom test failures
are fixed.
Patch by Andy Zhang and Tyler Nowicki!
llvm-svn: 160451
I disabled FMA3 autodetection, since the result may differ from expected for some benchmarks.
I added tests for GodeGen and intrinsics.
I did not change llvm.fma.f32/64 - it may be done later.
llvm-svn: 157737
on X86 Atom. Some of our tests failed because the tail merging part of
the BranchFolding pass was creating new basic blocks which did not
contain live-in information. When the anti-dependency code in the Post-RA
scheduler ran, it would sometimes rename the register containing
the function return value because the fact that the return value was
live-in to the subsequent block had been lost. To fix this, it is necessary
to run the RegisterScavenging code in the BranchFolding pass.
This patch makes sure that the register scavenging code is invoked
in the X86 subtarget only when post-RA scheduling is being done.
Post RA scheduling in the X86 subtarget is only done for Atom.
This patch adds a new function to the TargetRegisterClass to control
whether or not live-ins should be preserved during branch folding.
This is necessary in order for the anti-dependency optimizations done
during the PostRASchedulerList pass to work properly when doing
Post-RA scheduling for the X86 in general and for the Intel Atom in particular.
The patch adds and invokes the new function trackLivenessAfterRegAlloc()
instead of using the existing requiresRegisterScavenging().
It changes BranchFolding.cpp to call trackLivenessAfterRegAlloc() instead of
requiresRegisterScavenging(). It changes the all the targets that
implemented requiresRegisterScavenging() to also implement
trackLivenessAfterRegAlloc().
It adds an assertion in the Post RA scheduler to make sure that post RA
liveness information is available when it is needed.
It changes the X86 break-anti-dependencies test to use –mcpu=atom, in order
to avoid running into the added assertion.
Finally, this patch restores the use of anti-dependency checking
(which was turned off temporarily for the 3.1 release) for
Intel Atom in the Post RA scheduler.
Patch by Andy Zhang!
Thanks to Jakob and Anton for their reviews.
llvm-svn: 155395