CustomLowerNode was not being called during SplitVectorOperand,
meaning custom legalization could not be used by targets.
This also adds a test case for NVPTX that depends on this custom
legalization.
Differential Revision: http://llvm-reviews.chandlerc.com/D1195
Attempt to fix the buildbots by making the X86 test I just added platform independent
llvm-svn: 187202
This reverts commit 187198. It broke the bots.
The soft float test probably needs a -triple because of name differences.
On the hard float test I am getting a "roundss $1, %xmm0, %xmm0", instead of
"vroundss $1, %xmm0, %xmm0, %xmm0".
llvm-svn: 187201
CustomLowerNode was not being called during SplitVectorOperand,
meaning custom legalization could not be used by targets.
This also adds a test case for NVPTX that depends on this custom
legalization.
Differential Revision: http://llvm-reviews.chandlerc.com/D1195
llvm-svn: 187198
This removes the need to store the asm variant in each row of the single table that existed before. Shaves ~16K off the size of X86AsmParser.o.
llvm-svn: 187026
This makes them consistent with 'bt' which already had this handling. gas has the same behavior. There have been discussions on the mailing list about determining size based on the immediate, but my goal here was just to remove the inconsistency.
llvm-svn: 186904
It only didn't use it before because it seems InstAlias handling in the asm printer fails to count tied operands so it tried to find an xor with 2 operands instead of the 3 it wfails to count tied.
llvm-svn: 186900
Use PMIN/PMAX for UGE/ULE vector comparions to reduce the number of required
instructions. This trick also works for UGT/ULT, but there is no advantage in
doing so. It wouldn't reduce the number of instructions and it would actually
reduce performance.
Reviewer: Ben
radar:5972691
llvm-svn: 186432
In particular:
movsbw %al, %ax --> cbtw
movswl %ax, %eax --> cwtl
movslq %eax, %rax --> cltq
According to Intel's manual those have the same performance characteristics but
come with a smaller encoding.
llvm-svn: 186174
Summary:
This patch adds explicit calling convention types for the Win64 and
System V/x86-64 ABIs. This allows code to override the default, and use
the Win64 convention on a target that wants to use SysV (and
vice-versa). This is needed to implement the `ms_abi` and `sysv_abi` GNU
attributes.
Reviewers:
CC:
llvm-svn: 186144
in-tree implementations of TargetLoweringBase::isFMAFasterThanMulAndAdd in
order to resolve the following issues with fmuladd (i.e. optional FMA)
intrinsics:
1. On X86(-64) targets, ISD::FMA nodes are formed when lowering fmuladd
intrinsics even if the subtarget does not support FMA instructions, leading
to laughably bad code generation in some situations.
2. On AArch64 targets, ISD::FMA nodes are formed for operations on fp128,
resulting in a call to a software fp128 FMA implementation.
3. On PowerPC targets, FMAs are not generated from fmuladd intrinsics on types
like v2f32, v8f32, v4f64, etc., even though they promote, split, scalarize,
etc. to types that support hardware FMAs.
The function has also been slightly renamed for consistency and to force a
merge/build conflict for any out-of-tree target implementing it. To resolve,
see comments and fixed in-tree examples.
llvm-svn: 185956
Explicit references to %AH for an i8 remainder instruction can lead to
references to %AH in a REX prefixed instruction, which causes things to
blow up. Do the same thing in FastISel as we do for DAG isel and instead
shift %AX right by 8 bits and then extract the 8-bit subreg from that
result.
rdar://14203849
http://llvm.org/bugs/show_bug.cgi?id=16105
llvm-svn: 185899
This allows getDebugThreadLocalSymbol to return a generic MCExpr
instead of just a MCSymbolRefExpr.
This is in preparation for supporting debug info for TLS variables
on PowerPC, where we need to describe the variable location using
a more complex expression than just MCSymbolRefExpr.
llvm-svn: 185460