getCanonicalType() to make sure that the type we got back is actually
canonical. This is the case for most types, which always build a
canonical type when given canonical components. However, some types that
involve expressions in their canonicalization (e.g., array types with
dependent sizes) don't always build canonical types from canonical
components, because there is no such thing as a "canonical"
expression. Therefore, we do this extra mapping to ensure that the
canonical types we store are actually canonical.
llvm-svn: 117344
This adds them where missing, and traces them through PCH. We fix at least one
bug in the extents found by the Index library, and make a lot of refactoring
tools which care about the exact formulation of a constructor call easier to
write. Also some minor cleanups to more consistently follow the friend pattern
instead of the setter pattern when rebuilding a serialized AST.
Patch originally by Samuel Benzaquen.
llvm-svn: 117254
In that case a chained PCH will record the updates to the DefinitionData pointer of forward references.
If a forward reference mutated into a definition re-write it into the chained PCH, this is too big of a change.
llvm-svn: 117239
- Pass around RecordDataImpl instead of the concrete RecordData so that any SmallVector can be used.
- Move ASTDeclWriter::WriteCXXDefinitionData to ASTWriter::AddCXXDefinitionData.
llvm-svn: 117236
its initial creation/deserialization and store the changes in a chained PCH.
The idea is that the AST entities call methods on the ASTMutationListener to give notifications
of changes; the PCHWriter implements the ASTMutationListener interface and stores the incremental changes
of the updated entity. WIP
llvm-svn: 117235
more closely parallel the computation of linkage. This gets us to a state
much closer to what gcc emits, modulo bugs, which will undoubtedly arise in
abundance.
llvm-svn: 117147
This adds an option to set the _MSC_VER macro without
recompiling. This is very useful when testing compatibility
with the Windows SDK and c++stdlib headers.
-fmsc-version=<version> (defaults to VS2003 (1300))
llvm-svn: 116999
inclusion directives, keeping track of every #include, #import,
etc. in the translation unit. We keep track of the source location and
kind of the inclusion, how the file name was spelled, and the
underlying file to which the inclusion resolved.
llvm-svn: 116952
by marking the decl invalid isn't. Make some steps towards supporting these
and then hastily shut them down at the last second by marking them as
unsupported.
llvm-svn: 116661
identifiers to determine good typo-correction candidates. Once we've
identified those candidates, we perform name lookup on each of them
and the consider the results.
This optimization makes typo correction > 2x faster on a benchmark
example using a single typo (NSstring) in a tiny file that includes
Cocoa.h from a precompiled header, since we are deserializing far less
information now during typo correction.
There is a semantic change here, which is interesting. The presence of
a similarly-named entity that is not visible can now affect typo
correction. This is both good (you won't get weird corrections if the
thing you wanted isn't in scope) and bad (you won't get good
corrections if there is a similarly-named-but-completely-unrelated
thing). Time will tell whether it was a good choice or not.
llvm-svn: 116528
instead of deserializing the complete declaration context of the record.
Iterating over the fields of a record is very common (e.g to determine the layout), unfortunately we needlessly deserialize every declaration
that the declaration context of the record contains; this can be bad for large C++ classes that contain a lot of methods.
Fix this by allow deserialization of just the fields when we want to iterate over them.
Progress for rdar://7260160.
llvm-svn: 116507
following amusing sequence:
- AST writing schedules writing a type X* that it had never seen
before
- AST writing starts writing another declaration, ends up
deserializing X* from a prior AST file. Now we have two type IDs for
the same type!
- AST writer tries to write X*. It only has the lower-numbered ID
from the the prior AST file, so references to the higher-numbered ID
that was scheduled for writing go off into lalaland.
To fix this, keep the higher-numbered ID so we end up writing the type
twice. Since this issue occurs so rarely, and type records are
generally rather small, I deemed this better than the alternative: to
keep a separate mapping from the higher-numbered IDs to the
lower-numbered IDs, which we would end up having to check whenever we
want to deserialize any type.
Fixes <rdar://problem/8511624>, I think.
llvm-svn: 115647
file is somehow changed in a chained PCH file, make sure that we write
out the macro definition. Fixes part of <rdar://problem/8499034>.
llvm-svn: 115259
already be determined by isCopyAssignmentOperator(), and was set too
late in the process for all clients to see the appropriate
value. Cleanup only; no functionality change.
llvm-svn: 114916
identifier, we may have a Sema object but no translation unit scope
(because parsing is finished). In this case, we still need to update
the IdResolver, which might still be used when writing a PCH
containing another PCH (without chaining). This bug manifested as a
failure with precompiled preambles.
Also, add a little environment-variable-sensitive logging for
libclang.
llvm-svn: 114774
The canonical FunctionTemplateDecl contains the specializations but we cannot use getCanonicalDecl on Template because it may still be initializing.
Write and read it from PCH.
Fixes http://llvm.org/PR8134
llvm-svn: 113744
Another beating by boost in this test case: http://llvm.org/PR8117
A function specialization wasn't properly initialized if it wasn't canonical.
I wish there was a nice little test case but this was boost.
llvm-svn: 113481
covered by individual case statements. Flow-based analyses may wish to consult this information,
and recording this in the AST allows us to obviate reconstructing this information later when
we build the CFG.
llvm-svn: 113447
PCH got a severe beating by the boost-using test case reported here: http://llvm.org/PR8099
Fix issues like:
-When PCH reading, make sure Decl's getASTContext() doesn't get called since a Decl in the parent hierarchy may be initializing.
-In ASTDeclReader::VisitFunctionDecl VisitRedeclarable should be called before using FunctionDecl's isCanonicalDecl()
-In ASTDeclReader::VisitRedeclarableTemplateDecl CommonOrPrev must be initialized before anything else.
llvm-svn: 113391
three different kinds of AST nodes to represent using declarations:
UsingDecl, UnresolvedUsingValueDecl, and
UnresolvedUsingTypenameDecl. These three are collapsed into a single
cursor kind for using declarations, since libclang clients don't need
the distinction.
Several related changes here:
- Cursor visitation of the three AST nodes for using declarations
- Proper source-range computation for these AST nodes
- Using declarations have no USRs, since they don't actually declare
any entities.
llvm-svn: 112730
suppressing USRs). Also, fix up the source location information for
using directives so that the declaration location refers to the
namespace name.
llvm-svn: 112693
(and thus protocol_begin(), protocol_end()) now only contains the list of protocols that were directly referenced in
an @interface declaration. 'all_referenced_protocol_[begin,end]()' now returns the set of protocols that were referenced
in both the @interface and class extensions. The latter is needed for semantic analysis/codegen, while the former is
needed to maintain the lexical information of the original source.
Fixes <rdar://problem/8380046>.
llvm-svn: 112691
aliases. Previously, the location of the alias was at the "namespace"
keyword. Now, it's on the identifier being declared (as is the custom
for Clang), and we keep a separate source location for the "namespace"
keyword.
Also, added a getSourceRange() member function to NamespaceAliasDecl
to correctly compute the source range.
Finally, removed a bunch of setters from NamespaceAliasDecl and gave
ASTReaderDecl friendship so that it could set the corresponding fields
directly.
llvm-svn: 112681
For large floats/integers, APFloat/APInt will allocate memory from the heap to represent these numbers.
Unfortunately, when we use a BumpPtrAllocator to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
the APFloat/APInt values will never get freed.
I introduce the class 'APNumericStorage' which uses ASTContext's allocator for memory allocation and is used internally by FloatingLiteral/IntegerLiteral.
Fixes rdar://7637185
llvm-svn: 112361
When including a PCH and later re-emitting to another PCH, the name lookup tables of DeclContexts
may be incomplete, since we now lazily deserialize the visible decls of a particular name.
Fix the issue by iterating over the un-deserialized visible decls and completing the lookup tables
of DeclContexts before writing them out.
llvm-svn: 111698
*Huge* improvement over the amount of deserializing that we do for C++ lookup.
e.g, if he have the Carbon header precompiled and include it on a file containing this:
int x;
these are the before/after stats:
BEFORE:
*** AST File Statistics:
578 stat cache hits
4 stat cache misses
548/30654 source location entries read (1.787695%)
15907/16501 types read (96.400223%)
53525/59955 declarations read (89.275291%)
33993/43525 identifiers read (78.099945%)
41516/51891 statements read (80.006165%)
77/5317 macros read (1.448185%)
0/6335 lexical declcontexts read (0.000000%)
1/5424 visible declcontexts read (0.018437%)
AFTER using the on-disk table:
*** AST File Statistics:
578 stat cache hits
4 stat cache misses
548/30654 source location entries read (1.787695%)
10/16501 types read (0.060602%)
9/59955 declarations read (0.015011%)
161/43525 identifiers read (0.369902%)
20/51891 statements read (0.038542%)
6/5317 macros read (0.112846%)
0/6335 lexical declcontexts read (0.000000%)
2/5424 visible declcontexts read (0.036873%)
There's only one issue affecting mostly the precompiled preambles which I will address soon.
llvm-svn: 111636
MakeTypeID template function which accepts a type and a function object that returns a TypeIdx.
MakeTypeID is in PCHCommon.h so that it can be used by ASTReader too.
llvm-svn: 111634
Now all classes derived from Attr are generated from TableGen.
Additionally, Attr* is no longer its own linked list; SmallVectors or
Attr* are used. The accompanying LLVM commit contains the updates to
TableGen necessary for this.
Some other notes about newly-generated attribute classes:
- The constructor arguments are a SourceLocation and a Context&,
followed by the attributes arguments in the order that they were
defined in Attr.td
- Every argument in Attr.td has an appropriate accessor named getFoo,
and there are sometimes a few extra ones (such as to get the length
of a variadic argument).
Additionally, specific_attr_iterator has been introduced, which will
iterate over an AttrVec, but only over attributes of a certain type. It
can be accessed through either Decl::specific_attr_begin/end or
the global functions of the same name.
llvm-svn: 111455