To unify the naming scheme across all ops in the SPIR-V dialect, we are
moving from spv.camelCase to spv.CamelCase everywhere.
Differential Revision: https://reviews.llvm.org/D97920
Add a Loop Option attribute and generate llvm metadata attached to
branch instructions to control code generation.
Reviewed By: ftynse, mehdi_amini
Differential Revision: https://reviews.llvm.org/D96820
Verification of the LLVM IR produced when translating various MLIR dialects was
only active when calling the translation programmatically. This has led to
several cases of invalid LLVM IR being generated that could not be caught with
textual mlir-translate tests. Add verifiers for these cases and fix the tests
in preparation for enforcing the validation of LLVM IR.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D96774
Port the translation of five dialects that define LLVM IR intrinsics
(LLVMAVX512, LLVMArmNeon, LLVMArmSVE, NVVM, ROCDL) to the new dialect
interface-based mechanism. This allows us to remove individual translations
that were created for each of these dialects and just use one common
MLIR-to-LLVM-IR translation that potentially supports all dialects instead,
based on what is registered and including any combination of translatable
dialects. This removal was one of the main goals of the refactoring.
To support the addition of GPU-related metadata, the translation interface is
extended with the `amendOperation` function that allows the interface
implementation to post-process any translated operation with dialect attributes
from the dialect for which the interface is implemented regardless of the
operation's dialect. This is currently applied to "kernel" functions, but can
be used to construct other metadata in dialect-specific ways without
necessarily affecting operations.
Depends On D96591, D96504
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D96592
Until now, the GPU translation to NVVM or ROCDL intrinsics relied on the
presence of the generic `gpu.kernel` attribute to attach additional LLVM IR
metadata to the relevant functions. This would be problematic if each dialect
were to handle the conversion of its own options, which is the intended
direction for the translation infrastructure. Introduce `nvvm.kernel` and
`rocdl.kernel` in addition to `gpu.kernel` and base translation on these new
attributes instead.
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D96591
These are similar to maxnum and minnum, but they're defined to treat -0
as less than +0. This behavior can't be expressed using float
comparisons and selects, since comparisons are defined to treat
different-signed zeros as equal. So, the only way to communicate this
behavior into LLVM IR without defining target-specific intrinsics is to
add the corresponding ops.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D96373
After the LLVM dialect types were ported to use built-in types, the parser kept
supporting the old syntax for LLVM dialect types to produce built-in types for
compatibility. Drop this support.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D96275
Historically, the Vector to LLVM dialect conversion subsumed the Standard to
LLVM dialect conversion patterns. This was necessary because the conversion
infrastructure did not have sufficient support for reconciling type
conversions. This support is now available. Only keep the patterns related to
the Vector dialect in the Vector to LLVM conversion and require type casts
operations to be inserted if necessary. These casts will be removed by
following conversions if possible. Update integration tests to also run the
Standard to LLVM conversion.
There is a significant amount of test churn, which is due to (a) unnecessarily
strict tests in VectorToLLVM and (b) many patterns actually targeting Standard
dialect ops instead of LLVM dialect ops leading to tests actually exercising a
Vector->Standard->LLVM conversion. This churn is a good illustration of the
reason to make the conversion partial: now the tests only check the code in the
Vector to LLVM conversion and will not be randomly broken by changes in
Standard to LLVM conversion.
Arguably, it may be possible to extract Vector to Standard patterns into a
separate pass, but given the ongoing splitting of the Standard dialect, such
pass will be short-lived and will require further refactoring.
Depends On D95626
Reviewed By: nicolasvasilache, aartbik
Differential Revision: https://reviews.llvm.org/D95685
Support OpImageType in SPIRV Dialect.
This change doesn't support operand AccessQualifier since
it is optinal and only enables under Kernel capability.
co-authored-by: Alan Liu <alanliu.yf@gmail.com>
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D95580
Support OpImageType in SPIRV Dialect.
This change doesn't support operand AccessQualifier since
it is optinal and only enables under Kernel capability.
co-authored-by: Alan Liu <alanliu.yf@gmail.com>
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D95580
Adds vp2intersect to the AVX512 dialect and defines a lowering to the
LLVM dialect.
Author: Matthias Springer <springerm@google.com>
Differential Revision: https://reviews.llvm.org/D95301
spv.Ordered/spv.Unordered are meant for OpenCL Kernel capability.
For Vulkan Shader capability, we should use spv.IsNan to check
whether a number is NaN.
Add a new pattern for converting `std.cmpf ord|uno` to spv.IsNan
and bumped the pattern converting to spv.Ordered/spv.Unordered
to a higher benefit. The SPIR-V target environment will properly
select between these two patterns.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D95237
This PR only has coro intrinsics needed for the Async to LLVM lowering. Will add other intrinsics as needed in the followup PRs.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D95143
Define OrderedOp and UnorderedOp instructions in SPIR-V and convert
cmpf operations with `ord` and `uno` tag to these instructions
respectively.
Differential Revision: https://reviews.llvm.org/D95098
In the overwhelmingly common case, enum attribute case strings represent valid identifiers in MLIR syntax. This revision updates the format generator to format as a keyword in these cases, removing the need to wrap values in a string. The parser still retains the ability to parse the string form, but the printer will use the keyword form when applicable.
Differential Revision: https://reviews.llvm.org/D94575
This commit moves dangling ops in the main ops.td file to the proper
file matching their categories. This makes ops.td as purely including
all category files.
Differential Revision: https://reviews.llvm.org/D94413
Continue the convergence between LLVM dialect and built-in types by using the
built-in vector type whenever possible, that is for fixed vectors of built-in
integers and built-in floats. LLVM dialect vector type is still in use for
pointers, less frequent floating point types that do not have a built-in
equivalent, and scalable vectors. However, the top-level `LLVMVectorType` class
has been removed in favor of free functions capable of inspecting both built-in
and LLVM dialect vector types: `LLVM::getVectorElementType`,
`LLVM::getNumVectorElements` and `LLVM::getFixedVectorType`. Additional work is
necessary to design an implemented the extensions to built-in types so as to
remove the `LLVMFixedVectorType` entirely.
Note that the default output format for the built-in vectors does not have
whitespace around the `x` separator, e.g., `vector<4xf32>` as opposed to the
LLVM dialect vector type format that does, e.g., `!llvm.vec<4 x fp128>`. This
required changing the FileCheck patterns in several tests.
Reviewed By: mehdi_amini, silvas
Differential Revision: https://reviews.llvm.org/D94405
This commit adds support for (de-)serializing SpecConstantOpeation. One
thing worth noting is that during deserialization, we assign a fake ID to
enclosed ops inside SpecConstantOpeation. We need to do this in order
for deserialization logic to properly update ID to value map and to
later reference the created value from the sibling 'spv::YieldOp'.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D93591
Continue the convergence between LLVM dialect and built-in types by replacing
the bfloat, half, float and double LLVM dialect types with their built-in
counterparts. At the API level, this is a direct replacement. At the syntax
level, we change the keywords to `bf16`, `f16`, `f32` and `f64`, respectively,
to be compatible with the built-in type syntax. The old keywords can still be
parsed but produce a deprecation warning and will be eventually removed.
Depends On D94178
Reviewed By: mehdi_amini, silvas, antiagainst
Differential Revision: https://reviews.llvm.org/D94179
This patch adds an attribute `inclusive` which if present causes
the upperbound to be included in the loop iteration interval.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D94235
to the conversion of LLVM IR dialect. These attributes are used in FIR to
support the lowering of Fortran using target-specific calling conventions.
Add roundtrip tests.
Add changes per review comments/concerns.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D94052
The LLVM dialect type system has been closed until now, i.e. did not support
types from other dialects inside containers. While this has had obvious
benefits of deriving from a common base class, it has led to some simple types
being almost identical with the built-in types, namely integer and floating
point types. This in turn has led to a lot of larger-scale complexity: simple
types must still be converted, numerous operations that correspond to LLVM IR
intrinsics are replicated to produce versions operating on either LLVM dialect
or built-in types leading to quasi-duplicate dialects, lowering to the LLVM
dialect is essentially required to be one-shot because of type conversion, etc.
In this light, it is reasonable to trade off some local complexity in the
internal implementation of LLVM dialect types for removing larger-scale system
complexity. Previous commits to the LLVM dialect type system have adapted the
API to support types from other dialects.
Replace LLVMIntegerType with the built-in IntegerType plus additional checks
that such types are signless (these are isolated in a utility function that
replaced `isa<LLVMType>` and in the parser). Temporarily keep the possibility
to parse `!llvm.i32` as a synonym for `i32`, but add a deprecation notice.
Reviewed By: mehdi_amini, silvas, antiagainst
Differential Revision: https://reviews.llvm.org/D94178
the conversion of LLVM IR dialect. These attributes are used in FIR to
support the lowering of Fortran using target-specific calling
conventions.
Add roundtrip tests. Add changes per review comments/concerns.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D94052
Introduce a translation of OpenMP workshare loop construct to LLVM IR. This is
a minimalist version to enable the pipeline and currently only supports static
loop schedule (default in the specification) on non-collapsed loops. Other
features will be added on per-need basis.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D92055
The LLVM IR 'switch' instruction allows control flow to be transferred
to one of any number of branches depending on an integer control value,
or a default value if the control does not match any branch values. This patch
adds `llvm.switch` to the MLIR LLVMIR dialect, as well as translation routines
for lowering it to LLVM IR.
To store a variable number of operands for a variable number of branch
destinations, the new op makes use of the `AttrSizedOperandSegments`
trait. It stores its default branch operands as one segment, and all
remaining case branches' operands as another. It also stores pairs of
begin and end offset values to delineate the sub-range of each case branch's
operands. There's probably a better way to implement this, since the
offset computation complicates several parts of the op definition. This is the
approach I settled on because in doing so I was able to delegate to the default
op builder member functions. However, it may be preferable to instead specify
`skipDefaultBuilders` in the op's ODS, or use a completely separate
approach; feedback is welcome!
Another contentious part of this patch may be the custom printer and
parser functions for the op. Ideally I would have liked the MLIR to be
printed in this way:
```
llvm.switch %0, ^bb1(%1 : !llvm.i32) [
1: ^bb2,
2: ^bb3(%2, %3 : !llvm.i32, !llvm.i32)
]
```
The above would resemble how LLVM IR is formatted for the 'switch'
instruction. But I found it difficult to print and parse something like
this, whether I used the declarative assembly format or custom functions.
I also was not sure a multi-line format would be welcome -- it seems
like most MLIR ops do not use newlines. Again, I'd be happy to hear any
feedback here as well, or on any other aspect of the patch.
Differential Revision: https://reviews.llvm.org/D93005
This commit shuffles SPIR-V code around to better follow MLIR
convention. Specifically,
* Created IR/, Transforms/, Linking/, and Utils/ subdirectories and
moved suitable code inside.
* Created SPIRVEnums.{h|cpp} for SPIR-V C/C++ enums generated from
SPIR-V spec. Previously they are cluttered inside SPIRVTypes.{h|cpp}.
* Fixed include guards in various header files (both .h and .td).
* Moved serialization tests under test/Target/SPIRV.
* Renamed TableGen backend -gen-spirv-op-utils into -gen-spirv-attr-utils
as it is only generating utility functions for attributes.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D93407
Some Ops in OMP dialect have regions associated with them i.e
`ParallelOp` `MasterOp`. Lowering of these regions involves interfacing
with `OMPIRBuilder` using callbacks, yet there still exist opportunities
for sharing common code in between.
This patch factors out common code into a separate function and adds
support for lowering `MasterOp` using that. Lowering of `ParallelOp` is
also modified appropriately.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D87247
The check for formatting enum attributes was missing a call to get the base attribute, which is necessary to strip off the top-level OptionalAttr<> wrapper.
Differential Revision: https://reviews.llvm.org/D92713
The InlineAsmOp mirrors the underlying LLVM semantics with a notable
exception: the embedded `asm_string` is not allowed to define or reference
any symbol or any global variable: only the operands of the op may be read,
written, or referenced.
Attempting to define or reference any symbol or any global behavior is
considered undefined behavior at this time.
The asm dialect syntax is currently specified with an integer (0 [default] for the "att dialect", 1 for the intel dialect) to circumvent the ODS limitation on string enums.
Translation to LLVM is provided and raises the fact that the asm constraints string must be well-formed with respect to in/out operands. No check is performed on the asm_string.
An InlineAsm instruction in LLVM is a special call operation to a function that is constructed on the fly.
It does not fit the current model of MLIR calls with symbols.
As a consequence, the current implementation constructs the function type in ModuleTranslation.cpp.
This should be refactored in the future.
The mlir-cpu-runner is augmented with the global initialization of the X86 asm parser to allow proper execution in JIT mode. Previously, only the X86 asm printer was initialized.
Differential revision: https://reviews.llvm.org/D92166
For intrinsics with multiple returns where one or more operands are overloaded, the overloaded type is inferred from the corresponding field of the resulting struct, instead of accessing the result directly.
As such, the hasResult parameter of LLVM_IntrOpBase (and derived classes) is replaced with numResults. TableGen for intrinsics also updated to populate this field with the total number of results.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D91680
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D88609
Usage of nested parallel regions were not working correctly and leading
to assertion failures. Fix contains the following changes,
1) Don't set the insertion point in the body callback.
2) Save the continuation IP in a stack and set the branch to
continuationIP at the terminator.
Reviewed By: SouraVX, jdoerfert, ftynse
Differential Revision: https://reviews.llvm.org/D88720
Also add a verifier pass to ExecutionEngine.
It's hard to come up with a test case, since mlir-opt always add location info after parsing it (?)
Differential Revision: https://reviews.llvm.org/D88135
Summary:
========
Bugzilla Ticket No: Bug 46884 [https://bugs.llvm.org/show_bug.cgi?id=46884]
Flush op assembly syntax was ambiguous:
Consider the below test case:
flush operation is not having any arguments.
But the next statement token i.e "%2" is read as the argument for flush operation and then translator issues an error.
***************************************************************
$ cat -n flush.mlir
1 llvm.func @_QQmain(%arg0: !llvm.i32) {
2 %0 = llvm.mlir.constant(1 : i64) : !llvm.i64
3 %1 = llvm.alloca %0 x !llvm.i32 {in_type = i32, name = "a"} : (!llvm.i64) -> !llvm.ptr<i32>
4 omp.flush
5 %2 = llvm.load %1 : !llvm.ptr<i32>
6 llvm.return
7 }
$ mlir-translate -mlir-to-llvmir flush.mlir
flush.mlir:5:6: error: expected ':'
%2 = llvm.load %1 : !llvm.ptr<i32>
^
***************************************************************
Solution:
=========
Introduced begin ( `(` ) and end token ( `)` ) to determince the begin and end of variadic arguments.
The patch includes code changes and testcase modifications.
Reviewed By: Valentin Clement, Mehdi AMINI
Differential Revision: https://reviews.llvm.org/D88376
As discussed in D86576, noundef attribute is removed from masked store/load/gather/scatter's
pointer operands.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D86656
This patch adds NoUndef to Intrinsics.td.
The attribute is attached to llvm.assume's operand, because llvm.assume(undef)
is UB.
It is attached to pointer operands of several memory accessing intrinsics
as well.
This change makes ValueTracking::getGuaranteedNonPoisonOps' intrinsic check
unnecessary, so it is removed.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86576
Provides fast, generic way of setting a mask up to a certain
point. Potential use cases that may benefit are create_mask
and transfer_read/write operations in the vector dialect.
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D86501
According to the LLVM Language Reference, 'cmpxchg' accepts integer or pointer
types. Several MLIR tests were using it with floats as it appears possible to
programmatically construct and print such an instruction, but it cannot be
parsed back. Use integers instead.
Depends On D85899
Reviewed By: flaub, rriddle
Differential Revision: https://reviews.llvm.org/D85900
Legacy implementation of the LLVM dialect in MLIR contained an instance of
llvm::Module as it was required to parse LLVM IR types. The access to the data
layout of this module was exposed to the users for convenience, but in practice
this layout has always been the default one obtained by parsing an empty layout
description string. Current implementation of the dialect no longer relies on
wrapping LLVM IR types, but it kept an instance of DataLayout for
compatibility. This effectively forces a single data layout to be used across
all modules in a given MLIR context, which is not desirable. Remove DataLayout
from the LLVM dialect and attach it as a module attribute instead. Since MLIR
does not yet have support for data layouts, use the LLVM DataLayout in string
form with verification inside MLIR. Introduce the layout when converting a
module to the LLVM dialect and keep the default "" description for
compatibility.
This approach should be replaced with a proper MLIR-based data layout when it
becomes available, but provides an immediate solution to compiling modules with
different layouts, e.g. for GPUs.
This removes the need for LLVMDialectImpl, which is also removed.
Depends On D85650
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D85652
This patch adds the translation of the proc_bind clause in a
parallel operation.
The values that can be specified for the proc_bind clause are
specified in the OMP.td tablegen file in the llvm/Frontend/OpenMP
directory. From this single source of truth enumeration for
proc_bind is generated in llvm and mlir (used in specification of
the parallel Operation in the OpenMP dialect). A function to return
the enum value from the string representation is also generated.
A new header file (DirectiveEmitter.h) containing definitions of
classes directive, clause, clauseval etc is created so that it can
be used in mlir as well.
Reviewers: clementval, jdoerfert, DavidTruby
Differential Revision: https://reviews.llvm.org/D84347
This simple patch translates the num_threads and if clauses of the parallel
operation. Also includes test cases.
A minor change was made to parsing of the if clause to parse AnyType and
return the parsed type. Updates to test cases also.
Reviewed by: SouraVX
Differential Revision: https://reviews.llvm.org/D84798
Previous type model in the LLVM dialect did not support identified structure
types properly and therefore could use stateless translations implemented as
free functions. The new model supports identified structs and must keep track
of the identified structure types present in the target context (LLVMContext or
MLIRContext) to avoid creating duplicate structs due to LLVM's type
auto-renaming. Expose the stateful type translation classes and use them during
translation, storing the state as part of ModuleTranslation.
Drop the test type translation mechanism that is no longer necessary and update
the tests to exercise type translation as part of the main translation flow.
Update the code in vector-to-LLVM dialect conversion that relied on stateless
translation to use the new class in a stateless manner.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85297
This dialect was introduced during the bring-up of the new LLVM dialect type
system for testing purposes. The main LLVM dialect now uses the new type system
and the test dialect is no longer necessary, so remove it.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85224
Introduces the expand and compress operations to the Vector dialect
(important memory operations for sparse computations), together
with a first reference implementation that lowers to the LLVM IR
dialect to enable running on CPU (and other targets that support
the corresponding LLVM IR intrinsics).
Reviewed By: reidtatge
Differential Revision: https://reviews.llvm.org/D84888
A new first-party modeling for LLVM IR types in the LLVM dialect has been
developed in parallel to the existing modeling based on wrapping LLVM `Type *`
instances. It resolves the long-standing problem of modeling identified
structure types, including recursive structures, and enables future removal of
LLVMContext and related locking mechanisms from LLVMDialect.
This commit only switches the modeling by (a) renaming LLVMTypeNew to LLVMType,
(b) removing the old implementaiton of LLVMType, and (c) updating the tests. It
is intentionally minimal. Separate commits will remove the infrastructure built
for the transition and update API uses where appropriate.
Depends On D85020
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85021
With new LLVM dialect type modeling, the dialect types no longer wrap LLVM IR
types. Therefore, they need to be translated to and from LLVM IR during export
and import. Introduce the relevant functionality for translating types. It is
currently exercised by an ad-hoc type translation roundtripping test that will
be subsumed by the actual translation test when the type system transition is
complete.
Depends On D84339
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D85019
This patch introduces new intrinsics in LLVM dialect:
- `llvm.intr.floor`
- `llvm.intr.maxnum`
- `llvm.intr.minnum`
- `llvm.intr.smax`
- `llvm.intr.smin`
These intrinsics correspond to SPIR-V ops from GLSL
extended instruction set (`spv.GLSL.Floor`, `spv.GLSL.FMax`,
`spv.GLSL.FMin`, `spv.GLSL.SMax` and `spv.GLSL.SMin`
respectively). Also conversion patterns for them were added.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D84661
This patch introduces 2 new optional attributes to `llvm.load`
and `llvm.store` ops: `volatile` and `nontemporal`. These attributes
are translated into proper LLVM as a `volatile` marker and a metadata node
respectively. They are also helpful with SPIR-V to LLVM dialect conversion
since they are the mappings for `Volatile` and `NonTemporal` Memory Operands.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D84396
This patch introduces branch weights metadata to `llvm.cond_br` op in
LLVM Dialect. It is modelled as optional `ElementsAttr`, for example:
```
llvm.cond_br %cond weights(dense<[1, 3]> : vector<2xi32>), ^bb1, ^bb2
```
When exporting to proper LLVM, this attribute is transformed into metadata
node. The test for metadata creation is added to `../Target/llvmir.mlir`.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D83658
Introduces the scatter/gather operations to the Vector dialect
(important memory operations for sparse computations), together
with a first reference implementation that lowers to the LLVM IR
dialect to enable running on CPU (and other targets that support
the corresponding LLVM IR intrinsics).
The operations can be used directly where applicable, or can be used
during progressively lowering to bring other memory operations closer to
hardware ISA support for a gather/scatter. The semantics of the operation
closely correspond to those of the corresponding llvm intrinsics.
Note that the operation allows for a dynamic index vector (which is
important for sparse computations). However, this first reference
lowering implementation "serializes" the address computation when
base + index_vector is converted to a vector of pointers. Exploring
how to use SIMD properly during these step is TBD. More general
memrefs and idiomatic versions of striding are also TBD.
Reviewed By: arpith-jacob
Differential Revision: https://reviews.llvm.org/D84039
Linkage support is already present in the LLVM dialect, and is being translated
for globals other than functions. Translation support has been missing for
functions because their conversion goes through a different code path than
other globals.
Differential Revision: https://reviews.llvm.org/D84149
In 2b3c505, the pointer arguments for the matrix load and store
intrinsics was changed to always be the element type of the vector
argument.
This patch updates the MatrixBuilder to not add the pointer type to the
overloaded types and adjusts the clang/mlir tests.
This should fix a few build failures on GreenDragon, including
http://green.lab.llvm.org/green/job/test-suite-verify-machineinstrs-x86_64-O0-g/7891/
This patch introduces lowering of the OpenMP parallel operation to LLVM
IR using the OpenMPIRBuilder.
Functions topologicalSort and connectPhiNodes are generalised so that
they work with operations also. connectPhiNodes is also made static.
Lowering works for a parallel region with multiple blocks. Clauses and
arguments of the OpenMP operation are not handled.
Reviewed By: rriddle, anchu-rajendran
Differential Revision: https://reviews.llvm.org/D81660
`llvm.mlir.constant` was originally introduced as an LLVM dialect counterpart
to `std.constant`. As such, it was supporting "function pointer" constants
derived from the symbol name. This is different from `std.constant` that allows
for creation of a "function" constant since MLIR, unlike LLVM IR, supports
this. Later, `llvm.mlir.addressof` was introduced as an Op that obtains a
constant pointer to a global in the LLVM dialect. It naturally extends to
functions (in LLVM IR, functions are globals) and should be used for defining
"function pointer" values instead.
Fixes PR46344.
Differential Revision: https://reviews.llvm.org/D82667
Rationale:
In general, passing "fastmath" from MLIR to LLVM backend is not supported, and even just providing such a feature for experimentation is under debate. However, passing fine-grained fastmath related attributes on individual operations is generally accepted. This CL introduces an option to instruct the vector-to-llvm lowering phase to annotate floating-point reductions with the "reassociate" fastmath attribute, which allows the LLVM backend to use SIMD implementations for such constructs. Oher lowering passes can start using this mechanism right away in cases where reassociation is allowed.
Benefit:
For some microbenchmarks on x86-avx2, speedups over 20 were observed for longer vector (due to cleaner, spill-free and SIMD exploiting code).
Usage:
mlir-opt --convert-vector-to-llvm="reassociate-fp-reductions"
Reviewed By: ftynse, mehdi_amini
Differential Revision: https://reviews.llvm.org/D82624
Initially, unranked memref descriptors in the LLVM dialect were designed only
to be passed into functions. An assertion was guarding against returning
unranked memrefs from functions in the standard-to-LLVM conversion. This is
insufficient for functions that wish to return an unranked memref such that the
caller does not know the rank in advance, and hence cannot allocate the
descriptor and pass it in as an argument.
Introduce a calling convention for returning unranked memref descriptors as
follows. An unranked memref descriptor always points to a ranked memref
descriptor stored on stack of the current function. When an unranked memref
descriptor is returned from a function, the ranked memref descriptor it points
to is copied to dynamically allocated memory, the ownership of which is
transferred to the caller. The caller is responsible for deallocating the
dynamically allocated memory and for copying the pointed-to ranked memref
descriptor onto its stack.
Provide default lowerings for std.return, std.call and std.indirect_call that
maintain the conversion defined above.
This convention is additionally exercised by a runtime test to guard against
memory errors.
Differential Revision: https://reviews.llvm.org/D82647
Introduced `llvm.intr.bitreverse` and `llvm.intr.ctpop` LLVM bit
intrinsics to LLVM dialect. These intrinsics help with SPIR-V to
LLVM conversion, allowing a direct mapping from `spv.BitReverse`
and `spv.BitCount` respectively. Tests are added to `roundtrip.mlir`
and `llvm-intrinsics.mlir`.
Differential Revision: https://reviews.llvm.org/D82285
Summary:
With this change, a function argument attribute of the form
"llvm.align" = <int> will be translated to the corresponding align
attribute in LLVM by the ModuleConversion.
Differential Revision: https://reviews.llvm.org/D82161
This patch adjust the load/store matrix intrinsics, formerly known as
llvm.matrix.columnwise.load/store, to improve the naming and allow
passing of extra information (volatile).
The patch performs the following changes:
* Rename columnwise.load/store to column.major.load/store. This is more
expressive and also more in line with the naming in Clang.
* Changes the stride arguments from i32 to i64. The stride can be
larger than i32 and this makes things more uniform with the way
things are handled in Clang.
* A new boolean argument is added to indicate whether the load/store
is volatile. The lowering respects that when emitting vector
load/store instructions
* MatrixBuilder is updated to require both Alignment and IsVolatile
arguments, which are passed through to the generated intrinsic. The
alignment is set using the `align` attribute.
The changes are grouped together in a single patch, to have a single
commit that breaks the compatibility. We probably should be fine with
updating the intrinsics, as we did not yet officially support them in
the last stable release. If there are any concerns, we can add
auto-upgrade rules for the columnwise intrinsics though.
Reviewers: anemet, Gerolf, hfinkel, andrew.w.kaylor, LuoYuanke, nicolasvasilache, rjmccall, ftynse
Reviewed By: anemet, nicolasvasilache
Differential Revision: https://reviews.llvm.org/D81472
This patch is a follow-up on https://reviews.llvm.org/D81127
BF16 constants were represented as 64-bit floating point values due to the lack
of support for BF16 in APFloat. APFloat was recently extended to support
BF16 so this patch is fixing the BF16 constant representation to be 16-bit.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D81218
This simplifies a lot of handling of BoolAttr/IntegerAttr. For example, a lot of places currently have to handle both IntegerAttr and BoolAttr. In other places, a decision is made to pick one which can lead to surprising results for users. For example, DenseElementsAttr currently uses BoolAttr for i1 even if the user initialized it with an Array of i1 IntegerAttrs.
Differential Revision: https://reviews.llvm.org/D81047
Summary:
This patch adds support for flush operation in OpenMP dialect and translation of this construct to LLVM IR.
The OpenMP IRBuilder is used for this translation.
The patch includes code changes and testcase modifications.
Reviewed By: ftynse, kiranchandramohan
Differential Revision: https://reviews.llvm.org/D79937
Summary:
First, compact implementation of lowering to LLVM IR. A bit more
challenging than the constant mask due to the dynamic indices, of course.
I like to hear if there are more efficient ways of doing this in LLVM,
but this for now at least gives us a functional reference implementation.
Reviewers: nicolasvasilache, ftynse, bkramer, reidtatge, andydavis1, mehdi_amini
Reviewed By: nicolasvasilache
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, jurahul, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79954
The "null-pointer-is-valid" attribute needs to be checked by many
pointer-related combines. To make the check more efficient, convert
it from a string into an enum attribute.
In the future, this attribute may be replaced with data layout
properties.
Differential Revision: https://reviews.llvm.org/D78862
Summary:
Makes this operation runnable on CPU by generating MLIR instructions
that are eventually folded into an LLVM IR constant for the mask.
Reviewers: nicolasvasilache, ftynse, reidtatge, bkramer, andydavis1
Reviewed By: nicolasvasilache, ftynse, andydavis1
Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79815
This patch adds support for taskwait and taskyield operations in OpenMP dialect and translation of the these constructs to LLVM IR. The OpenMP IRBuilder is used for this translation.
The patch includes code changes and a testcase modifications.
Differential Revision: https://reviews.llvm.org/D77634
Summary:
LLVM IR functions can have arbitrary attributes attached to them, some of which
affect may affect code transformations. Until we can model all attributes
consistently, provide a pass-through mechanism that forwards attributes from
the LLVMFuncOp in MLIR to LLVM IR functions during translation. This mechanism
relies on LLVM IR being able to recognize string representations of the
attributes and performs some additional checking to avoid hitting assertions
within LLVM code.
Differential Revision: https://reviews.llvm.org/D77072
This change adds a new option to the StandardToLLVM lowering to configure
the bitwidth of the index type independently of the target architecture's
pointer size.
Differential revision: https://reviews.llvm.org/D76353
The Vector Dialect [document](https://mlir.llvm.org/docs/Dialects/Vector/) discusses the vector abstractions that MLIR supports and the various tradeoffs involved.
One of the layer that is missing in OSS atm is the Hardware Vector Ops (HWV) level.
This revision proposes an AVX512-specific to add a new Dialect/Targets/AVX512 Dialect that would directly target AVX512-specific intrinsics.
Atm, we rely too much on LLVM’s peephole optimizer to do a good job from small insertelement/extractelement/shufflevector. In the future, when possible, generic abstractions such as VP intrinsics should be preferred.
The revision will allow trading off HW-specific vs generic abstractions in MLIR.
Differential Revision: https://reviews.llvm.org/D75987
Summary: This op mirrors the llvm.intr counterpart and allows lowering + type conversions in a progressive fashion.
Differential Revision: https://reviews.llvm.org/D75775
Summary:
This revision adds intrinsics for transpose, columnwise.load and columnwise.store
achieving full coverage of the llvm.matrix intrinsics.
Differential Revision: https://reviews.llvm.org/D75852
This revision adds the first intrinsic for llvm.matrix.multiply.
This uses the more general `LLVM_OneResultOp` for now since the goal is
to use the
specific Matrix builders that @fhahn has created recently.
When piped through:
```
opt -O3 -enable-matrix | llc -O3 -march=x86-64 -mcpu=skylake-avx512
```
this has been verified to generate ymm instructions.
Additional function attribute support will be needed to generate proper
zmm instructions but at least things run end to end.
Benchmarking will be provided separately with the experimental
metaprogramming
[ModelBuilder](https://github.com/google/iree/tree/master/experimental/ModelBuilder)
tool when ready.
Summary:
This patch adds support for translation of the OpenMP barrier construct to LLVM
IR. The OpenMP IRBuilder is used for this translation. In this patch the code
for translation is added to the existing LLVM dialect translation to LLVM IR.
The patch includes code changes and a testcase.
Reviewers: jdoerfert, nicolasvasilache, ftynse, rriddle, mehdi_amini
Reviewed By: ftynse, rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D72962
Some attribute kinds are not supported as "value" attributes of
`llvm.mlir.constant` when translating to LLVM IR. We were correctly reporting
an error, but continuing the translation using an "undef" value instead,
leading to a surprising mix of error messages and output IR. Abort the
translation after the error is reported.
Differential Revision: https://reviews.llvm.org/D75450
Summary:
the .row.col variant turns out to be the popular one, contrary to what I
thought as .row.row. Since .row.col is so prevailing (as I inspect
cuDNN's behavior), I'm going to remove the .row.row support here, which
makes the patch a little bit easier.
Reviewers: ftynse
Subscribers: jholewinski, bixia, sanjoy.google, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74655
Summary:
This revision exposes the portable `llvm.fma` intrinsic in LLVMOps and uses it
in lieu of `llvm.fmuladd` when lowering the `vector.outerproduct` op to LLVM.
This guarantees proper `fma` instructions will be emitted if the target ISA
supports it.
`llvm.fmuladd` does not have this guarantee in its semantics, despite evidence
that the proper x86 instructions are emitted.
For more details, see https://llvm.org/docs/LangRef.html#llvm-fmuladd-intrinsic.
Reviewers: ftynse, aartbik, dcaballe, fhahn
Reviewed By: aartbik
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74219
Summary:
This revision adds basic support for emitting line table information when exporting to LLVMIR. We don't yet have a story for supporting all of the LLVM debug metadata, so this revision stubs some features(like subprograms) to enable emitting line tables.
Differential Revision: https://reviews.llvm.org/D73934
Summary:
The intrinsic operation added multiple type annotations to the llvm intrinsic operations, but only one is needed.
The related tests in llvmir-intrinsics.mlir checked the wrong number and are adjusted as well.
Reviewers: nicolasvasilache, ftynse
Reviewed By: ftynse
Subscribers: merge_guards_bot, ftynse, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73470
Summary:
Implement the handling of llvm::ConstantDataSequential and
llvm::ConstantAggregate for (nested) array and vector types when imporitng LLVM
IR to MLIR. In all cases, the result is a DenseElementsAttr that can be used in
either a `llvm.mlir.global` or a `llvm.mlir.constant`. Nested aggregates are
unpacked recursively until an element or a constant data is found. Nested
arrays with innermost scalar type are represented as DenseElementsAttr of
tensor type. Nested arrays with innermost vector type are represented as
DenseElementsAttr with (multidimensional) vector type.
Constant aggregates of struct type are not yet supported as the LLVM dialect
does not have a well-defined way of modeling struct-type constants.
Differential Revision: https://reviews.llvm.org/D72834
Summary:
Add a `llvm.cmpxchg` op as a counterpart to LLVM IR's `cmpxchg` instruction.
Note that the `weak`, `volatile`, and `syncscope` attributes are not yet supported.
This will be useful for upcoming parallel versions of affine.for and generally
for reduction-like semantics (especially for reductions that can't make use
of `atomicrmw`, e.g. `fmax`).
Reviewers: ftynse, nicolasvasilache
Reviewed By: ftynse
Subscribers: merge_guards_bot, jfb, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72995
Summary:
This op is the counterpart to LLVM's atomicrmw instruction. Note that
volatile and syncscope attributes are not yet supported.
This will be useful for upcoming parallel versions of `affine.for` and generally
for reduction-like semantics.
Differential Revision: https://reviews.llvm.org/D72741
Summary:
MLIR unlike LLVM IR supports multidimensional vector types. Such types are
lowered to nested LLVM IR arrays wrapping an LLVM IR vector for the innermost
dimension of the MLIR vector. MLIR supports constants of such types using
ElementsAttr for values. Introduce support for converting ElementsAttr into
LLVM IR Constant Aggregates recursively. This enables translation of
multidimensional vector constants from MLIR to LLVM IR.
Differential Revision: https://reviews.llvm.org/D72846
The current implementation of the LLVM-to-MLIR translation could not handle
functions used as constant values in instructions. The handling is added
trivially as `llvm.mlir.constant` can define constants of function type using
SymbolRef attributes, which works even for functions that have not been
declared yet.
Summary:
When converting splat constants for nested sequential LLVM IR types wrapped in
MLIR, the constant conversion was erroneously assuming it was always possible
to recursively construct a constant of a sequential type given only one value.
Instead, wait until all sequential types are unpacked recursively before
constructing a scalar constant and wrapping it into the surrounding sequential
type.
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72688
Summary:
`mlir-translate -import-llvm test.ll` was going into segmentation fault if `test.ll` had `float` or `double` constants.
For example,
```
%3 = fadd double 3.030000e+01, %0
```
Now, it is handled in `Importer::getConstantAsAttr` (similar behaviour as normal integers)
Added tests for FP arithmetic
Reviewers: ftynse, mehdi_amini
Reviewed By: ftynse, mehdi_amini
Subscribers: shauheen, mehdi_amini, rriddle, jpienaar, burmako, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71912
Rename the 'shlis' operation in the standard dialect to 'shift_left'. Add tests
for this operation (these have been missing so far) and add a lowering to the
'shl' operation in the LLVM dialect.
Add also 'shift_right_signed' (lowered to LLVM's 'ashr') and 'shift_right_unsigned'
(lowered to 'lshr').
The original plan was to name these operations 'shift.left', 'shift.right.signed'
and 'shift.right.unsigned'. This works if the operations are prefixed with 'std.'
in MLIR assembly. Unfortunately during import the short form is ambigous with
operations from a hypothetical 'shift' dialect. The best solution seems to omit
dots in standard operations for now.
Closestensorflow/mlir#226
PiperOrigin-RevId: 286803388
Added test cases for the newly added LLVM operations and lowering features.
Closestensorflow/mlir#300
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/300 from dfki-jugr:std_to_llvm da6168bbc1a369ae2e99ad3881fdddd82f075dd4
PiperOrigin-RevId: 286231169
Introduce affine.prefetch: op to prefetch using a multi-dimensional
subscript on a memref; similar to affine.load but has no effect on
semantics, but only on performance.
Provide lowering through std.prefetch, llvm.prefetch and map to llvm's
prefetch instrinsic. All attributes reflected through the lowering -
locality hint, rw, and instr/data cache.
affine.prefetch %0[%i, %j + 5], false, 3, true : memref<400x400xi32>
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#225
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/225 from bondhugula:prefetch 4c3b4e93bc64d9a5719504e6d6e1657818a2ead0
PiperOrigin-RevId: 286212997
Both work for the current use case, but the latter allows implementing
prefix sums and is a little easier to understand for partial warps.
PiperOrigin-RevId: 285145287
LLVM IR supports linkage on global objects such as global variables and
functions. Introduce the Linkage attribute into the LLVM dialect, backed by an
integer storage. Use this attribute on LLVM::GlobalOp and make it mandatory.
Implement parsing/printing of the attribute and conversion to LLVM IR.
See tensorflow/mlir#277.
PiperOrigin-RevId: 283309328
MLIR translation tools can emit diagnostics and we want to be able to check if
it is indeed the case in tests. Reuse the source manager error handlers
provided for mlir-opt to support the verification in mlir-translate. This
requires us to change the signature of the functions that are registered to
translate sources to MLIR: it now takes a source manager instead of a memory
buffer.
PiperOrigin-RevId: 279132972
This allows GlobalOp to either take a value attribute (for simple constants) or a region that can
contain IR instructions (that must be constant-foldable) to create a ConstantExpr initializer.
Example:
// A complex initializer is constructed with an initializer region.
llvm.mlir.global constant @int_gep() : !llvm<"i32*"> {
%0 = llvm.mlir.addressof @g2 : !llvm<"i32*">
%1 = llvm.mlir.constant(2 : i32) : !llvm.i32
%2 = llvm.getelementptr %0[%1] : (!llvm<"i32*">, !llvm.i32) -> !llvm<"i32*">
llvm.return %2 : !llvm<"i32*">
}
PiperOrigin-RevId: 278717836
This adds an importer from LLVM IR or bitcode to the LLVM dialect. The importer is registered with mlir-translate.
Known issues exposed by this patch but not yet fixed:
* Globals' initializers are attributes, which makes it impossible to represent a ConstantExpr. This will be fixed in a followup.
* icmp returns i32 rather than i1.
* select and a couple of other instructions aren't implemented.
* llvm.cond_br takes its successors in a weird order.
The testing here is known to be non-exhaustive.
I'd appreciate feedback on where this functionality should live. It looks like the translator *from MLIR to LLVM* lives in Target/, but the SPIR-V deserializer lives in Dialect/ which is why I've put this here too.
PiperOrigin-RevId: 278711683
nvvm.shfl.sync.bfly optionally returns a predicate whether source lane was active. Support for this was added to clang in https://reviews.llvm.org/D68892.
Add an optional 'pred' unit attribute to the instruction to return this predicate. Specify this attribute in the partial warp reduction so we don't need to manually compute the predicate.
PiperOrigin-RevId: 275616564
Similarly to `llvm.mlir.undef`, this auxiliary operation creates an SSA value
that corresponds to `null` in LLVM IR. This operation is necessary to model
sizeof(<...>) behavior when allocating memory.
PiperOrigin-RevId: 274158760
This function-like operation allows one to define functions that have wrapped
LLVM IR function type, in particular variadic functions. The operation was
added in parallel to the existing lowering flow, this commit only switches the
flow to use it.
Using a custom function type makes the LLVM IR dialect type system more
consistent and avoids complex conversion rules for functions that previously
had to use the built-in function type instead of a wrapped LLVM IR dialect type
and perform conversions during the analysis.
PiperOrigin-RevId: 273910855
This is matching what the runtime library is expecting.
Closestensorflow/mlir#171
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/171 from deven-amd:deven-rocdl-device-func-i64 80762629a8c34e844ebdc542b34dd783990db9db
PiperOrigin-RevId: 273640767
This commit introduces the ROCDL Dialect (i.e. the ROCDL ops + the code to lower those ROCDL ops to LLWM intrinsics/functions). Think of ROCDL Dialect as analogous to the NVVM Dialect, but for AMD GPUs. This patch contains just the essentials needed to get a simple example up and running. We expect to make further additions to the ROCDL Dialect.
This is the first of 3 commits, the follow-up will be:
* add a pass that lowers GPU Dialect to ROCDL Dialect
* add a "mlir-rocm-runner" utility
Closestensorflow/mlir#146
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/146 from deven-amd:deven-rocdl-dialect e78e8005c75a78912631116c78dc844fcc4b0de9
PiperOrigin-RevId: 271511259
This adds sign- and zero-extension and truncation of integer types to the
standard dialects. This allows to perform integer type conversions without
having to go to the LLVM dialect and introduce custom type casts (between
standard and LLVM integer types).
Closestensorflow/mlir#134
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/134 from ombre5733:sext-zext-trunc-in-std c7657bc84c0ca66b304e53ec03797e09152e4d31
PiperOrigin-RevId: 270479722
Make GlobalOp's value attribute an OptionalAttr. Change code that uses the value to handle 'nullopt'. Translate an unitialized value attribute to llvm::UndefValue.
PiperOrigin-RevId: 270423646
Some of the operations in the LLVM dialect are required to model the LLVM IR in
MLIR, for example "constant" operations are needed to declare a constant value
since MLIR, unlike LLVM, does not support immediate values as operands. To
avoid confusion with actual LLVM operations, we prefix such axuiliary
operations with "mlir.".
PiperOrigin-RevId: 266942838
This will allow iterating the values of a non-opaque ElementsAttr, with all of the types currently supported by DenseElementsAttr. This should help reduce the amount of specialization on DenseElementsAttr.
PiperOrigin-RevId: 264968151
This will allow iterating the values of a non-opaque ElementsAttr, with all of the types currently supported by DenseElementsAttr. This should help reduce the amount of specialization on DenseElementsAttr.
PiperOrigin-RevId: 264637293
LLVM intrinsics have an open name space and their names can potentially overlap
with names of LLVM instructions (LLVM intrinsics are functions, not
instructions). In MLIR, LLVM intrinsics are modeled as operations, so it needs
to make sure their names cannot clash with the instructions. Use the "intr."
prefix for intrinsics in the LLVM dialect.
PiperOrigin-RevId: 264372173
This operation is important to achieve decent performance in computational
kernels. In LLVM, it is implemented as an intrinsic (through function
declaration and function call). Thanks to MLIR's extendable set of operations,
it does not have to differentiate between built-ins and intrinsics, so fmuladd
is introduced as a general type-polymorphic operation. Custom printing and
parsing will be added later.
PiperOrigin-RevId: 263106305
This instruction is a local counterpart of llvm.global that takes a symbol
reference to a global and produces an SSA value containing the pointer to it.
Used in combination, these two operations allow one to use globals with other
operations expecting SSA values. At a cost of IR indirection, we make sure the
functions don't implicitly capture the surrounding SSA values and remain
suitable for parallel processing.
PiperOrigin-RevId: 262908622
Unlike regular constant values, strings must be placed in some memory and
referred to through a pointer to that memory. Until now, they were not
supported in function-local constant declarations with `llvm.constant`.
Introduce support for global strings using `llvm.global`, which would translate
them into global arrays in LLVM IR and thus make sure they have some memory
allocated for storage.
PiperOrigin-RevId: 262569316
This CL is step 1/n towards building a simple, programmable and portable vector abstraction in MLIR that can go all the way down to generating assembly vector code via LLVM's opt and llc tools.
This CL adds the 3 instructions `llvm.extractelement`, `llvm.insertelement` and `llvm.shufflevector` as documented in the LLVM LangRef "Vector Instructions" section.
The "Experimental Vector Reduction Intrinsics" are left out for now and can be added in the future on a per-need basis.
Appropriate roundtrip and LLVM Target tests are added.
PiperOrigin-RevId: 262542095
This adds support for fcmp to the LLVM dialect and adds any necessary lowerings, as well as support for EDSCs.
Closestensorflow/mlir#69
PiperOrigin-RevId: 262475255
llvm ir printer was changed at LLVM r367755.
Prints value numbers for unnamed functions argument.
Closestensorflow/mlir#67
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/67 from denis0x0D:sandbox/fix_mlir_translate ae46844e66f34a02e0cf86782ddadc5bce58b30d
PiperOrigin-RevId: 261640048
The current syntax separates the name and value with ':', but ':' is already overloaded by several other things(e.g. trailing types). This makes the syntax difficult to parse in some situtations:
Old:
"foo: 10 : i32"
New:
"foo = 10 : i32"
PiperOrigin-RevId: 255097928
This is the standard syntax for types on operations, and is also already used by IntegerAttr and FloatAttr.
Example:
dense<5> : tensor<i32>
dense<[3]> : tensor<1xi32>
PiperOrigin-RevId: 255069157
PTX backend in LLVM expects additional module-level metadata
`!nvvm.annotations` that lists functions that can be used as GPU kernels.
Generate this metadata based on the `gpu.kernel` attribute attached to
functions. This attribute is added automatically by the kernel outlining pass
in the GPU dialect lowering flow.
PiperOrigin-RevId: 254957345
* There is no longer a need to explicitly remap function attrs.
- This removes a potentially expensive call from the destructor of Function.
- This will enable some interprocedural transformations to now run intraprocedurally.
- This wasn't scalable and forces dialect defined attributes to override
a virtual function.
* Replacing a function is now a trivial operation.
* This is a necessary first step to representing functions as operations.
--
PiperOrigin-RevId: 249510802
This is only teaching the LLVM converter to propagate the attribute onto
the function type. MLIR will not recognize this arguments, so it would only
be useful when calling for example `printf` with the same arguments across
a module. Since varargs is part of the ABI lowering, this is not NFC.
--
PiperOrigin-RevId: 242382427
making the IR dumps much nicer.
This is part 2/3 of the path to making dialect types more nice. Part 3/3 will
slightly generalize the set of characters allowed in pretty types and make it
more principled.
--
PiperOrigin-RevId: 242249955
Historically, the LLVM IR dialect has been using the generic form of MLIR
operation syntax. It is verbose and often redundant. Introduce the custom
printing and parsing for all existing operations in the LLVM IR dialect.
Update the relevant documentation and tests.
--
PiperOrigin-RevId: 241617393
When the LLVM IR dialect was implemented, TableGen operation definition scheme
did not support operations with variadic results. Therefore, the `call`
instruction was split into `call` and `call0` for the single- and zero-result
calls (LLVM does not support multi-result operations). Unify `call` and
`call0` using the recently added TableGen support for operations with Variadic
results. Explicitly verify that the new operation has 0 or 1 results. As a
side effect, this change enables clean-ups in the conversion to the LLVM IR
dialect that no longer needs to rely on wrapped LLVM IR void types when
constructing zero-result calls.
PiperOrigin-RevId: 236119197
Since the goal of the LLVM IR dialect is to reflect LLVM IR in MLIR, the
dialect and the conversion procedure must account for the differences betweeen
block arguments and LLVM IR PHI nodes. In particular, LLVM IR disallows PHI
nodes with different values coming from the same source. Therefore, the LLVM IR
dialect now disallows `cond_br` operations that have identical successors
accepting arguments, which would lead to invalid PHI nodes. The conversion
process resolves the potential PHI source ambiguity by injecting dummy blocks
if the same block is used more than once as a successor in an instruction.
These dummy blocks branch unconditionally to the original successors, pass them
the original operands (available in the dummy block because it is dominated by
the original block) and are used instead of them in the original terminator
operation.
PiperOrigin-RevId: 235682798
Add support for lowering DivF and RemF to LLVM::FDiv and LLMV::FRem
respectively. The lowering is a trivial one-to-one transformation.
The corresponding operations already existed in the LLVM IR dialect and can be
lowered to the LLVM IR proper. Add the necessary tests for scalar and vector
forms.
PiperOrigin-RevId: 234984608
Add support for converting MLIR `call_indirect` instructions to the LLVM IR
dialect. In LLVM IR, the same instruction is used for direct and indirect
calls. In the dialect, we have `llvm.call` and `llvm.call0` to work around the
absence of the void type in MLIR. For direct calls, the callee is stored as
instruction attribute. Use the same pair of instructions for indirect calls by
omitting the callee attribute. In the MLIR to LLVM IR translator, check the
presence of attribute to decide whether to construct a direct or an indirect
call using different LLVM IR Builder functions.
Add support for converting constants of function type to the LLVM IR dialect
and for translating them to the LLVM IR proper. The `llvm.constant` operation
works similarly to other types: its attribute has MLIR function type but the
value it produces has LLVM IR function type wrapped in the dialect type. While
lowering, look up the pointer to the converted function in the corresponding
mapping.
PiperOrigin-RevId: 234132351
Original implementation of the translation from MLIR to LLVM IR operated on the
Standard+BuiltIn dialect, with a later addition of the SuperVector dialect.
This required the translation to be aware of a potetially large number of other
dialects as the infrastructure extended. With the recent introduction of the
LLVM IR dialect into MLIR, the translation can be switched to only translate
the LLVM IR dialect, and the translation of the operations becomes largely
mechanical.
The reimplementation of the translator follows the lines of the original
translator in function and basic block conversion. In particular, block
arguments are converted to LLVM IR PHI nodes, which are connected to their
sources after all blocks of a function had been converted. Thanks to LLVM IR
types being wrapped in the MLIR LLVM dialect type, type conversion is
simplified to only convert function types, all other types are simply
unwrapped. Individual instructions are constructed using the LLVM IRBuilder,
which has a great potential for being table-generated from the LLVM IR dialect
operation definitions.
The input of the test/Target/llvmir.mlir is updated to use the MLIR LLVM IR
dialect. While it is now redundant with the dialect conversion test, the point
of the exercise is to guarantee exactly the same LLVM IR is emitted. (Only the
name of the allocation function is changed from `__mlir_alloc` to `alloc` in
the CHECK lines.) It will be simplified in a follow-up commit.
PiperOrigin-RevId: 233842306
These operations trivially map to LLVM IR counterparts for operands of scalar
and (one-dimensional) vector type. Multi-dimensional vector and tensor type
operands would fail type conversion before the operation conversion takes
place. Add tests for scalar and vector cases. Also add a test for vector
`select` instruction for consistency with other tests.
PiperOrigin-RevId: 228077564
The entire compiler now looks at structural properties of the function (e.g.
does it have one block, does it contain an if/for stmt, etc) so the only thing
holding up this difference is round tripping through the parser/printer syntax.
Removing this shrinks the compile by ~140LOC.
This is step 31/n towards merging instructions and statements. The last step
is updating the docs, which I will do as a separate patch in order to split it
from this mostly mechanical patch.
PiperOrigin-RevId: 227540453
This commit adds support for the "select" operation that lowers directly into
its LLVM IR counterpart. A simple test is included.
PiperOrigin-RevId: 227527893
printing the entry block in a CFG function's argument line. Since I'm touching
all of the testcases anyway, change the argument list from printing as
"%arg : type" to "%arg: type" which is more consistent with bb arguments.
In addition to being more consistent, this is a much nicer look for cfg functions.
PiperOrigin-RevId: 227240069
The binary subtraction operations were not supported by the lowering because
they were not essential for the testing flow. Add support for these
operations.
PiperOrigin-RevId: 226941463
Introduce initial support for 1D vector operations. LLVM does not support
higher-dimensional vectors so the caller must make sure they don't appear in
the input MLIR. Handle the presence of higher-dimensional vectors by failing
gracefully.
Introduce the type conversion for 1D vector types and hook it up with the rest
of the type convresion system. Support "splat" constants for vector types. As
a side effect, this refactors constant operation emission by separating out
scalar integer constants into a separate case and by extracting out the helper
function for scalar float construction. Existing binary operations apply to
vectors transparently.
PiperOrigin-RevId: 225172349
Unlike MLIR, LLVM IR does not support functions that return multiple values.
Simulate this by packing values into the LLVM structure type in the same order
as they appear in the MLIR return. If the function returns only a single
value, return it directly without packing.
PiperOrigin-RevId: 223964886
Add support for translating 'dim' opreation on MemRefs to LLVM IR. For a
static size, this operation merely defines an LLVM IR constant value that may
not appear in the output IR if not used (and had not been removed before by
DCE). For a dynamic size, this operation is translated into an access to the
MemRef descriptor that contains the dynamic size.
PiperOrigin-RevId: 223160774
Introduce initial support for MemRef types, including type conversion,
allocation and deallocation, read and write element-wise access, passing
MemRefs to and returning from functions. Affine map compositions and
non-default memory spaces are NOT YET supported.
Lowered code needs to handle potentially dynamic sizes of the MemRef. To do
so, it replaces a MemRef-typed value with a special MemRef descriptor that
carries the data and the dynamic sizes together. A MemRef type is converted to
LLVM's first-class structure type with the first element being the pointer to
the data buffer with data layed out linearly, followed by as many integer-typed
elements as MemRef has dynamic sizes. The type of these elements is that of
MLIR index lowered to LLVM. For example, `memref<?x42x?xf32>` is converted to
`{ f32*, i64, i64 }` provided `index` is lowered to `i64`. While it is
possible to convert MemRefs with fully static sizes to simple pointers to their
elemental types, we opted for consistency and convert them to the
single-element structure. This makes the conversion code simpler and the
calling convention of the generated LLVM IR functions consistent.
Loads from and stores to a MemRef element are lowered to a sequence of LLVM
instructions that, first, computes the linearized index of the element in the
data buffer using the access indices and combining the static sizes with the
dynamic sizes stored in the descriptor, and then loads from or stores to the
buffer element indexed by the linearized subscript. While some of the index
computations may be redundant (i.e., consecutive load and store to the same
location in the same scope could reuse the linearized index), we emit them for
every operation. A subsequent optimization pass may eliminate them if
necessary.
MemRef allocation and deallocation is performed using external functions
`__mlir_alloc(index) -> i8*` and `__mlir_free(i8*)` that must be implemented by
the caller. These functions behave similarly to `malloc` and `free`, but can
be extended to support different memory spaces in future. Allocation and
deallocation instructions take care of casting the pointers. Prior to calling
the allocation function, the emitted code creates an SSA Value for the
descriptor and uses it to store the dynamic sizes of the MemRef passed to the
allocation operation. It further emits instructions that compute the dynamic
amount of memory to allocate in bytes. Finally, the allocation stores the
result of calling the `__mlir_alloc` in the MemRef descriptor. Deallocation
extracts the pointer to the allocated memory from the descriptor and calls
`__mlir_free` on it. The descriptor itself is not modified and, being
stack-allocated, ceases to exist when it goes out of scope.
MLIR functions that access MemRef values as arguments or return them are
converted to LLVM IR functions that accept MemRef descriptors as LLVM IR
structure types by value. This significantly simplifies the calling convention
at the LLVM IR level and avoids handling descriptors in the dynamic memory,
however is not always comaptible with LLVM IR functions emitted from C code
with similar signatures. A separate LLVM pass may be introduced in the future
to provide C-compatible calling conventions for LLVM IR functions generated
from MLIR.
PiperOrigin-RevId: 223134883
Initial restricted implementaiton of the MLIR to LLVM IR translation.
Introduce a new flow into the mlir-translate tool taking an MLIR module
containing CFG functions only and producing and LLVM IR module. The MLIR
features supported by the translator are as follows:
- primitive and function types;
- integer constants;
- cfg and ext functions with 0 or 1 return values;
- calls to these functions;
- basic block conversion translation of arguments to phi nodes;
- conversion between arguments of the first basic block and function arguments;
- (conditional) branches;
- integer addition and comparison operations.
Are NOT supported:
- vector and tensor types and operations on them;
- memrefs and operations on them;
- allocations;
- functions returning multiple values;
- LLVM Module triple and data layout (index type is hardcoded to i64).
Create a new MLIR library and place it under lib/Target/LLVMIR. The "Target"
library group is similar to the one present in LLVM and is intended to contain
all future public MLIR translation targets.
The general flow of MLIR to LLVM IR convresion will include several lowering
and simplification passes on the MLIR itself in order to make the translation
as simple as possible. In particular, ML functions should be transformed to
CFG functions by the recently introduced pass, operations on structured types
will be converted to sequences of operations on primitive types, complex
operations such as affine_apply will be converted into sequence of primitive
operations, primitive operations themselves may eventually be converted to an
LLVM dialect that uses LLVM-like operations.
Introduce the first translation test so that further changes make sure the
basic translation functionality is not broken.
PiperOrigin-RevId: 222400112