Work towards the unification of MIR and debug output by refactoring the
interfaces.
Add support for operand subreg index as an immediate to debug printing
and use ::print in the MIRPrinter.
Differential Review: https://reviews.llvm.org/D40965
llvm-svn: 320209
LLVM Coding Standards:
Function names should be verb phrases (as they represent actions), and
command-like function should be imperative. The name should be camel
case, and start with a lower case letter (e.g. openFile() or isFoo()).
Differential Revision: https://reviews.llvm.org/D40416
llvm-svn: 319168
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
This reverts r317579, originally committed as r317100.
There is a design issue with marking CFI instructions duplicatable. Not
all targets support the CFIInstrInserter pass, and targets like Darwin
can't cope with duplicated prologue setup CFI instructions. The compact
unwind info emission fails.
When the following code is compiled for arm64 on Mac at -O3, the CFI
instructions end up getting tail duplicated, which causes compact unwind
info emission to fail:
int a, c, d, e, f, g, h, i, j, k, l, m;
void n(int o, int *b) {
if (g)
f = 0;
for (; f < o; f++) {
m = a;
if (l > j * k > i)
j = i = k = d;
h = b[c] - e;
}
}
We get assembly that looks like this:
; BB#1: ; %if.then
Lloh3:
adrp x9, _f@GOTPAGE
Lloh4:
ldr x9, [x9, _f@GOTPAGEOFF]
mov w8, wzr
Lloh5:
str wzr, [x9]
stp x20, x19, [sp, #-16]! ; 8-byte Folded Spill
.cfi_def_cfa_offset 16
.cfi_offset w19, -8
.cfi_offset w20, -16
cmp w8, w0
b.lt LBB0_3
b LBB0_7
LBB0_2: ; %entry.if.end_crit_edge
Lloh6:
adrp x8, _f@GOTPAGE
Lloh7:
ldr x8, [x8, _f@GOTPAGEOFF]
Lloh8:
ldr w8, [x8]
stp x20, x19, [sp, #-16]! ; 8-byte Folded Spill
.cfi_def_cfa_offset 16
.cfi_offset w19, -8
.cfi_offset w20, -16
cmp w8, w0
b.ge LBB0_7
LBB0_3: ; %for.body.lr.ph
Note the multiple .cfi_def* directives. Compact unwind info emission
can't handle that.
llvm-svn: 317726
Previously, hasSideEffects was ? for TargetOpcode::PHI and would be inferred
as 1. D37065 sets the previously inferred properties explicitly. This patch sets
hasSideEffects=0 for PHI, as it is for G_PHI. MachineInstr::isSafeToMove has
been updated so it still returns false for PHI.
Additionally, HexagonBitSimplify relied on a PHI node having the
hasUnmodeledSideEffects property. This patch fixes that assumption.
Differential Revision: https://reviews.llvm.org/D37097
llvm-svn: 317721
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
Reland r317100 with minor fix regarding ComputeCommonTailLength function in
BranchFolding.cpp. Skipping top CFI instructions block needs to executed on
several more return points in ComputeCommonTailLength().
Original r317100 message:
"Correct dwarf unwind information in function epilogue for X86"
This patch aims to provide correct dwarf unwind information in function
epilogue for X86.
It consists of two parts. The first part inserts CFI instructions that set
appropriate cfa offset and cfa register in emitEpilogue() in
X86FrameLowering. This part is X86 specific.
The second part is platform independent and ensures that:
- CFI instructions do not affect code generation
- Unwind information remains correct when a function is modified by
different passes. This is done in a late pass by analyzing information
about cfa offset and cfa register in BBs and inserting additional CFI
directives where necessary.
Changed CFI instructions so that they:
- are duplicable
- are not counted as instructions when tail duplicating or tail merging
- can be compared as equal
Added CFIInstrInserter pass:
- analyzes each basic block to determine cfa offset and register valid at
its entry and exit
- verifies that outgoing cfa offset and register of predecessor blocks match
incoming values of their successors
- inserts additional CFI directives at basic block beginning to correct the
rule for calculating CFA
Having CFI instructions in function epilogue can cause incorrect CFA
calculation rule for some basic blocks. This can happen if, due to basic
block reordering, or the existence of multiple epilogue blocks, some of the
blocks have wrong cfa offset and register values set by the epilogue block
above them.
CFIInstrInserter is currently run only on X86, but can be used by any target
that implements support for adding CFI instructions in epilogue.
Patch by Violeta Vukobrat.
llvm-svn: 317579
This patch aims to provide correct dwarf unwind information in function
epilogue for X86.
It consists of two parts. The first part inserts CFI instructions that set
appropriate cfa offset and cfa register in emitEpilogue() in
X86FrameLowering. This part is X86 specific.
The second part is platform independent and ensures that:
- CFI instructions do not affect code generation
- Unwind information remains correct when a function is modified by
different passes. This is done in a late pass by analyzing information
about cfa offset and cfa register in BBs and inserting additional CFI
directives where necessary.
Changed CFI instructions so that they:
- are duplicable
- are not counted as instructions when tail duplicating or tail merging
- can be compared as equal
Added CFIInstrInserter pass:
- analyzes each basic block to determine cfa offset and register valid at
its entry and exit
- verifies that outgoing cfa offset and register of predecessor blocks match
incoming values of their successors
- inserts additional CFI directives at basic block beginning to correct the
rule for calculating CFA
Having CFI instructions in function epilogue can cause incorrect CFA
calculation rule for some basic blocks. This can happen if, due to basic
block reordering, or the existence of multiple epilogue blocks, some of the
blocks have wrong cfa offset and register values set by the epilogue block
above them.
CFIInstrInserter is currently run only on X86, but can be used by any target
that implements support for adding CFI instructions in epilogue.
Patch by Violeta Vukobrat.
Differential Revision: https://reviews.llvm.org/D35844
llvm-svn: 317100
Summary:
Add LLVM_FORCE_ENABLE_DUMP cmake option, and use it along with
LLVM_ENABLE_ASSERTIONS to set LLVM_ENABLE_DUMP.
Remove NDEBUG and only use LLVM_ENABLE_DUMP to enable dump methods.
Move definition of LLVM_ENABLE_DUMP from config.h to llvm-config.h so
it'll be picked up by public headers.
Differential Revision: https://reviews.llvm.org/D38406
llvm-svn: 315590
MachineInstr::isIdenticalTo has a lot of logic for dealing with register
Defs (i.e. deciding whether to take them into account or ignore them).
This logic gets things wrong in some obscure cases, for instance if an
operand is not a Def for both the current MI and the one we are
comparing to.
I'm not sure if it's possible for this to happen for regular register
operands, but it may happen in the ARM backend for special operands
which use sentinel values for the register (i.e. 0, which is neither a
physical register nor a virtual one).
This causes MachineInstrExpressionTrait::isEqual (which uses
MachineInstr::isIdenticalTo) to return true for the following
instructions, which are the same except for the fact that one sets the
flags and the other one doesn't:
%1114 = ADDrsi %1113, %216, 17, 14, _, def _
%1115 = ADDrsi %1113, %216, 17, 14, _, _
OTOH, MachineInstrExpressionTrait::getHashValue returns different values
for the 2 instructions due to the different isDef on the last operand.
In practice this means that when trying to add those instructions to a
DenseMap, they will be considered different because of their different
hash values, but when growing the map we might get an assertion while
copying from the old buckets to the new buckets because isEqual
misleadingly returns true.
This patch makes sure that isEqual and getHashValue agree, by improving
the checks in MachineInstr::isIdenticalTo when we are ignoring virtual
register definitions (which is what the Trait uses). Firstly, instead of
checking isPhysicalRegister, we use !isVirtualRegister, so that we cover
both physical registers and sentinel values. Secondly, instead of
checking MachineOperand::isReg, we use MachineOperand::isIdenticalTo,
which checks isReg, isSubReg and isDef, which are the same values that
the hash function uses to compute the hash.
Note that the function is symmetric with this change, since if the
current operand is not a Def, we check MachineOperand::isIdenticalTo,
which returns false if the operands have different isDef's.
Differential Revision: https://reviews.llvm.org/D38789
llvm-svn: 315579
Similarly to how Instruction has getFunction, this adds a less verbose
way to write MI->getParent()->getParent(). I'll follow up shortly with
a change that changes a bunch of the uses.
llvm-svn: 315388
Summary:
Fixes PR34513.
Indirect DBG_VALUEs typically come from dbg.declares of non-trivially
copyable C++ objects that must be passed by address. We were already
handling the case where the virtual register gets allocated to a
physical register and is later spilled. That's what usually happens for
normal parameters that aren't NRVO variables: they usually appear in
physical register parameters, and are spilled later in the function,
which would correctly add deref.
NRVO variables are different because the dbg.declare can come much later
after earlier instructions cause the incoming virtual register to be
spilled.
Also, clean up this code. We only need to look at the first operand of a
DBG_VALUE, which eliminates the operand loop.
Reviewers: aprantl, dblaikie, probinson
Subscribers: MatzeB, qcolombet, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D37929
llvm-svn: 313399
Summary:
Reverts r311008 to reinstate r310825 with a fix.
Refine alias checking for pseudo vs value to be conservative.
This fixes the original failure in builtbot unittest SingleSource/UnitTests/2003-07-09-SignedArgs.
Reviewers: hfinkel, nemanjai, efriedma
Reviewed By: efriedma
Subscribers: bjope, mcrosier, nhaehnle, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D36900
llvm-svn: 312126
r310825 caused the clang-ppc64le-linux-lnt bot to go red
(http://lab.llvm.org:8011/builders/clang-ppc64le-linux-lnt/builds/5712)
because of a test-suite failure of
SingleSource/UnitTests/2003-07-09-SignedArgs
This reverts commit 0028f6a87224fb595a1c19c544cde9b003035996.
llvm-svn: 311008
rL306209 taught SelectionDAG how to add the dereferenceable flag when
expanding memcpy and memmove. The fix however contained a nit where
the offset + size was constructed as an APInt of PointerSize rather
than PointerSizeInBits.
This lead to isDereferenceableAndAlignedPointer() get truncated values or
values which would be sign extended within that function leading to
incorrect results.
Thanks to Alex Crichton for reporting the issue!
This resolves PR33978.
Reviewers: inouehrs
Differential Revision: https://reviews.llvm.org/D36236
llvm-svn: 309930
On AMDGPU SGPR spills are really spilled to another register.
The spiller creates the spills to new frame index objects,
which is used as a placeholder.
This will eventually be replaced with a reference to a position
in a VGPR to write to and the frame index deleted. It is
most likely not a real stack location that can be shared
with another stack object.
This is a problem when StackSlotColoring decides it should
combine a frame index used for a normal VGPR spill with
a real stack location and a frame index used for an SGPR.
Add an ID field so that StackSlotColoring has a way
of knowing the different frame index types are
incompatible.
llvm-svn: 308673
Summary: Add target hooks for printing and parsing target MMO flags.
Targets may override getSerializableMachineMemOperandTargetFlags() to
return a mapping from string to flag value for target MMO values that
should be serialized/parsed in MIR output.
Add implementation of this hook for AArch64 SuppressPair MMO flag.
Reviewers: bogner, hfinkel, qcolombet, MatzeB
Subscribers: mcrosier, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D34962
llvm-svn: 307877
OpenCL 2.0 introduces the notion of memory scopes in atomic operations to
global and local memory. These scopes restrict how synchronization is
achieved, which can result in improved performance.
This change extends existing notion of synchronization scopes in LLVM to
support arbitrary scopes expressed as target-specific strings, in addition to
the already defined scopes (single thread, system).
The LLVM IR and MIR syntax for expressing synchronization scopes has changed
to use *syncscope("<scope>")*, where <scope> can be "singlethread" (this
replaces *singlethread* keyword), or a target-specific name. As before, if
the scope is not specified, it defaults to CrossThread/System scope.
Implementation details:
- Mapping from synchronization scope name/string to synchronization scope id
is stored in LLVM context;
- CrossThread/System and SingleThread scopes are pre-defined to efficiently
check for known scopes without comparing strings;
- Synchronization scope names are stored in SYNC_SCOPE_NAMES_BLOCK in
the bitcode.
Differential Revision: https://reviews.llvm.org/D21723
llvm-svn: 307722
CFI instructions that set appropriate cfa offset and cfa register are now
inserted in emitEpilogue() in X86FrameLowering.
Majority of the changes in this patch:
1. Ensure that CFI instructions do not affect code generation.
2. Enable maintaining correct information about cfa offset and cfa register
in a function when basic blocks are reordered, merged, split, duplicated.
These changes are target independent and described below.
Changed CFI instructions so that they:
1. are duplicable
2. are not counted as instructions when tail duplicating or tail merging
3. can be compared as equal
Add information to each MachineBasicBlock about cfa offset and cfa register
that are valid at its entry and exit (incoming and outgoing CFI info). Add
support for updating this information when basic blocks are merged, split,
duplicated, created. Add a verification pass (CFIInfoVerifier) that checks
that outgoing cfa offset and register of predecessor blocks match incoming
values of their successors.
Incoming and outgoing CFI information is used by a late pass
(CFIInstrInserter) that corrects CFA calculation rule for a basic block if
needed. That means that additional CFI instructions get inserted at basic
block beginning to correct the rule for calculating CFA. Having CFI
instructions in function epilogue can cause incorrect CFA calculation rule
for some basic blocks. This can happen if, due to basic block reordering,
or the existence of multiple epilogue blocks, some of the blocks have wrong
cfa offset and register values set by the epilogue block above them.
Patch by Violeta Vukobrat.
Differential Revision: https://reviews.llvm.org/D18046
llvm-svn: 306529
When SelectionDAG expands memcpy (or memmove) call into a sequence of load and store instructions, it disregards dereferenceable flag even the source pointer is known to be dereferenceable.
This results in an assertion failure if SelectionDAG commonizes a load instruction generated for memcpy with another load instruction for the source pointer.
This patch makes SelectionDAG to set the dereferenceable flag for the load instructions properly to avoid the assertion failure.
Differential Revision: https://reviews.llvm.org/D34467
llvm-svn: 306209
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
This was introduced a long time ago in r86583 when regmask operands
didn't exist. Nowadays the behavior hurts more than it helps. This
removes it.
llvm-svn: 304254
Summary:
Some targets need to be able to do more complex rendering than just adding an
operand or two to an instruction. For example, it may need to insert an
instruction to extract a subreg first, or it may need to perform an operation
on the operand.
In SelectionDAG, targets would create SDNode's to achieve the desired effect
during the complex pattern predicate. This worked because SelectionDAG had a
form of garbage collection that would take care of SDNode's that were created
but not used due to a later predicate rejecting a match. This doesn't translate
well to GlobalISel and the churn was wasteful.
The API changes in this patch enable GlobalISel to accomplish the same thing
without the waste. The API is now:
InstructionSelector::OptionalComplexRendererFn selectArithImmed(MachineOperand &Root) const;
where Root is the root of the match. The return value can be omitted to
indicate that the predicate failed to match, or a function with the signature
ComplexRendererFn can be returned. For example:
return OptionalComplexRendererFn(
[=](MachineInstrBuilder &MIB) { MIB.addImm(Immed).addImm(ShVal); });
adds two immediate operands to the rendered instruction. Immed and ShVal are
captured from the predicate function.
As an added bonus, this also reduces the amount of information we need to
provide to GIComplexOperandMatcher.
Depends on D31418
Reviewers: aditya_nandakumar, t.p.northover, qcolombet, rovka, ab, javed.absar
Reviewed By: ab
Subscribers: dberris, kristof.beyls, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D31761
llvm-svn: 301079
The DWARF specification knows 3 kinds of non-empty simple location
descriptions:
1. Register location descriptions
- describe a variable in a register
- consist of only a DW_OP_reg
2. Memory location descriptions
- describe the address of a variable
3. Implicit location descriptions
- describe the value of a variable
- end with DW_OP_stack_value & friends
The existing DwarfExpression code is pretty much ignorant of these
restrictions. This used to not matter because we only emitted very
short expressions that we happened to get right by accident. This
patch makes DwarfExpression aware of the rules defined by the DWARF
standard and now chooses the right kind of location description for
each expression being emitted.
This would have been an NFC commit (for the existing testsuite) if not
for the way that clang describes captured block variables. Based on
how the previous code in LLVM emitted locations, DW_OP_deref
operations that should have come at the end of the expression are put
at its beginning. Fixing this means changing the semantics of
DIExpression, so this patch bumps the version number of DIExpression
and implements a bitcode upgrade.
There are two major changes in this patch:
I had to fix the semantics of dbg.declare for describing function
arguments. After this patch a dbg.declare always takes the *address*
of a variable as the first argument, even if the argument is not an
alloca.
When lowering a DBG_VALUE, the decision of whether to emit a register
location description or a memory location description depends on the
MachineLocation — register machine locations may get promoted to
memory locations based on their DIExpression. (Future) optimization
passes that want to salvage implicit debug location for variables may
do so by appending a DW_OP_stack_value. For example:
DBG_VALUE, [RBP-8] --> DW_OP_fbreg -8
DBG_VALUE, RAX --> DW_OP_reg0 +0
DBG_VALUE, RAX, DIExpression(DW_OP_deref) --> DW_OP_reg0 +0
All testcases that were modified were regenerated from clang. I also
added source-based testcases for each of these to the debuginfo-tests
repository over the last week to make sure that no synchronized bugs
slip in. The debuginfo-tests compile from source and run the debugger.
https://bugs.llvm.org/show_bug.cgi?id=32382
<rdar://problem/31205000>
Differential Revision: https://reviews.llvm.org/D31439
llvm-svn: 300522
Summary:
Adds a new kind of MachineOperand: MO_Placeholder.
This operand must not appear in the MIR and only exists as a way of
creating an 'uninitialized' operand until a matcher function overwrites it.
Depends on D30046, D29712
Reviewers: t.p.northover, ab, rovka, aditya_nandakumar, javed.absar, qcolombet
Reviewed By: qcolombet
Subscribers: dberris, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D30089
llvm-svn: 297782
Each Calling convention (CC) defines a static list of registers that should be preserved by a callee function. All other registers should be saved by the caller.
Some CCs use additional condition: If the register is used for passing/returning arguments – the caller needs to save it - even if it is part of the Callee Saved Registers (CSR) list.
The current LLVM implementation doesn’t support it. It will save a register if it is part of the static CSR list and will not care if the register is passed/returned by the callee.
The solution is to dynamically allocate the CSR lists (Only for these CCs). The lists will be updated with actual registers that should be saved by the callee.
Since we need the allocated lists to live as long as the function exists, the list should reside inside the Machine Register Info (MRI) which is a property of the Machine Function and managed by it (and has the same life span).
The lists should be saved in the MRI and populated upon LowerCall and LowerFormalArguments.
The patch will also assist to implement future no_caller_saved_regsiters attribute intended for interrupt handler CC.
Differential Revision: https://reviews.llvm.org/D28566
llvm-svn: 297715
The primary use of the dump() functions in LLVM is for use in a
debugger. Unfortunately lldb does not seem to handle default arguments
so using `p SomeMI.dump()` fails and you have to type the longer `p
SomeMI.dump(nullptr)`. Remove the paramter to make the most common use
easy. (You can always construct something like `p
SomeMI.print(dbgs(),MyTII)` if you need more features).
Differential Revision: https://reviews.llvm.org/D29241
llvm-svn: 293440
We had various variants of defining dump() functions in LLVM. Normalize
them (this should just consistently implement the things discussed in
http://lists.llvm.org/pipermail/cfe-dev/2014-January/034323.html
For reference:
- Public headers should just declare the dump() method but not use
LLVM_DUMP_METHOD or #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- The definition of a dump method should look like this:
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MyClass::dump() {
// print stuff to dbgs()...
}
#endif
llvm-svn: 293359