This is patch to add PowerPC target to llvm-exegesis.
The target does just enough to be able to run llvm-exegesis in latency mode for at least some opcodes.
Differential Revision: https://reviews.llvm.org/D54185
llvm-svn: 346411
We have a lot of various bugs that are caused by misuse of SCEV (in particular in LV),
all of them can simply be described as "we ask SCEV to prove some fact on invalid IR".
Some of examples of those are PR36311, PR37221, PR39160.
The problem is that these failues manifest differently (what we saw was failure of various
asserts across SCEV, but there can also be miscompiles). This patch adds an assert into two
SCEV methods that strongly rely on correctness of the IR and are involved in known failues.
This will at least allow us to have a clear indication of what was wrong in this case.
This patch also fixes a unit test with incorrect IR that fails this verification.
Differential Revision: https://reviews.llvm.org/D52930
Reviewed By: fhahn
llvm-svn: 346389
Summary:
This change updates the version number for FDR logs to 5, and update the
trace processing to support changes in the custom event records.
In the runtime, since we're already writing down the record preamble to
handle CPU migrations and TSC wraparound, we can use the same TSC delta
encoding in the custom event and typed event records that we use in
function event records. We do the same change to typed events (which
were unsupported before this change in the trace processing) which now
show up in the trace.
Future changes should increase our testing coverage to make custom and
typed events as first class entities in the FDR mode log processing
tools.
This change is also a good example of how we end up supporting new
record types in the FDR mode implementation. This shows the places where
new record types are added and supported.
Depends on D54139.
Reviewers: mboerger
Subscribers: hiraditya, arphaman, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D54140
llvm-svn: 346293
MachineModuleInfo can only be used in code using lib/CodeGen, hence we
can keep a more specific reference to LLVMTargetMachine rather than just
TargetMachine around.
llvm-svn: 346182
In PR39475:
https://bugs.llvm.org/show_bug.cgi?id=39475
..we may fail to recognize/simplify fabs() in some cases because we do not
canonicalize fcmp with a -0.0 operand.
Adding that canonicalization can cause regressions on min/max FP tests, so
that's this patch: for the purpose of determining whether something is min/max,
let the value returned by the select determine how we treat a 0.0 operand in the fcmp.
This patch doesn't actually change the -0.0 to +0.0. It just changes the analysis, so
we don't fail to recognize equivalent min/max patterns that only differ in the
signbit of 0.0.
Differential Revision: https://reviews.llvm.org/D54001
llvm-svn: 346097
These methods were just wrappers around getNode with additional asserts (identical and repeated 3 times). But getNode already has a switch that can be used to hold these asserts that allows them to be shared for all 3 opcodes. This also enables checking on the places that create these nodes without using the wrappers.
The rest of the patch is just changing all callers to use getNode directly.
llvm-svn: 346087
This patch gives the IR ComputeNumSignBits the same functionality as the
DAG version (the code is derived from the existing code).
This an extension of the single input shuffle analysis added with D53659.
Differential Revision: https://reviews.llvm.org/D53987
llvm-svn: 346071
Summary:
Change the dynamic cast in CallBase::getCalledFunction() to allow
null-valued function operands.
This patch fixes a crash that occurred when a funtion operand of a
call instruction was dropped, and later on a metadata-carrying
instruction was printed out. When allocating the metadata slot numbers,
getCalledFunction() would be invoked on the call with the dropped
operand, resulting in a failed non-null assertion in isa<>.
This fixes PR38924, in which a printout in DBCE crashed due to this.
This aligns getCalledFunction() with getCalledValue(), as the latter
allows the operand to be null.
Reviewers: vsk, dexonsmith, hfinkel
Reviewed By: dexonsmith
Subscribers: hfinkel, llvm-commits
Differential Revision: https://reviews.llvm.org/D52537
llvm-svn: 345966
Summary:
This change cuts across compiler-rt and llvm, to increment the FDR log
version number to 4, and include the CPU ID in the custom event records.
This is a step towards allowing us to change the `llvm::xray::Trace`
object to start representing both custom and typed events in the stream
of records. Follow-on changes will allow us to change the kinds of
records we're presenting in the stream of traces, to incorporate the
data in custom/typed events.
A follow-on change will handle the typed event case, where it may not
fit within the 15-byte buffer for metadata records.
This work is part of the larger effort to enable writing analysis and
processing tools using a common in-memory representation of the events
found in traces. The work will focus on porting existing tools in LLVM
to use the common representation and informing the design of a
library/framework for expressing trace event analysis as C++ programs.
Reviewers: mboerger, eizan
Subscribers: hiraditya, mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D53920
llvm-svn: 345798
The "regular" file system has a useful feature that makes it possible to
stop recursing when using the recursive directory iterators. This
functionality was missing for the VFS recursive iterator and this patch
adds that.
Differential revision: https://reviews.llvm.org/D53465
llvm-svn: 345793
Summary:
Re-worked SparseBitVector's most-recently-used-word caching (CurrElementIter)
such that SparseBitVector::test() can be made const. This came up when
attempting to test individual bits in a SparseBitVector which was a member of a
const object.
The cached iterator has no bearing on the externally visible state, it's merely
a performance optimization. Therefore it has been made mutable and
FindLowerBound() has been split into a const and non-const function
(FindLowerBound/FindLowerBoundConst) for the const/non-const
interfaces.
Reviewers: rtereshin
Reviewed By: rtereshin
Subscribers: rtereshin, dexonsmith, kristina, llvm-commits
Differential Revision: https://reviews.llvm.org/D53447
llvm-svn: 345772
This removes the assertion that a copy of a moved-from SmallSetIterator
equals the original, which is illegal due to SmallSetIterator including
an instance of a standard `std::set` iterator.
C++ [iterator.requirements.general] states that comparing singular
iterators has undefined result:
> Iterators can also have singular values that are not associated with
> any sequence. [...] Results of most expressions are undefined for
> singular values; the only exceptions are destroying an iterator that
> holds a singular value, the assignment of a non-singular value to an
> iterator that holds a singular value, and, for iterators that satisfy
> the Cpp17DefaultConstructible requirements, using a value-initialized
> iterator as the source of a copy or move operation.
This assertion triggers the following error in the GNU C++ Library in
debug mode under EXPENSIVE_CHECKS:
/usr/include/c++/8.2.1/debug/safe_iterator.h:518:
Error: attempt to compare a singular iterator to a singular iterator.
Objects involved in the operation:
iterator "lhs" @ 0x0x7fff86420670 {
state = singular;
}
iterator "rhs" @ 0x0x7fff86420640 {
state = singular;
}
Patch by Eugene Sharygin.
Reviewers: fhahn, dblaikie, chandlerc
Reviewed By: fhahn, dblaikie
Differential Revision: https://reviews.llvm.org/D53793
llvm-svn: 345712
This defines member function base on the specialization of
std::reverse_iterator for DWARFDie::iterator as required by C++
[reverse.iter.conv].
This fixes unit test DWARFDebugInfoTest.cpp under EXPENSIVE_CHECKS which
currently can't be built due to GNU C++ Library calling this member
function in debug mode.
This fixes https://llvm.org/PR38785
Patch by: Eugene Sharygin
Differential revision: https://reviews.llvm.org/D53792
llvm-svn: 345621
Default property value 'true' preserves current behavior. Value 'false' can be
used to create VFS "root", file system that gives better control over which
files compiler can use during compilation as there are no unpredictable
accesses to real file system.
Non-fallthrough use case changes how we treat multiple VFS overlay
files. Instead of all of them being at the same level just above a real
file system, now they are nested and subsequent overlays can refer to
files in previous overlays.
rdar://problem/39465552
Reviewers: bruno, benlangmuir
Reviewed By: bruno
Subscribers: dexonsmith, cfe-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D50539
llvm-svn: 345431
Summary:
Changes all uses of minnan/maxnan to minimum/maximum
globally. These names emphasize that the semantic difference between
these operations is more than just NaN-propagation.
Reviewers: arsenm, aheejin, dschuff, javed.absar
Subscribers: jholewinski, sdardis, wdng, sbc100, jgravelle-google, jrtc27, atanasyan, llvm-commits
Differential Revision: https://reviews.llvm.org/D53112
llvm-svn: 345218
The current splitting algorithm works in three stages:
1) Identify cold blocks, then
2) Use forward/backward propagation to mark hot blocks, then
3) Grow a SESE region of blocks *outside* of the set of hot blocks and
start outlining.
While testing this pass on Apple internal frameworks I noticed that some
kinds of control flow (e.g. loops) are never outlined, even though they
unconditionally lead to / follow cold blocks. I noticed two other issues
related to how cold regions are identified:
- An inconsistency can arise in the internal state of the hotness
propagation stage, as a block may end up in both the ColdBlocks set
and the HotBlocks set. Further inconsistencies can arise as these sets
do not match what's in ProfileSummaryInfo.
- It isn't necessary to limit outlining to single-exit regions.
This patch teaches the splitting algorithm to identify maximal cold
regions and outline them. A maximal cold region is defined as the set of
blocks post-dominated by a cold sink block, or dominated by that sink
block. This approach can successfully outline loops in the cold path. As
a side benefit, it maintains less internal state than the current
approach.
Due to a limitation in CodeExtractor, blocks within the maximal cold
region which aren't dominated by a single entry point (a so-called "max
ancestor") are filtered out.
Results:
- X86 (LNT + -Os + externals): 134KB of TEXT were outlined compared to
47KB pre-patch, or a ~3x improvement. Did not see a performance impact
across two runs.
- AArch64 (LNT + -Os + externals + Apple-internal benchmarks): 149KB
of TEXT were outlined. Ditto re: performance impact.
- Outlining results improve marginally in the internal frameworks I
tested.
Follow-ups:
- Outline more than once per function, outline large single basic
blocks, & try to remove unconditional branches in outlined functions.
Differential Revision: https://reviews.llvm.org/D53627
llvm-svn: 345209
Doesn't build on Windows. The call to 'lookup' is ambiguous. Clang and
MSVC agree, anyway.
http://lab.llvm.org:8011/builders/clang-x64-windows-msvc/builds/787
C:\b\slave\clang-x64-windows-msvc\build\llvm.src\unittests\ExecutionEngine\Orc\CoreAPIsTest.cpp(315): error C2668: 'llvm::orc::ExecutionSession::lookup': ambiguous call to overloaded function
C:\b\slave\clang-x64-windows-msvc\build\llvm.src\include\llvm/ExecutionEngine/Orc/Core.h(823): note: could be 'llvm::Expected<llvm::JITEvaluatedSymbol> llvm::orc::ExecutionSession::lookup(llvm::ArrayRef<llvm::orc::JITDylib *>,llvm::orc::SymbolStringPtr)'
C:\b\slave\clang-x64-windows-msvc\build\llvm.src\include\llvm/ExecutionEngine/Orc/Core.h(817): note: or 'llvm::Expected<llvm::JITEvaluatedSymbol> llvm::orc::ExecutionSession::lookup(const llvm::orc::JITDylibSearchList &,llvm::orc::SymbolStringPtr)'
C:\b\slave\clang-x64-windows-msvc\build\llvm.src\unittests\ExecutionEngine\Orc\CoreAPIsTest.cpp(315): note: while trying to match the argument list '(initializer list, llvm::orc::SymbolStringPtr)'
llvm-svn: 345078
In the new scheme the client passes a list of (JITDylib&, bool) pairs, rather
than a list of JITDylibs. For each JITDylib the boolean indicates whether or not
to match against non-exported symbols (true means that they should be found,
false means that they should not). The MatchNonExportedInJD and MatchNonExported
parameters on lookup are removed.
The new scheme is more flexible, and easier to understand.
This patch also updates JITDylib search orders to be lists of (JITDylib&, bool)
pairs to match the new lookup scheme. Error handling is also plumbed through
the LLJIT class to allow regression tests to fail predictably when a lookup from
a lazy call-through fails.
llvm-svn: 345077
Summary:
This allows simplifying references of llvm::foo with foo when the needs
come in the future.
Reviewers: courbet, gchatelet
Reviewed By: gchatelet
Subscribers: javed.absar, tschuett, llvm-commits
Differential Revision: https://reviews.llvm.org/D53455
llvm-svn: 344922
Summary:
This patch just extends the `IPDBSession` interface to allow retrieving
of frame data through it, and adds an implementation over DIA. It is needed
for an implementation (for now with DIA) of the conversion from FPO programs
to DWARF expressions mentioned in D53086.
Reviewers: zturner, asmith, rnk
Reviewed By: asmith
Subscribers: mgorny, aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D53324
llvm-svn: 344886
Summary:
This was lost during refactoring in rL342644.
Fix and simplify simplify value size handling: always go through a 80 bit value,
because the value can be 1 byte). Add unit tests.
Reviewers: gchatelet
Subscribers: tschuett, llvm-commits
Differential Revision: https://reviews.llvm.org/D53423
llvm-svn: 344779
Summary:
This is patch 2 of the new DivergenceAnalysis (https://reviews.llvm.org/D50433).
This patch contains a generic divergence analysis implementation for
unstructured, reducible Control-Flow Graphs. It contains two new classes.
The `SyncDependenceAnalysis` class lazily computes sync dependences, which
relate divergent branches to points of joining divergent control. The
`DivergenceAnalysis` class contains the generic divergence analysis
implementation.
Reviewers: nhaehnle
Reviewed By: nhaehnle
Subscribers: sameerds, kristina, nhaehnle, xbolva00, tschuett, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D51491
llvm-svn: 344734
Summary:
The original commit message was:
This uses CRTP (for performance reasons) to allow a user the override
demangler functions to implement custom parsing logic. The motivation
for this is LLDB, which needs to occasionaly modify the mangled names.
One such instance is already implemented via the TypeCallback member,
but this is very specific functionality which does not help with any
other use case. Currently we have a use case for modifying the
constructor flavours, which would require adding another callback. This
approach does not scale.
With CRTP, the user (LLDB) can override any function it needs without
any special support from the demangler library. After LLDB is ported to
use this instead of the TypeCallback mechanism, the callback can be
removed.
The only difference here is the addition of a unit test which exercises
the CRTP mechanism to override a function in the parser.
Reviewers: erik.pilkington, rsmith, EricWF
Subscribers: mgorny, kristina, llvm-commits
Differential Revision: https://reviews.llvm.org/D53300
llvm-svn: 344703
Summary: LatencyGenerator now computes all possible mode of serial execution for an Instruction upfront and generates CodeTemplate for the ones that give the best results (e.g. no need to generate a two instructions snippet when repeating a single one would do). The next step is to generate even more configurations for cases (e.g. for XOR we should generate "XOR EAX, EAX, EAX" and "XOR EAX, EAX, EBX")
Reviewers: courbet
Reviewed By: courbet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53320
llvm-svn: 344689
All the PassBuilder::parse interfaces now return descriptive StringError
instead of a plain bool. It allows to make -passes/aa-pipeline parsing
errors context-specific and thus less confusing.
TODO: ideally we should also make suggestions for misspelled pass names,
but that requires some extensions to PassBuilder.
Reviewed By: philip.pfaffe, chandlerc
Differential Revision: https://reviews.llvm.org/D53246
llvm-svn: 344685
MaterializationResponsibility.
VModuleKeys are intended to enable selective removal of modules from a JIT
session, however for a wide variety of use cases selective removal is not
needed and introduces unnecessary overhead. As of this commit, the default
constructed VModuleKey value is reserved as a "do not track" value, and
becomes the default when adding a new module to the JIT.
This commit also changes the propagation of VModuleKeys. They were passed
alongside the MaterializationResponsibity instance in XXLayer::emit methods,
but are now propagated as part of the MaterializationResponsibility instance
itself (and as part of MaterializationUnit when stored in a JITDylib).
Associating VModuleKeys with MaterializationUnits in this way should allow
for a thread-safe module removal mechanism in the future, even when a module
is in the process of being compiled, by having the
MaterializationResponsibility object check in on its VModuleKey's state
before commiting its results to the JITDylib.
llvm-svn: 344643
This commit adds a 'Legacy' prefix to old ORC layers and utilities, and removes
the '2' suffix from the new ORC layers. If you wish to continue using the old
ORC layers you will need to add a 'Legacy' prefix to your classes. If you were
already using the new ORC layers you will need to drop the '2' suffix.
The legacy layers will remain in-tree until the new layers reach feature
parity with them. This will involve adding support for removing code from the
new layers, and ensuring that performance is comperable.
llvm-svn: 344572
constructor for DenseMap (DenseSet already had an initializer_list constructor).
These changes make it easier to migrate existing code that uses std::map and
std::set (which support initializer_list construction and equality comparison)
to DenseMap and DenseSet.
llvm-svn: 344522
Summary:
All the PassBuilder::parse interfaces now return descriptive StringError
instead of a plain bool. It allows to make -passes/aa-pipeline parsing
errors context-specific and thus less confusing.
TODO: ideally we should also make suggestions for misspelled pass names,
but that requires some extensions to PassBuilder.
Reviewed By: philip.pfaffe, chandlerc
Differential Revision: https://reviews.llvm.org/D53246
llvm-svn: 344519
This removes the primary remaining API producing `TerminatorInst` which
will reduce the rate at which code is introduced trying to use it and
generally make it much easier to remove the remaining APIs across the
codebase.
Also clean up some of the stragglers that the previous mechanical update
of variables missed.
Users of LLVM and out-of-tree code generally will need to update any
explicit variable types to handle this. Replacing `TerminatorInst` with
`Instruction` (or `auto`) almost always works. Most of these edits were
made in prior commits using the perl one-liner:
```
perl -i -ple 's/TerminatorInst(\b.* = .*getTerminator\(\))/Instruction\1/g'
```
This also my break some rare use cases where people overload for both
`Instruction` and `TerminatorInst`, but these should be easily fixed by
removing the `TerminatorInst` overload.
llvm-svn: 344504
Summary: This is part one of the change where I simply changed the signature of the functions. More work need to be done to actually produce more than one CodeTemplate per instruction.
Reviewers: courbet
Subscribers: tschuett, llvm-commits
Differential Revision: https://reviews.llvm.org/D53209
llvm-svn: 344493
Renames:
JITDylib's setFallbackDefinitionGenerator method to setGenerator.
DynamicLibraryFallbackGenerator class to DynamicLibrarySearchGenerator.
ReexportsFallbackDefinitionGenerator to ReexportsGenerator.
llvm-svn: 344489
This adds two arguments to the main ExecutionSession::lookup method:
MatchNonExportedInJD, and MatchNonExported. These control whether and where
hidden symbols should be matched when searching a list of JITDylibs.
A similar effect could have been achieved by filtering search results, but
this would have involved materializing symbol definitions (since materialization
is triggered on lookup) only to throw the results away, among other issues.
llvm-svn: 344467
Summary:
These new intrinsics have the semantics of the `minimum` and `maximum`
operations specified by the latest draft of IEEE 754-2018. Unlike
llvm.minnum and llvm.maxnum, these new intrinsics propagate NaNs and
always treat -0.0 as less than 0.0. `minimum` and `maximum` lower
directly to the existing `fminnan` and `fmaxnan` ISel DAG nodes. It is
safe to reuse these DAG nodes because before this patch were only
emitted in situations where there were known to be no NaN arguments or
where NaN propagation was correct and there were known to be no zero
arguments. I know of only four backends that lower fminnan and
fmaxnan: WebAssembly, ARM, AArch64, and SystemZ, and each of these
lowers fminnan and fmaxnan to instructions that are compatible with
the IEEE 754-2018 semantics.
Reviewers: aheejin, dschuff, sunfish, javed.absar
Subscribers: kristof.beyls, dexonsmith, kristina, llvm-commits
Differential Revision: https://reviews.llvm.org/D52764
llvm-svn: 344437
If you have the string /usr/bin, prior to this patch it would not
be quoted by our YAML serializer. But a string like C:\src would
be, due to the presence of a backslash. This makes the quoting
rules of basically every single file path different depending on
the path syntax (posix vs. Windows).
While technically not required by the YAML specification to quote
forward slashes, when the behavior of paths is inconsistent it
makes it difficult to portably write FileCheck lines that will
work with either kind of path.
Differential Revision: https://reviews.llvm.org/D53169
llvm-svn: 344359
This reverts commit b86c16ad8c97dadc1f529da72a5bb74e9eaed344.
This is being reverted because I forgot to write a useful
commit message, so I'm going to resubmit it with an actual
commit message.
llvm-svn: 344358
Moving away from UnknownSize is part of the effort to migrate us to
LocationSizes (e.g. the cleanup promised in D44748).
This doesn't entirely remove all of the uses of UnknownSize; some uses
require tweaks to assume that UnknownSize isn't just some kind of int.
This patch is intended to just be a trivial replacement for all places
where LocationSize::unknown() will Just Work.
llvm-svn: 344186
Add a library that parses optimization remarks (currently YAML, so based
on the YAMLParser).
The goal is to be able to provide tools a remark parser that is not
completely dependent on YAML, in case we decide to change the format
later.
It exposes a C API which takes a handler that is called with the remark
structure.
It adds a libLLVMOptRemark.a static library, and it's used in-tree by
the llvm-opt-report tool (from which the parser has been mostly moved
out).
Differential Revision: https://reviews.llvm.org/D52776
Fixed the tests by removing the usage of C++11 strings, which seems not
to be supported by gcc 4.8.4 if they're used as a macro argument.
llvm-svn: 344171
Add a library that parses optimization remarks (currently YAML, so based
on the YAMLParser).
The goal is to be able to provide tools a remark parser that is not
completely dependent on YAML, in case we decide to change the format
later.
It exposes a C API which takes a handler that is called with the remark
structure.
It adds a libLLVMOptRemark.a static library, and it's used in-tree by
the llvm-opt-report tool (from which the parser has been mostly moved
out).
Differential Revision: https://reviews.llvm.org/D52776
llvm-svn: 344162
Summary: Simplify code by having LLVMState hold the RegisterAliasingTrackerCache.
Reviewers: courbet
Subscribers: tschuett, llvm-commits
Differential Revision: https://reviews.llvm.org/D53078
llvm-svn: 344143
This patch moves the virtual file system form clang to llvm so it can be
used by more projects.
Concretely the patch:
- Moves VirtualFileSystem.{h|cpp} from clang/Basic to llvm/Support.
- Moves the corresponding unit test from clang to llvm.
- Moves the vfs namespace from clang::vfs to llvm::vfs.
- Formats the lines affected by this change, mostly this is the result of
the added llvm namespace.
RFC on the mailing list:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/126657.html
Differential revision: https://reviews.llvm.org/D52783
llvm-svn: 344140
There are places where we need to merge multiple LocationSizes of
different sizes into one, and get a sensible result.
There are other places where we want to optimize aggressively based on
the value of a LocationSizes (e.g. how can a store of four bytes be to
an area of storage that's only two bytes large?)
This patch makes LocationSize hold an 'imprecise' bit to note whether
the LocationSize can be treated as an upper-bound and lower-bound for
the size of a location, or just an upper-bound.
This concludes the series of patches leading up to this. The most recent
of which is r344108.
Fixes PR36228.
Differential Revision: https://reviews.llvm.org/D44748
llvm-svn: 344114
Summary:
Before, "[options] <inputs>" is unconditionally appended to the `Name` parameter. It is more flexible to change its semantic to `Usage` and let user customize the usage line.
% llvm-objcopy
...
USAGE: llvm-objcopy <input> [ <output> ] [options] <inputs>
With this patch:
% llvm-objcopy
...
USAGE: llvm-objcopy input [output]
Reviewers: rupprecht, alexshap, jhenderson
Reviewed By: rupprecht
Subscribers: jakehehrlich, mehdi_amini, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D51009
llvm-svn: 344097
The IRBuilder CreateIntrinsic method wouldn't allow you to specify the
types that you wanted the intrinsic to be mangled with. To fix this
I've:
- Added an ArrayRef<Type *> member to both CreateIntrinsic overloads.
- Used that array to pass into the Intrinsic::getDeclaration call.
- Added a CreateUnaryIntrinsic to replace the most common use of
CreateIntrinsic where the type was auto-deduced from operand 0.
- Added a bunch more unit tests to test Create*Intrinsic calls that
weren't being tested (including the FMF flag that wasn't checked).
This was suggested as part of the AMDGPU specific atomic optimizer
review (https://reviews.llvm.org/D51969).
Differential Revision: https://reviews.llvm.org/D52087
llvm-svn: 343962
Symbols can be removed provided that all are present in the JITDylib and none
are currently in the materializing state. On success all requested symbols are
removed. On failure an error is returned and no symbols are removed.
llvm-svn: 343928
This small patch updates the CPU detection for Cavium processors when
-mcpu=native is passed on compile-line.
Patch by Stefan Teleman
Differential Revision: https://reviews.llvm.org/D51939
llvm-svn: 343897
This adds the memory tagging extension, which is an optional extension
introduced in v8.5A. The new instructions and registers will be added by
subsequent patches.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52486
llvm-svn: 343563
Summary:
Reporting this as an error required stat()ing every file, as well as seeming
semantically questionable.
Reviewers: vsk, bkramer
Subscribers: mgrang, kristina, llvm-commits, liaoyuke
Differential Revision: https://reviews.llvm.org/D52648
llvm-svn: 343460
(1) Adds comments for the API.
(2) Removes the setArch method: This is redundant: the setArchStr method on the
triple should be used instead.
(3) Turns EmulatedTLS on by default. This matches EngineBuilder's behavior.
llvm-svn: 343423
Summary:
This CL allows constant vectors of floats to be recognized as non-NaN
and non-zero in select patterns. This change makes
`matchSelectPattern` more powerful generally, but was motivated
specifically because I wanted fminnan and fmaxnan to be created for
vector versions of the scalar patterns they are created for.
Tested with check-all on all targets. A testcase in the WebAssembly
backend that tests the non-nan codepath is in an upcoming CL.
Reviewers: aheejin, dschuff
Subscribers: sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D52324
llvm-svn: 343364
The ARMTargetParser.def contains an entry for arm1176j-s which is the
default for the ArmV6K architecture. This cpu does not exist, there are
only arm1176jz-s and arm1176jzf-s and they are both architecture ArmV6KZ.
The only CPUs that are actually ArmV6K are the mpcore, mpcore_nofpu and
later revisions of the arm1136 family r1px (which we don't have a table
entry for).
This patch removes the arm1176j-s and makes mpcore the default for armv6k.
Differential Revision: https://reviews.llvm.org/D52594
llvm-svn: 343303
This adds two new system registers, used to generate random numbers.
This is an optional extension to v8.5-A, and will be controlled by the
"+rng" modifier of the -march= and -mcpu= options.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52481
llvm-svn: 343217
Debian uses different triples for MIPS r6 and paths. Here we use SubArch
to determine whether it is r6, if we found `r6' in CPU section of triple.
These new triples include:
mipsisa32r6-linux-gnu
mipsisa32r6el-linux-gnu
mipsisa64r6-linux-gnuabi64
mipsisa64r6el-linux-gnuabi64
mipsisa64r6-linux-gnuabin32
mipsisa64r6el-linux-gnuabin32
Patch by YunQiang Su.
Differential revision: https://reviews.llvm.org/D50857
llvm-svn: 343185
Explicitly defines ThreadSafeModule's move-assignment operator to move fields in
reverse order. This is required to ensure that the context field outlives the
module field.
llvm-svn: 343149
destroyed before its ThreadSharedContext.
Destroying the context first is an error if this ThreadSafeModule is the only
owner of its underlying context.
Add a unit test for ThreadSafeModule/ThreadSafeContext to catch this and other
basic usage issues.
llvm-svn: 343129
Summary:
THis is a backwards-compatible change (existing files will work as
expected).
See PR39082.
Reviewers: gchatelet
Subscribers: tschuett, llvm-commits
Differential Revision: https://reviews.llvm.org/D52546
llvm-svn: 343108
This patch allows targeting Armv8.5-A, adding the architecture to
tablegen and setting the options to be identical to Armv8.4-A for the
time being. Subsequent patches will add support for the different
features included in the Armv8.5-A Reference Manual.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52470
llvm-svn: 343102
implementation as lazy compile callbacks, and a "lazy re-exports" utility that
builds lazy call-throughs.
Lazy call-throughs are similar to lazy compile callbacks (and are based on the
same underlying state saving/restoring trampolines) but resolve their targets
by performing a standard ORC lookup rather than invoking a user supplied
compiler callback. This allows them to inherit the thread-safety of ORC lookups
while blocking only the calling thread (whereas compile callbacks also block one
compile thread).
Lazy re-exports provide a simple way of building lazy call-throughs. Unlike a
regular re-export, a lazy re-export generates a new address (a stub entry point)
that will act like the re-exported symbol when called. The first call via a
lazy re-export will trigger compilation of the re-exported symbol before calling
through to it.
llvm-svn: 343061
This will allow trampoline pools to be re-used for a new lazy-reexport utility
that generates looks up function bodies using the standard symbol lookup process
(rather than using a user provided compile function). This new utility provides
the same capabilities (since MaterializationUnits already allow user supplied
compile functions to be run) as JITCompileCallbackManager, but can use the new
asynchronous lookup functions to avoid blocking a compile thread.
This patch also updates createLocalCompileCallbackManager to return an error if
a callback manager can not be created, and updates clients of that API to
account for the change. Finally, the OrcCBindingsStack is updates so that if
a callback manager is not available for the target platform a valid stack
(without support for lazy compilation) can still be constructed.
llvm-svn: 343059
compilation of IR in the JIT.
ThreadSafeContext is a pair of an LLVMContext and a mutex that can be used to
lock that context when it needs to be accessed from multiple threads.
ThreadSafeModule is a pair of a unique_ptr<Module> and a
shared_ptr<ThreadSafeContext>. This allows the lifetime of a ThreadSafeContext
to be managed automatically in terms of the ThreadSafeModules that refer to it:
Once all modules using a ThreadSafeContext are destructed, and providing the
client has not held on to a copy of shared context pointer, the context will be
automatically destructed.
This scheme is necessary due to the following constraits: (1) We need multiple
contexts for multithreaded compilation (at least one per compile thread plus
one to store any IR not currently being compiled, though one context per module
is simpler). (2) We need to free contexts that are no longer being used so that
the JIT does not leak memory over time. (3) Module lifetimes are not
predictable (modules are compiled as needed depending on the flow of JIT'd
code) so there is no single point where contexts could be reclaimed.
JIT clients not using concurrency can safely use one ThreadSafeContext for all
ThreadSafeModules.
JIT clients who want to be able to compile concurrently should use a different
ThreadSafeContext for each module, or call setCloneToNewContextOnEmit on their
top-level IRLayer. The former reduces compile latency (since no clone step is
needed) at the cost of additional memory overhead for uncompiled modules (as
every uncompiled module will duplicate the LLVM types, constants and metadata
that have been shared).
llvm-svn: 343055
Summary: This is a NFC in preparation of exporting the initial registers as part of the YAML dump
Reviewers: courbet
Reviewed By: courbet
Subscribers: mgorny, tschuett, llvm-commits
Differential Revision: https://reviews.llvm.org/D52427
llvm-svn: 342967
In this patch, I'm adding an extra check to the Latch's terminator in llvm::UnrollRuntimeLoopRemainder,
similar to how it is already done in the llvm::UnrollLoop.
The compiler would crash if this function is called with a malformed loop.
Patch by Rodrigo Caetano Rocha!
Differential Revision: https://reviews.llvm.org/D51486
llvm-svn: 342958
As a prerequisite to time-passes implementation which needs to time both passes
and analyses, adding instrumentation points to the Analysis Manager.
The are two functional differences between Pass and Analysis instrumentation:
- the latter does not increment pass execution counter
- it does not provide ability to skip execution of the corresponding analysis
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D51275
llvm-svn: 342778
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Made getName helper to return std::string (instead of StringRef initially) to fix
asan builtbot failures on CGSCC tests.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342664
Summary:
Added function to set a register to a particular value + tests.
Add EFLAGS test, use new setRegTo instead of setRegToConstant.
Reviewers: courbet, javed.absar
Subscribers: llvm-commits, tschuett, mgorny
Differential Revision: https://reviews.llvm.org/D52297
llvm-svn: 342644
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342597
Using LLVMTestingSupport in the LLVM_LINK_COMPONENTS breaks the build when
LLVM_TARGETS_TO_BUILD is set to empty.
Libraries that depend on LLVMTestingSupport need to use
target_link_libraries(<target> PRIVATE LLVMTestingSupport) instead.
This required change was already commited by r341899 to fix another build
issue.
This fixes rdar://problem/44615064.
llvm-svn: 342593
Summary:
Pass Execution Instrumentation interface enables customizable instrumentation
of pass execution, as per "RFC: Pass Execution Instrumentation interface"
posted 06/07/2018 on llvm-dev@
The intent is to provide a common machinery to implement all
the pass-execution-debugging features like print-before/after,
opt-bisect, time-passes etc.
Here we get a basic implementation consisting of:
* PassInstrumentationCallbacks class that handles registration of callbacks
and access to them.
* PassInstrumentation class that handles instrumentation-point interfaces
that call into PassInstrumentationCallbacks.
* Callbacks accept StringRef which is just a name of the Pass right now.
There were some ideas to pass an opaque wrapper for the pointer to pass instance,
however it appears that pointer does not actually identify the instance
(adaptors and managers might have the same address with the pass they govern).
Hence it was decided to go simple for now and then later decide on what the proper
mental model of identifying a "pass in a phase of pipeline" is.
* Callbacks accept llvm::Any serving as a wrapper for const IRUnit*, to remove direct dependencies
on different IRUnits (e.g. Analyses).
* PassInstrumentationAnalysis analysis is explicitly requested from PassManager through
usual AnalysisManager::getResult. All pass managers were updated to run that
to get PassInstrumentation object for instrumentation calls.
* Using tuples/index_sequence getAnalysisResult helper to extract generic AnalysisManager's extra
args out of a generic PassManager's extra args. This is the only way I was able to explicitly
run getResult for PassInstrumentationAnalysis out of a generic code like PassManager::run or
RepeatedPass::run.
TODO: Upon lengthy discussions we agreed to accept this as an initial implementation
and then get rid of getAnalysisResult by improving RepeatedPass implementation.
* PassBuilder takes PassInstrumentationCallbacks object to pass it further into
PassInstrumentationAnalysis. Callbacks registration should be performed directly
through PassInstrumentationCallbacks.
* new-pm tests updated to account for PassInstrumentationAnalysis being run
* Added PassInstrumentation tests to PassBuilderCallbacks unit tests.
Other unit tests updated with registration of the now-required PassInstrumentationAnalysis.
Reviewers: chandlerc, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D47858
llvm-svn: 342544
Add a higher performance alternative to calling resize() every time which performs a lot of clearing to zero - when we're adding a single bit most of the time this will be completely unnecessary.
Differential Revision: https://reviews.llvm.org/D52236
llvm-svn: 342535
rL342465 is breaking the MSVC buildbots, but I need to revert this dependent revision as well.
Summary:
Added function to set a register to a particular value + tests.
Add EFLAGS test, use new setRegTo instead of setRegToConstant.
Reviewers: courbet, javed.absar
Subscribers: mgorny, tschuett, llvm-commits
Differential Revision: https://reviews.llvm.org/D51856
llvm-svn: 342489
Summary:
Added function to set a register to a particular value + tests.
Add EFLAGS test, use new setRegTo instead of setRegToConstant.
Reviewers: courbet, javed.absar
Subscribers: mgorny, tschuett, llvm-commits
Differential Revision: https://reviews.llvm.org/D51856
llvm-svn: 342466
Add support mips64(el)-linux-gnuabin32 triples, and set them to N32.
Debian architecture name mipsn32/mipsn32el are also added. Set
UseIntegratedAssembler for N32 if we can detect it.
Patch by YunQiang Su.
Differential revision: https://reviews.llvm.org/D51408
llvm-svn: 342416
Create a temporary file in the system temporary directory instead of creating a
file in the current directory, which may be not writable. (Fix for an issue
introduced in r342283.)
llvm-svn: 342386
Summary: This will be useful to generate many configurations and test instruction regimes (NaN, Inf, subnormal, normal).
Reviewers: courbet
Subscribers: mgorny, tschuett, llvm-commits
Differential Revision: https://reviews.llvm.org/D51858
llvm-svn: 342369
Before this fix, multiple invocations of testRoundTrip will create multiple
writers which share the same file as output destination. That could introduce
filesystem race issue when multiple subtests are executed concurrently. This
patch assign writers with different files as their output destinations.
llvm-svn: 342301
The patch saves a function offset table which maps function name index to the
offset of its function profile to the start of the binary profile. By using
the function offset table, for those function profiles which will not be used
when compiling a module, the profile reader does't have to read them. For
profile size around 10~20M, it saves ~10% compile time.
Differential Revision: https://reviews.llvm.org/D51863
llvm-svn: 342283
Using llvm::getInputFileDirectory() in unit tests is discouraged, so require an explicit opt-in.
This way, cmake also writes ~60 fewer unused files to disk.
Differential Revision: https://reviews.llvm.org/D52095
llvm-svn: 342248
Summary:
The hash computed for an ArrayType was different when first constructed
versus when later profiled due to the constructor default argument, and
we were not tracking constructor / destructor variant as part of the
mangled name AST, leading to incorrect equivalences.
Reviewers: erik.pilkington
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51463
llvm-svn: 342166
Summary:
The snippet-generation part goes to the SnippetGenerator class.
This will allow benchmarking arbitrary code (see PR38437).
Reviewers: gchatelet
Subscribers: mgorny, tschuett, llvm-commits
Differential Revision: https://reviews.llvm.org/D51979
llvm-svn: 342117
construction, a new convenience lookup method, and add-to layer methods.
ExecutionSession now creates a special 'main' JITDylib upon construction. All
subsequently created JITDylibs are added to the main JITDylib's search order by
default (controlled by the AddToMainDylibSearchOrder parameter to
ExecutionSession::createDylib). The main JITDylib's search order will be used in
the future to properly handle cross-JITDylib weak symbols, with the first
definition in this search order selected.
This commit also adds a new ExecutionSession::lookup convenience method that
performs a blocking lookup using the main JITDylib's search order, as this will
be a very common operation for clients.
Finally, new convenience overloads of IRLayer and ObjectLayer's add methods are
introduced that add the given program representations to the main dylib, which
is likely to be the common case.
llvm-svn: 342086
The previous implementation traversed all loop blocks and bailed if one
was not a latch block. Since we are only interested in latch blocks, we
should only traverse those.
llvm-svn: 341926
Summary:
This more correctly reflects the data written by the FDR mode runtime.
This is a continuation of the work in D50441.
Reviewers: mboerger, eizan
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D51911
llvm-svn: 341905
Summary:
In this change, we implement a `BlockPrinter` which orders records in a
Block that's been indexed by the `BlockIndexer`. This is used in the
`llvm-xray fdr-dump` tool which ties together the various types and
utilities we've been working on, to allow for inspection of XRay FDR
mode traces both with and without verification.
This change is the final step of the refactoring of D50441.
Reviewers: mboerger, eizan
Subscribers: mgorny, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D51846
llvm-svn: 341887
Summary:
End goal is to update MemorySSA in all loop passes. LoopUnswitch clones all blocks in a loop. SimpleLoopUnswitch clones some blocks. LoopRotate clones some instructions.
Some of these loop passes also make CFG changes.
This is an API based on what I found needed in LoopUnswitch, SimpleLoopUnswitch, LoopRotate, LoopInstSimplify, LoopSimplifyCFG.
Adding dependent patches using this API for context.
Reviewers: george.burgess.iv, dberlin
Subscribers: sanjoy, jlebar, Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D45299
llvm-svn: 341855
Summary:
This patch implements a `BlockVerifier` type which enforces the
invariants of the log structure of FDR mode logs on a per-block basis.
This ensures that the data we encounter from an FDR mode log
semantically correct (i.e. that records follow the documented "grammar"
for FDR mode log records).
This is another part of the refactoring of D50441.
This is a slightly modified version of rL341628, avoiding the
`std::tuple<...>` constructor that is not constexpr in C++11.
Reviewers: mboerger, eizan
Subscribers: mgorny, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D51723
llvm-svn: 341769
Summary:
This patch implements a `BlockVerifier` type which enforces the
invariants of the log structure of FDR mode logs on a per-block basis.
This ensures that the data we encounter from an FDR mode log
semantically correct (i.e. that records follow the documented "grammar"
for FDR mode log records).
This is another part of the refactoring of D50441.
Reviewers: mboerger, eizan
Subscribers: mgorny, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D51723
llvm-svn: 341628
libLLVMTestingSupport.so references a symbol in utils/unittest/UnitTestMain/TestMain.cpp (a layering issue) and will cause a link error because of -Wl,-z,defs (cmake/modules/HandleLLVMOptions.cmake)
Waiting zturner for a better fix.
llvm-svn: 341580
The existing memory manager API can not be shared between objects when linking
concurrently (since there is no way to know which concurrent allocations were
performed on behalf of which object, and hence which allocations would be safe
to finalize when finalizeMemory is called). For now, we can work around this by
requiring a new memory manager for each object.
This change only affects the concurrent version of the ORC APIs.
llvm-svn: 341579
Summary:
This change adds a `BlockIndexer` type which maintains pointers to
records that belong to the same process+thread pairs. The indexing
happens with order of appearance of records as they are visited.
This version of the indexer currently only supports FDR version 3 logs,
which contain `BufferExtent` records. We will add support for v2 and v1
logs in follow-up patches.
This is another part of D50441.
Reviewers: eizan, kpw, mboerger
Reviewed By: mboerger
Subscribers: mboerger, mgorny, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D51673
llvm-svn: 341518
The way DIA SDK works is that when you request a symbol, it
gets assigned an internal identifier that is unique for the
life of the session. You can then use this identifier to
get back the same symbol, with all of the same internal state
that it had before, even if you "destroyed" the original
copy of the object you had.
This didn't work properly in our native implementation, and
if you destroyed an object for a particular symbol, then
requested the same symbol again, it would get assigned a new
ID and you'd get a fresh copy of the object. In order to fix
this some refactoring had to happen to properly reuse cached
objects. Some unittests are added to verify that symbol
reuse is taking place, making use of the new unittest input
feature.
llvm-svn: 341503
Occasionally it is useful to have unittest which take inputs.
While we normally try to have this test be more of a lit test
we occasionally don't have tools that can exercise the code
in the right way to test certain things. LLDB has been using
this style of unit test for a while, particularly with regards
to how it tests core dump and minidump file parsing. Recently
i needed this as well for the case where we want to test that
some of the PDB reading code works correctly. It needs to
exercise the code in a way that is not covered by any dumper
and would be impractical to implement in one of the dumpers,
but requires a valid PDB file. Since this is now needed by
more than one project, it makes sense to have this be a
generally supported thing that unit tests can do, and we just
encourage people to use this sparingly.
Differential Revision: https://reviews.llvm.org/D51561
llvm-svn: 341502
We do this instead of using static constexpr char arrays because MSVC
2015 cannot handle the constant initialisation of those along with the
out-of-line storage declaration.
This is a follow-up to D51672.
llvm-svn: 341479
Summary:
This change adds a `RecordPrinter` type which does some basic text
serialization of the FDR record instances. This is one component of the
tool we're building to dump the records from an FDR mode log as-is.
This is a small part of D50441.
Reviewers: eizan, kpw
Subscribers: mgorny, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D51672
llvm-svn: 341447
Summary:
Original changeset (https://reviews.llvm.org/D46776) by @modocache. It was
reverted after the PS4 bot failed.
The issue has been determined to be with the way the PS4 SDK handles this
particular option. https://reviews.llvm.org/D50410 removes this test, so we
can push this again.
Patch by Arnaud Coomans!
Reviewers: cfe-commits, modocache
Reviewed By: modocache
Differential Revision: https://reviews.llvm.org/D50515
llvm-svn: 341329
Also adjust some of dsymutil's headers to put the header guards at the top,
otherwise the compiler will not recognize them as header guards.
llvm-svn: 341323
Removes the implicit conversion to the underlying type for
JITSymbolFlags::FlagNames and replaces it with some bitwise and comparison
operators.
llvm-svn: 341282
Previously we've been reading and writing the wrong types which only
worked in little endian implementations. This time we're writing the
same typed values the runtime is using, and reading them appropriately
as well.
llvm-svn: 341241
I changed the seed slightly, but forgot to run the tests on a 32-bit system, so
tests which hard-code a specific hash value started breaking.
llvm-svn: 341240
Before this patch, the FDRTraceWriter would not take endianness into
account when writing data into the output stream.
This is a follow-up to D51289 and D51210.
llvm-svn: 341223
/build/llvm/unittests/XRay/FDRProducerConsumerTest.cpp:90:27: error: declaration of ‘std::unique_ptr<llvm::xray::Record> llvm::xray::{anonymous}::RoundTripTest<T>::Record’ [-fpermissive]
std::unique_ptr<Record> Record;
^~~~~~
In file included from /build/llvm/include/llvm/XRay/FDRLogBuilder.h:12,
from /build/llvm/unittests/XRay/FDRProducerConsumerTest.cpp:15:
/build/llvm/include/llvm/XRay/FDRRecords.h:28:7: error: changes meaning of ‘Record’ from ‘class llvm::xray::Record’ [-fpermissive]
class Record {
^~~~~~
llvm-svn: 341189
Summary:
This patch defines two new base types called `RecordProducer` and
`RecordConsumer` which have default implementations for convenience
(particularly for testing).
A `RecordProducer` implementation has one member function called
`produce()` which serves as a factory constructor for `Record`
instances. This code exercises the `RecordInitializer` code path in the
implementation for `FileBasedRecordProducer`.
A `RecordConsumer` has a single member function called `consume(...)`
which, as the name implies, consumes instances of
`std::unique_ptr<Record>`. We have two implementations, one of which is
used in the test to generate a vector of `std::unique_ptr<Record>`
similar to how the `LogBuilder` implementation works.
We introduce a test in `FDRProducerConsumerTest` which ensures that
records we write through the `FDRTraceWriter` can be loaded by the
`FileBasedRecordProducer`. The record(s) loaded this way are written
again through the `FDRTraceWriter` into a separate string, which we then
compare. This ensures that the read-in bytes to create the `Record`
instances in memory can be replicated when written out through the
`FDRTraceWriter`.
This change depends on D51210 and is part of the refactoring of D50441
into smaller, more focused changes.
Reviewers: eizan, kpw
Subscribers: mgorny, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D51289
llvm-svn: 341180
management and materialization responsibility registration.
The setOverrideObjectFlagsWithResponsibilityFlags method instructs
RTDyldObjectlinkingLayer2 to override the symbol flags produced by RuntimeDyld with
the flags provided by the MaterializationResponsibility instance. This can be used
to enable symbol visibility (hidden/exported) for COFF object files, which do not
currently support the SF_Exported flag.
The setAutoClaimResponsibilityForObjectSymbols method instructs
RTDyldObjectLinkingLayer2 to claim responsibility for any symbols provided by a
given object file that were not already in the MaterializationResponsibility
instance. Setting this flag allows higher-level program representations (e.g.
LLVM IR) to be added based on only a subset of the symbols they provide, without
having to write intervening layers to scan and add the additional symbols. This
trades diagnostic quality for convenience however: If all symbols are enumerated
up-front then clashes can be detected and reported early. If this option is set,
clashes for the additional symbols may not be detected until late, and detection
may depend on the flow of control through JIT'd code.
llvm-svn: 341154
This was one of the potential follow-ups suggested in D48236,
and these will be used to make matching the patterns in PR38691 cleaner:
https://bugs.llvm.org/show_bug.cgi?id=38691
About the vocabulary: in the DAG, these would be concat_vector with an
undef operand or extract_subvector. Alternate names are discussed in the
review, but I think these are familiar/good enough to proceed. Once we
have uses of them in code, we might adjust if there are better options.
https://reviews.llvm.org/D51392
llvm-svn: 341075
FileError is meant to encapsulate both an Error and a file name/path. It should be used in cases where an Error occurs deep down the call chain, and we want to return it to the caller along with the file name.
StringError was updated to display the error messages in different ways. These can be:
1. display the error_code message, and convert to the same error_code (ECError behavior)
2. display an arbitrary string, and convert to a provided error_code (current StringError behavior)
3. display both an error_code message and a string, in this order; and convert to the same error_code
These behaviors can be triggered depending on the constructor. The goal is to use StringError as a base class, when a library needs to provide a explicit Error type.
Differential Revision: https://reviews.llvm.org/D50807
llvm-svn: 341064
Summary:
This is the first step in the larger refactoring and reduction of
D50441.
This step in the process does the following:
- Introduces more granular types of `Record`s representing the many
kinds of records written/read by the Flight Data Recorder (FDR) mode
`Trace` loading function(s).
- Introduces an abstract `RecordVisitor` type meant to handle the
processing of the various `Record` derived types. This `RecordVisitor`
has two implementations in this patch: `RecordInitializer` and
`FDRTraceWriter`.
- We also introduce a convenience interface for building a collection of
`Record` instances called a `LogBuilder`. This allows us to generate
sequences of `Record` instances manually (used in unit tests but
useful otherwise).
- The`FDRTraceWriter` class implements the `RecordVisitor` interface and
handles the writing of metadata records to a `raw_ostream`. We
demonstrate that in the unit test, we can generate in-memory FDR mode
traces using the specific `Record` derived types, which we load
through the `loadTrace(...)` function yielding valid `Trace` objects.
This patch introduces the required types and concepts for us to start
replacing the logic implemented in the `loadFDRLog` function to use the
more granular types. In subsequent patches, we will introduce more
visitor implementations which isolate the verification, printing,
indexing, production/consumption, and finally the conversion of the FDR
mode logs.
The overarching goal of these changes is to make handling FDR mode logs
better tested, more understandable, more extensible, and more
systematic. This will also allow us to better represent the execution
trace, as we improve the fidelity of the events we represent in an XRay
`Trace` object, which we intend to do after FDR mode log processing is
in better shape.
Reviewers: eizan
Reviewed By: eizan
Subscribers: mgorny, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D51210
llvm-svn: 341029
These classes don't make any changes to IR and have no reason to be in
Transform/Utils. This patch moves them to Analysis folder. This will allow
us reusing these classes in some analyzes, like MustExecute.
llvm-svn: 341015
Summary:
This change implements the profile loading functionality in LLVM to
support XRay's profiling mode in compiler-rt.
We introduce a type named `llvm::xray::Profile` which allows building a
profile representation. We can load an XRay profile from a file to build
Profile instances, or do it manually through the Profile type's API.
The intent is to get the `llvm-xray` tool to generate `Profile`
instances and use that as the common abstraction through which all
conversion and analysis can be done. In the future we can generate
`Profile` instances from `Trace` instances as well, through conversion
functions.
Some of the key operations supported by the `Profile` API are:
- Path interning (`Profile::internPath(...)`) which returns a unique path
identifier.
- Block appending (`Profile::addBlock(...)`) to add thread-associated
profile information.
- Path ID to Path lookup (`Profile::expandPath(...)`) to look up a
PathID and return the original interned path.
- Block iteration.
A 'Path' in this context represents the function call stack in
leaf-to-root order. This is represented as a path in an internally
managed prefix tree in the `Profile` instance. Having a handle (PathID)
to identify the unique Paths we encounter for a particular Profile
allows us to reduce the amount of memory required to associate profile
data to a particular Path.
This is the first of a series of patches to migrate the `llvm-stacks`
tool towards using a single profile representation.
Depends on D48653.
Reviewers: kpw, eizan
Reviewed By: kpw
Subscribers: kpw, thakis, mgorny, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D48370
llvm-svn: 341012
Previously, the DebugCounterTest was failing because CommandLineTest.GetCommandLineArguments was clearing all the global singletons.
Differential Revision: https://reviews.llvm.org/D51423
llvm-svn: 340935
The new method name/behavior more closely models the way it was being used.
It also fixes an assertion that can occur when using the new ORC Core APIs,
where flags alone don't necessarily provide enough context to decide whether
the caller is responsible for materializing a given symbol (which was always
the reason this API existed).
The default implementation of getResponsibilitySet uses lookupFlags to determine
responsibility as before, so existing JITSymbolResolvers should continue to
work.
llvm-svn: 340874
ImmutableList used to require elements to have a copy constructor for no
good reason, this patch aims to fix this.
It also required but did not enforce its elements to be trivially
destructible, so a new static_assert is added to guard against misuse.
Differential Revision: https://reviews.llvm.org/D49985
llvm-svn: 340824
Summary:
Made it convert from register to stack based instructions, and removed the registers.
Fixes to related code that was expecting register based instructions.
Added the correct testing flag to all tests, depending on what the
format they were expecting so far.
Translated one test to stack format as example: reg-stackify-stack.ll
tested:
llvm-lit -v `find test -name WebAssembly`
unittests/MC/*
Reviewers: dschuff, sunfish
Subscribers: sbc100, jgravelle-google, eraman, aheejin, llvm-commits, jfb
Differential Revision: https://reviews.llvm.org/D51241
llvm-svn: 340750
vectors, and move this test code into an anonymous namespace.
Hoping that this will avoid hitting an MSVC bug that causes it to crash
and burn pretty spectacularly. Also, this degree of clever use of
initializer lists seems somewhat questionable in general. ;]
llvm-svn: 340702
This is a bit awkward in a handful of places where we didn't even have
an instruction and now we have to see if we can build one. But on the
whole, this seems like a win and at worst a reasonable cost for removing
`TerminatorInst`.
All of this is part of the removal of `TerminatorInst` from the
`Instruction` type hierarchy.
llvm-svn: 340701
HermitCore is a POSIX-compatible kernel for running a single application in an isolated environment to get maximum performance and predictable runtime behavior. It can either be used bare-metal on hardware or a VM (Unikernel) or side by side to an existing Linux system (Multikernel).
Due to the latter feature, HermitCore binaries are marked with ELFOSABI_STANDALONE to let the Linux ELF loader distinguish them from regular Unix/Linux binaries and load them using the HermitCore "proxy" tool.
Patch by Colin Finck!
llvm-svn: 340675
The function's new implementation from r340583 had a bug in it that
could cause an invalid scope to be generated when merging two
DILocations with no common ancestor scope.
This patch detects this situation and picks the scope of the first
location. This is not perfect, because the scope is misleading, but on
the other hand, this will be a line 0 location.
rdar://problem/43687474
Differential Revision: https://reviews.llvm.org/D51238
llvm-svn: 340672
demangling process when it does.
Use this to support a "lookup" query for the mangling canonicalizer that
does not create new nodes. This could also be used to implement
demangling with a fixed-size temporary storage buffer.
Reviewers: erik.pilkington
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51003
llvm-svn: 340670
Summary:
Given a set of equivalent name fragments, this mechanism determines whether two
mangled names are equivalent. The intent is to use this for fuzzy matching of
profile data against the program after certain refactorings are performed.
Reviewers: erik.pilkington, dlj
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D50935
llvm-svn: 340663
In order for more complex updates of MSSA to happen (e.g. those in
D45299), MemoryDefs need to be actual `Use`s of what they're optimized
to. This patch makes that happen.
In addition, this patch changes our optimization behavior for Defs
slightly: we'll now consider a Def optimization invalid if the
MemoryAccess it's optimized to changes. That we weren't doing this
before was a bug, but given that we were tracking these with a WeakVH
before, it was sort of difficult for that to matter.
We're already have both of these behaviors for MemoryUses. The
difference is that a MemoryUse's defining access is always its optimized
access, and defining accesses are always `Use`s (in the LLVM sense).
Nothing exploded when testing a stage3 clang+llvm locally, so...
This also includes the test-case promised in r340461.
llvm-svn: 340577
Add support for reading and writing MessagePack, a binary object serialization
format which aims to be more compact than text formats like JSON or YAML.
The specification can be found at
https://github.com/msgpack/msgpack/blob/master/spec.md
Will be used for encoding metadata in AMDGPU code objects.
Differential Revision: https://reviews.llvm.org/D44429
llvm-svn: 340457
This reverts commit d1341152d91398e9a882ba2ee924147ea2f9b589.
This patch originally made use of Nested MachineIRBuilder buildInstr
calls, and since order of argument processing is not well defined, the
instructions were built slightly in a different order (still correct).
I've removed the nested buildInstr calls to have a defined order now.
Patch was tested by Mikael.
llvm-svn: 340309
This patch significantly improves performance of the YAML serializer by
optimizing `YAML::isNumeric` function. This function is called on the
most strings and is highly inefficient for two reasons:
* It uses `Regex`, which is parsed and compiled each time this
function is called
* It uses multiple passes which are not necessary
This patch introduces stateful ad hoc YAML number parser which does not
rely on `Regex`. It also fixes YAML number format inconsistency: current
implementation supports C-stile octal number format (`01234567`) which
was present in YAML 1.0 specialization (http://yaml.org/spec/1.0/),
[Section 2.4. Tags, Example 2.19] but was deprecated and is no longer
present in latest YAML 1.2 specification
(http://yaml.org/spec/1.2/spec.html), see [Section 10.3.2. Tag
Resolution]. Since the rest of the rest of the implementation does not
support other deprecated YAML 1.0 numeric features such as sexagecimal
numbers, commas as delimiters it is treated as inconsistency and not
longer supported. This patch also adds unit tests to ensure the validity
of proposed implementation.
This performance bottleneck was identified while profiling Clangd's
global-symbol-builder tool with my colleague @ilya-biryukov. The
substantial part of the runtime was spent during a single-thread Reduce
phase, which concludes with YAML serialization of collected symbol
collection. Regex matching was accountable for approximately 45% of the
whole runtime (which involves sharded Map phase), now it is reduced to
18% (which is spent in `clang::clangd::CanonicalIncludes` and can be
also optimized because all used regexes are in fact either suffix
matches or exact matches).
`llvm-yaml-numeric-parser-fuzzer` was used to ensure the validity of the
proposed regex replacement. Fuzzing for ~60 hours using 10 threads did
not expose any bugs.
Benchmarking `global-symbol-builder` (using `hyperfine --warmup 2
--min-runs 5 'command 1' 'command 2'`) tool by processing a reasonable
amount of code (26 source files matched by
`clang-tools-extra/clangd/*.cpp` with all transitive includes) confirmed
our understanding of the performance bottleneck nature as it speeds up
the command by the factor of 1.6x:
| Command | Mean [s] | Min…Max [s] |
| this patch (D50839) | 84.7 ± 0.6 | 83.3…84.7 |
| master (rL339849) | 133.1 ± 0.8 | 132.4…134.6 |
Using smaller samples (e.g. by collecting symbols from
`clang-tools-extra/clangd/AST.cpp` only) yields even better performance
improvement, which is expected because Map phase takes less time
compared to Reduce and is 2.05x faster and therefore would significantly
improve the performance of standalone YAML serializations.
| Command | Mean [ms] | Min…Max [ms] |
| this patch (D50839) | 3702.2 ± 48.7 | 3635.1…3752.3 |
| master (rL339849) | 7607.6 ± 109.5 | 7533.3…7796.4 |
Reviewed by: zturner, ilya-biryukov
Differential revision: https://reviews.llvm.org/D50839
llvm-svn: 340154
An emitted symbol has had its contents written and its memory protections
applied, but it is not automatically ready to execute.
Prior to ORC supporting concurrent compilation, the term "finalized" could be
interpreted two different (but effectively equivalent) ways: (1) The finalized
symbol's contents have been written and its memory protections applied, and (2)
the symbol is ready to run. Now that ORC supports concurrent compilation, sense
(1) no longer implies sense (2). We have already introduced a new term, 'ready',
to capture sense (2), so rename sense (1) to 'emitted' to avoid any lingering
confusion.
llvm-svn: 340115
VSO was a little close to VDSO (an acronym on Linux for Virtual Dynamic Shared
Object) for comfort. It also risks giving the impression that instances of this
class could be shared between ExecutionSessions, which they can not.
JITDylib seems moderately less confusing, while still hinting at how this
class is intended to be used, i.e. as a JIT-compiled stand-in for a dynamic
library (code that would have been a dynamic library if you had wanted to
compile it ahead of time).
llvm-svn: 340084
Add +fp16fml feature for new FP16 instructions, which are a
mandatory part of FP16 from v8.4-A and an optional part of FP16
from v8.2-A. It doesn't seem to be possible to model this in
LLVM, but the relationship between the options is handled by
the related clang patch.
In keeping with what I think is the usual practice, the fp16fml
extension is accepted regardless of base architecture version.
Builds on/replaces Sjoerd Meijer's patch to add these instructions at
https://reviews.llvm.org/D49839.
Differential Revision: https://reviews.llvm.org/D50228
llvm-svn: 340013
Adds some missing tests for the FP16 extension,
fixes an existing test that misnames it.
Differential Revision: https://reviews.llvm.org/D50227
llvm-svn: 340012
In cases where the debugger load time is a worthwhile tradeoff (or less
costly - such as loading from a DWP instead of a variety of DWOs
(possibly over a high-latency/distributed filesystem)) against object
file size, it can be reasonable to disable pubnames and corresponding
gdb-index creation in the linker.
A backend-flag version of this was implemented for NVPTX in
D44385/r327994 - which was fine for NVPTX which wouldn't mix-and-match
CUs. Now that it's going to be a user-facing option (likely powered by
"-gno-pubnames", the same as GCC) it should be encoded in the
DICompileUnit so it can vary per-CU.
After this, likely the NVPTX support should be migrated to the metadata
& the previous flag implementation should be removed.
Reviewers: aprantl
Differential Revision: https://reviews.llvm.org/D50213
llvm-svn: 339939
Summary:
This prefix was added in r333421, and it changed our dumper output to
say things like "CVRegEAX" instead of just "EAX". That's a functional
change that I'd rather avoid.
I tested GCC, Clang, and MSVC, and all of them support #pragma
push_macro. They don't issue warnings whem the macro is not defined
either.
I don't have a Mac so I can't test the real termios.h header, but I
looked at the termios.h sources online and looked for other conflicts.
I saw only the CR* macros, so those are the ones we work around.
Reviewers: zturner, JDevlieghere
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D50851
llvm-svn: 339907
Summary:
add_llvm_loadable_module adds an install target by default, but this
module is only used for a unit test, so we don't need to install it.
Reviewers: philip.pfaffe, thakis
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D50668
llvm-svn: 339897
Summary:
Profile count of a block is computed by multiplying its block frequency
by entry count and dividing the result by entry block frequency. Do
rounded division in the last step and update test cases appropriately.
Reviewers: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50822
llvm-svn: 339835
Summary:
The C-API supports consuming errors, converting an error to a string error
message, and querying an error's type. Other LLVM C APIs that wish to use
llvm::Error can supply error-type-id checkers and custom
error-to-structured-type converters for any custom errors they provide.
Reviewers: bogner, zturner, labath, dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50716
llvm-svn: 339802
Flags in DIBasicType will be used to pass attributes used in
DW_TAG_base_type, such as DW_AT_endianity.
Patch by Chirag Patel!
Differential Revision: https://reviews.llvm.org/D49610
llvm-svn: 339714
Summary:
Clean-up following D50479.
Make Update and LegalizeUpdate refer to the utilities in Support/CFGUpdate.
Reviewers: kuhar
Subscribers: sanjoy, jlebar, mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D50669
llvm-svn: 339694
Summary:
Add an overload to sys::fs::setLastModificationAndAccessTime that allows setting last access and modification times separately. This will allow tools to use this API when they want to preserve both the access and modification times from an input file, which may be different.
Also note that both the POSIX (futimens/futimes) and Windows (SetFileTime) APIs take the two timestamps in the order of (1) access (2) modification time, so this renames the method to "setLastAccessAndModificationTime" to make it clear which timestamp is which.
For existing callers, the 1-arg overload just sets both timestamps to the same thing.
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50521
llvm-svn: 339628
This function calls a callback whenever a <type> is parsed.
This is necessary to implement FindAlternateFunctionManglings in LLDB, which
uses a similar hack in FastDemangle. Once that function has been updated to use
this version, FastDemangle can finally be removed.
Differential revision: https://reviews.llvm.org/D50586
llvm-svn: 339580
Summary: After converting all existing passes to use the new DomTreeUpdater interface, there isn't any usage of the original DeferredDominance class. Thus, we can safely remove it from the codebase.
Reviewers: kuhar, brzycki, dmgreen, davide, grosser
Reviewed By: kuhar, brzycki
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D49747
llvm-svn: 339502
Summary:
Moved Explicit Locals pass to last.
Made that pass obligatory.
Made it convert from register to stack based instructions, and removed the registers.
Fixes to related code that was expecting register based instructions.
Added the correct testing flag to all tests, depending on what the
format they were expecting so far.
Translated one test to stack format as example: reg-stackify-stack.ll
tested:
llvm-lit -v `find test -name WebAssembly`
unittests/MC/*
Reviewers: dschuff, sunfish
Subscribers: jfb, llvm-commits, aheejin, eraman, jgravelle-google, sbc100
Differential Revision: https://reviews.llvm.org/D50568
llvm-svn: 339474
MemorySSA currently creates MemoryAccesses for lifetime intrinsics, and
sometimes treats them as clobbers. This may/may not be the best way
forward, but while we're doing it, we should consider
MayAlias/PartialAlias to be clobbers.
The ideal fix here is probably to remove all of this reasoning about
lifetimes from MemorySSA + put it into the passes that need to care. But
that's a wayyy broader fix that needs some consensus, and we have
miscompiles + a release branch today, and this should solve the
miscompiles just as well.
differential revision is D43269. Landing without an explicit LGTM (and
without using the special please-autoclose-this syntax) so we can still
use that revision as a place to decide what the right fix here is.
llvm-svn: 339411
Summary: Show the behavior of print operations in the ItaniumPartialDemangler. It's a summary of what the current integration in LLDB assumes. For new users this may be a useful example.
Reviewers: erik.pilkington
Subscribers: llvm-commits, lldb-commits
Differential Revision: https://reviews.llvm.org/D50473
llvm-svn: 339297
LLVM triple normalization is handling "unknown" and empty components
differently; for example given "x86_64-unknown-linux-gnu" and
"x86_64-linux-gnu" which should be equivalent, triple normalization
returns "x86_64-unknown-linux-gnu" and "x86_64--linux-gnu". autoconf's
config.sub returns "x86_64-unknown-linux-gnu" for both
"x86_64-linux-gnu" and "x86_64-unknown-linux-gnu". This changes the
triple normalization to behave the same way, replacing empty triple
components with "unknown".
This addresses PR37129.
Differential Revision: https://reviews.llvm.org/D50219
llvm-svn: 339294
Summary:
The accelerator tables use the debug_str section to store their strings.
However, they do not support the indirect method of access that is
available for the debug_info section (DW_FORM_strx et al.).
Currently our code is assuming that all strings can/will be referenced
indirectly, and puts all of them into the debug_str_offsets section.
This is generally true for regular (unsplit) dwarf, but in the DWO case,
most of the strings in the debug_str section will only be used from the
accelerator tables. Therefore the contents of the debug_str_offsets
section will be largely unused and bloating the main executable.
This patch rectifies this by teaching the DwarfStringPool to
differentiate between strings accessed directly and indirectly. When a
user inserts a string into the pool it has to declare whether that
string will be referenced directly or not. If at least one user requsts
indirect access, that string will be assigned an index ID and put into
debug_str_offsets table. Otherwise, the offset table is skipped.
This approach reduces the overall binary size (when compiled with
-gdwarf-5 -gsplit-dwarf) in my tests by about 2% (debug_str_offsets is
shrunk by 99%).
Reviewers: probinson, dblaikie, JDevlieghere
Subscribers: aprantl, mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D49493
llvm-svn: 339122
In the past, DbgInfoIntrinsic has a strong assumption that these
intrinsics all have variables and expressions attached to them.
However, it is too strong to derive the class for other debug entities.
Now, it has problems for debug labels.
In order to make DbgInfoIntrinsic as a base class for 'debug info', I
create a class for 'variable debug info', DbgVariableIntrinsic.
DbgDeclareInst, DbgAddrIntrinsic, and DbgValueInst will be derived from it.
Differential Revision: https://reviews.llvm.org/D50220
llvm-svn: 338984
This allows us to model the common LLVM idiom of incrementing
immediately after dereferencing so that we can remove or update the
entity w/o losing our ability to reach the "next".
However, these are not real or proper iterators. They are just enough to
allow range based for loops and very simple range algorithms to work,
but should not be considered full general.
Differential Revision: https://reviews.llvm.org/D49956
llvm-svn: 338955
This change allows users pass compression level that was not listed
in the enum. Also, I think using different values than zlib's
compression levels was just confusing.
Differential Revision: https://reviews.llvm.org/D50196
llvm-svn: 338939
Summary:
Previously, `removeUnreachableBlocks` still returns true (which indicates the CFG is changed) even when all the unreachable blocks found is awaiting deletion in the DDT class.
This makes code pattern like
```
// Code modified from lib/Transforms/Scalar/SimplifyCFGPass.cpp
bool EverChanged = removeUnreachableBlocks(F, nullptr, DDT);
...
do {
EverChanged = someMightHappenModifications();
EverChanged |= removeUnreachableBlocks(F, nullptr, DDT);
} while (EverChanged);
```
become a dead loop.
Fix this by detecting whether a BasicBlock is already awaiting deletion.
Reviewers: kuhar, brzycki, dmgreen, grosser, davide
Reviewed By: kuhar, brzycki
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49738
llvm-svn: 338882
Summary:
This change implements the profile loading functionality in LLVM to
support XRay's profiling mode in compiler-rt.
We introduce a type named `llvm::xray::Profile` which allows building a
profile representation. We can load an XRay profile from a file to build
Profile instances, or do it manually through the Profile type's API.
The intent is to get the `llvm-xray` tool to generate `Profile`
instances and use that as the common abstraction through which all
conversion and analysis can be done. In the future we can generate
`Profile` instances from `Trace` instances as well, through conversion
functions.
Some of the key operations supported by the `Profile` API are:
- Path interning (`Profile::internPath(...)`) which returns a unique path
identifier.
- Block appending (`Profile::addBlock(...)`) to add thread-associated
profile information.
- Path ID to Path lookup (`Profile::expandPath(...)`) to look up a
PathID and return the original interned path.
- Block iteration.
A 'Path' in this context represents the function call stack in
leaf-to-root order. This is represented as a path in an internally
managed prefix tree in the `Profile` instance. Having a handle (PathID)
to identify the unique Paths we encounter for a particular Profile
allows us to reduce the amount of memory required to associate profile
data to a particular Path.
This is the first of a series of patches to migrate the `llvm-stacks`
tool towards using a single profile representation.
Depends on D48653.
Reviewers: kpw, eizan
Reviewed By: kpw
Subscribers: mgorny, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D48370
llvm-svn: 338825
Summary:
This patch refines the logic of `recalculate()` in the `DomTreeUpdater` in the following two aspects:
1. Previously, `recalculate()` tests whether there are pending updates/BBs awaiting deletion and then do recalculation under Lazy UpdateStrategy; and do recalculation immediately under Eager UpdateStrategy. (The former behavior is inherited from the `DeferredDominance` class). This is an inconsistency between two strategies and there is no obvious reason to do this. So the behavior is changed to always recalculate available trees when calling `recalculate()`.
2. Fix the issue of when DTU under Lazy UpdateStrategy holds nothing but with BBs awaiting deletion, after calling `recalculate()`, BBs awaiting deletion aren't flushed. An additional unittest is added to cover this case.
Reviewers: kuhar, dmgreen, brzycki, grosser, davide
Reviewed By: kuhar
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50173
llvm-svn: 338822
Summary:
This patch is the second in a series of patches related to the [[ http://lists.llvm.org/pipermail/llvm-dev/2018-June/123883.html | RFC - A new dominator tree updater for LLVM ]].
It converts passes (e.g. adce/jump-threading) and various functions which currently accept DDT in local.cpp and BasicBlockUtils.cpp to use the new DomTreeUpdater class.
These converted functions in utils can accept DomTreeUpdater with either UpdateStrategy and can deal with both DT and PDT held by the DomTreeUpdater.
Reviewers: brzycki, kuhar, dmgreen, grosser, davide
Reviewed By: brzycki
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48967
llvm-svn: 338814
An instance of ReexportsFallbackDefinitionGenerator can be attached to a VSO
(via setFallbackDefinitionGenerator) to re-export symbols on demandy from a
backing VSO.
llvm-svn: 338764
Summary:
On Windows, TempFile::create() was prone to failing with permission
denied errors when a process created many tempfiles without providing
a model large enough to accommodate them. There was also a problem
with createUniqueEntity getting into an infinite loop when all names
permitted by the model are in use. This change fixes both of these
problems and adds a unit test for them.
Reviewers: pcc, rnk, zturner
Reviewed By: zturner
Subscribers: inglorion, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D50126
llvm-svn: 338745
This is patch 2 of 4 NFC refactorings to handle type units and compile
units more consistently and with less concern about the object-file
section that they came from.
Patch 2 takes the existing std::deque<DWARFUnitSection> for type units
and makes it a simple DWARFUnitSection, simplifying the handling of
type units and making it more consistent with compile units.
Differential Revision: https://reviews.llvm.org/D49742
llvm-svn: 338629
This is patch 1 of 4 NFC refactorings to handle type units and compile
units more consistently and with less concern about the object-file
section that they came from.
Patch 1 replaces the templated DWARFUnitSection with a non-templated
version. That is, instead of being a SmallVector of pointers to a
specific unit kind, it is not a SmallVector of pointers to the base
class for both type and compile units. Virtual methods are magic.
Differential Revision: https://reviews.llvm.org/D49741
llvm-svn: 338628
The DWARFDie is a lightweight utility wrapper that stores a pointer to a
compile unit and a debug info entry. Currently, its iterator (used for
walking over its children) stores a DWARFDie and returns a const
reference when dereferencing it.
When the iterator is modified (by incrementing or decrementing it), this
reference becomes invalid. This was happening when calling reverse on
it, because the std::reverse_iterator is keeping a temporary copy of the
iterator (see
https://en.cppreference.com/w/cpp/iterator/reverse_iterator for a good
illustration).
The relevant code in libcxx:
reference operator*() const {_Iter __tmp = current; return *--__tmp;}
When dereferencing the reverse iterator, we decrement and return a
reference to a DWARFDie stored in the stack frame of this function,
resulting in UB at runtime.
This patch specifies the std::reverse_iterator for DWARFDie to do the
right thing.
Differential revision: https://reviews.llvm.org/D49679
llvm-svn: 338506
The patch introduces loop analysis (VPLoopInfo/VPLoop) for VPBlockBases.
This analysis will be necessary to perform some H-CFG transformations and
detect and introduce regions representing a loop in the H-CFG.
Reviewers: fhahn, rengolin, mkuper, hfinkel, mssimpso
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D48816
llvm-svn: 338346
The patch introduces dominator analysis for VPBlockBases and extend
VPlan's GraphTraits specialization with the required interfaces. Dominator
analysis will be necessary to perform some H-CFG transformations and
to introduce VPLoopInfo (LoopInfo analysis on top of the VPlan representation).
Reviewers: fhahn, rengolin, mkuper, hfinkel, mssimpso
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D48815
llvm-svn: 338310
Also, make SerializationTraits for pairs forward the actual pair
template type arguments to the underlying serializer. This allows, for example,
std::pair<StringRef, bool> to be passed as an argument to an RPC call expecting
a std::pair<std::string, bool>, since there is an underlying serializer from
StringRef to std::string that can be used.
llvm-svn: 338305
Summary:
Moved Explicit Locals pass to last.
Made that pass obligatory.
Made it convert from register to stack based instructions, and removed the registers.
Fixes to related code that was expecting register based instructions.
Added the correct testing flag to all tests, depending on what the
format they were expecting so far.
Translated one test to stack format as example: reg-stackify-stack.ll
tested:
llvm-lit -v `find test -name WebAssembly`
unittests/MC/*
Reviewers: dschuff, sunfish
Subscribers: sbc100, jgravelle-google, eraman, aheejin, llvm-commits
Differential Revision: https://reviews.llvm.org/D49160
llvm-svn: 338164
LowerDbgDeclare inserts a dbg.value before each use of an address
described by a dbg.declare. When inserting a dbg.value before a CallInst
use, however, it fails to append DW_OP_deref to the DIExpression.
The DW_OP_deref is needed to reflect the fact that a dbg.value describes
a source variable directly (as opposed to a dbg.declare, which relies on
pointer indirection).
This patch adds in the DW_OP_deref where needed. This results in the
correct values being shown during a debug session for a program compiled
with ASan and optimizations (see https://reviews.llvm.org/D49520). Note
that ConvertDebugDeclareToDebugValue is already correct -- no changes
there were needed.
One complication is that SelectionDAG is unable to distinguish between
direct and indirect frame-index (FRAMEIX) SDDbgValues. This patch also
fixes this long-standing issue in order to not regress integration tests
relying on the incorrect assumption that all frame-index SDDbgValues are
indirect. This is a necessary fix: the newly-added DW_OP_derefs cannot
be lowered properly otherwise. Basically the fix prevents a direct
SDDbgValue with DIExpression(DW_OP_deref) from being dereferenced twice
by a debugger. There were a handful of tests relying on this incorrect
"FRAMEIX => indirect" assumption which actually had incorrect
DW_AT_locations: these are all fixed up in this patch.
Testing:
- check-llvm, and an end-to-end test using lldb to debug an optimized
program.
- Existing unit tests for DIExpression::appendToStack fully cover the
new DIExpression::append utility.
- check-debuginfo (the debug info integration tests)
Differential Revision: https://reviews.llvm.org/D49454
llvm-svn: 338069
The standard library functions ::isprint/std::isprint have platform-
and locale-dependent behavior which makes LLVM's output less
predictable. In particular, regression tests my fail depending on the
implementation of these functions.
Implement llvm::isPrint in StringExtras.h with a standard behavior and
replace all uses of ::isprint/std::isprint by a call it llvm::isPrint.
The function is inlined and does not look up language settings so it
should perform better than the standard library's version.
Such a replacement has already been done for isdigit, isalpha, isxdigit
in r314883. gtest does the same in gtest-printers.cc using the following
justification:
// Returns true if c is a printable ASCII character. We test the
// value of c directly instead of calling isprint(), which is buggy on
// Windows Mobile.
inline bool IsPrintableAscii(wchar_t c) {
return 0x20 <= c && c <= 0x7E;
}
Similar issues have also been encountered by Julia:
https://github.com/JuliaLang/julia/issues/7416
I noticed the problem myself when on Windows isprint('\t') started to
evaluate to true (see https://stackoverflow.com/questions/51435249) and
thus caused several unit tests to fail. The result of isprint doesn't
seem to be well-defined even for ASCII characters. Therefore I suggest
to replace isprint by a platform-independent version.
Differential Revision: https://reviews.llvm.org/D49680
llvm-svn: 338034
Previous version of this patch failed on darwin targets because of
different handling of cross-debug-section relocations. This fixes the
tests to emit the DW_AT_str_offsets_base attribute correctly in both
cases. Since doing this is a non-trivial amount of code, and I'm going
to need it in more than one test, I've added a helper function to the
dwarfgen DIE class to do it.
Original commit message follows:
The motivation for this is D49493, where we'd like to test details of
debug_str_offsets behavior which is difficult to trigger from a
traditional test.
This adds the plubming necessary for dwarfgen to generate this section.
The more interesting changes are:
- I've moved emitStringOffsetsTableHeader function from DwarfFile to
DwarfStringPool, so I can generate the section header more easily from
the unit test.
- added a new addAttribute overload taking an MCExpr*. This is used to
generate the DW_AT_str_offsets_base, which links a compile unit to the
offset table.
I've also added a basic test for reading and writing DW_form_strx forms.
Reviewers: dblaikie, JDevlieghere, probinson
Subscribers: llvm-commits, aprantl
Differential Revision: https://reviews.llvm.org/D49670
llvm-svn: 338031
The AsmPrinter created in the tests contained an uninitialized
TargetLoweringObjectFile. Things mostly worked regardless, because we
used a separate instance of that class to specify sections to emit.
This rearanges the object construction order so that we can avoid
creating two lowering objects. Instead, we properly initialize the
object in the AsmPrinter, and have the DWARF generator store a pointer
to it.
llvm-svn: 338026
The function in question is copy-pasted lots of times in DWARF-related classes.
Thus it will make sense to place its implementation into the Support library.
Reviewed by: lhames
Differential Revision: https://reviews.llvm.org/D49824
llvm-svn: 337995
This recommits r337910 after fixing an "ambiguous call to addAttribute"
error with some compilers (gcc circa 4.9 and MSVC). It seems that these
compilers will consider a "false -> pointer" conversion during overload
resolution. This creates ambiguity because one I added an overload which
takes a MCExpr * as an argument.
I fix this by making the new overload take MCExpr&, which avoids the
conversion. It also documents the fact that we expect a valid MCExpr
object.
Original commit message follows:
The motivation for this is D49493, where we'd like to test details of
debug_str_offsets behavior which is difficult to trigger from a
traditional test.
This adds the plubming necessary for dwarfgen to generate this section.
The more interesting changes are:
- I've moved emitStringOffsetsTableHeader function from DwarfFile to
DwarfStringPool, so I can generate the section header more easily from
the unit test.
- added a new addAttribute overload taking an MCExpr*. This is used to
generate the DW_AT_str_offsets_base, which links a compile unit to the
offset table.
I've also added a basic test for reading and writing DW_form_strx forms.
Reviewers: dblaikie, JDevlieghere, probinson
Subscribers: llvm-commits, aprantl
Differential Revision: https://reviews.llvm.org/D49670
llvm-svn: 337933
This reverts commit r337910 as it's generating "ambiguous call to
addAttribute" errors on some bots.
Will resubmit once I get a chance to look into the problem.
llvm-svn: 337924
Summary:
The motivation for this is D49493, where we'd like to test details of
debug_str_offsets behavior which is difficult to trigger from a
traditional test.
This adds the plubming necessary for dwarfgen to generate this section.
The more interesting changes are:
- I've moved emitStringOffsetsTableHeader function from DwarfFile to
DwarfStringPool, so I can generate the section header more easily from
the unit test.
- added a new addAttribute overload taking an MCExpr*. This is used to
generate the DW_AT_str_offsets_base, which links a compile unit to the
offset table.
I've also added a basic test for reading and writing DW_form_strx forms.
Reviewers: dblaikie, JDevlieghere, probinson
Subscribers: llvm-commits, aprantl
Differential Revision: https://reviews.llvm.org/D49670
llvm-svn: 337910
This patch makes debug counters keep track of the total number of times
we've called `shouldExecute` for each counter, so it's easier to build
automated tooling on top of these.
A patch to print these counts is coming soon.
Patch by Zhizhou Yang!
Differential Revision: https://reviews.llvm.org/D49560
llvm-svn: 337748
deprecating SymbolResolver and AsynchronousSymbolQuery.
Both lookup overloads take a VSO search order to perform the lookup. The first
overload is non-blocking and takes OnResolved and OnReady callbacks. The second
is blocking, takes a boolean flag to indicate whether to wait until all symbols
are ready, and returns a SymbolMap. Both overloads take a RegisterDependencies
function to register symbol dependencies (if any) on the query.
llvm-svn: 337595
This discards the unresolved symbols set and returns the flags map directly
(rather than mutating it via the first argument).
The unresolved symbols result made it easy to chain lookupFlags calls, but such
chaining should be rare to non-existant (especially now that symbol resolvers
are being deprecated) so the simpler method signature is preferable.
llvm-svn: 337594
A search order is a list of VSOs to be searched linearly to find symbols. Each
VSO now has a search order that will be used when fixing up definitions in that
VSO. Each VSO's search order defaults to just that VSO itself.
This is a first step towards removing symbol resolvers from ORC altogether. In
practice symbol resolvers tended to be used to implement a search order anyway,
sometimes with additional programatic generation of symbols. Now that VSOs
support programmatic generation of definitions via fallback generators, search
orders provide a cleaner way to achieve the desired effect (while removing a lot
of boilerplate).
llvm-svn: 337593
Some trivial cases in udivrem were handled by directly assigning 0 or 1
to APInt objects. This would set the bit width to 1, instead of the bit
width of the inputs. A potentially undesirable side effect of that is
that with the bit width of 1, 1 equals -1.
Differential Revision: https://reviews.llvm.org/D49554
llvm-svn: 337478
Spell out destructor, copy/move constructor and assignment operators for
MSVC STL, where set<T>::const_iterator is not trivially copy constructible.
llvm-svn: 337292
This support was partial and temporary. Now that we have
wasm object file support its no longer needed.
Differential Revision: https://reviews.llvm.org/D48744
llvm-svn: 337222
This patch adds support for AArch64 to cfi-verify.
This required three changes to cfi-verify. First, it generalizes checking if an instruction is a trap by adding a new isTrap flag to TableGen (and defining it for x86 and AArch64). Second, the code that ensures that the operand register is not clobbered between the CFI check and the indirect call needs to allow a single dereference (in x86 this happens as part of the jump instruction). Third, we needed to ensure that return instructions are not counted as indirect branches. Technically, returns are indirect branches and can be covered by CFI, but LLVM's forward-edge CFI does not protect them, and x86 does not consider them, so we keep that behavior.
In addition, we had to improve AArch64's code to evaluate the branch target of a MCInst to handle calls where the destination is not the first operand (which it often is not).
Differential Revision: https://reviews.llvm.org/D48836
llvm-svn: 337007
Summary:
Previously, when both DT and PDT are nullptrs and the UpdateStrategy is Lazy, DomTreeUpdater still pends updates inside.
After this patch, DomTreeUpdater will ignore all updates from(`applyUpdates()/insertEdge*()/deleteEdge*()`) in this case. (call `delBB()` still pends BasicBlock deletion until a flush event according to the doc).
The behavior of DomTreeUpdater previously documented won't change after the patch.
Reviewers: dmgreen, davide, kuhar, brzycki, grosser
Reviewed By: kuhar
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48974
llvm-svn: 336968
Summary:
Someone must be responsible for handling an Error. When formatv takes
ownership of an Error, the formatv_object destructor must take care of this.
Passing an error by value to formatv() is not considered explicit enough to mark
the error as handled (see D49013), so we require callers to use a format adapter
to confirm this intent.
Reviewers: zturner
Subscribers: llvm-commits, lhames
Differential Revision: https://reviews.llvm.org/D49170
llvm-svn: 336888
Summary:
Previously, when people need to deal with DTU with different UpdateStrategy using different actions, they need to
```
if (DTU.getUpdateStrategy() == DomTreeUpdater::UpdateStrategy::Lazy) {
...
}
if (DTU.getUpdateStrategy() == DomTreeUpdater::UpdateStrategy::Eager) {
...
}
```
After the patch, they can avoid code patterns above
```
if (DTU.isUpdateLazy()){
...
}
if (!DTU.isUpdateLazy()){
...
}
```
Reviewers: kuhar, brzycki, dmgreen
Reviewed By: kuhar
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49056
llvm-svn: 336886
Make the DIE iterator bidirectional so we can move to the previous
sibling of a DIE.
Differential revision: https://reviews.llvm.org/D49173
llvm-svn: 336823
Memory leaks in tests.
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-bootstrap/builds/6289/steps/check-llvm%20asan/logs/stdio
Direct leak of 192 byte(s) in 1 object(s) allocated from:
#0 0x554ea8 in operator new(unsigned long) /b/sanitizer-x86_64-linux-bootstrap/build/llvm/projects/compiler-rt/lib/asan/asan_new_delete.cc:106
#1 0x56cef1 in llvm::VPlanTestBase::doAnalysis(llvm::Function&) /b/sanitizer-x86_64-linux-bootstrap/build/llvm/unittests/Transforms/Vectorize/VPlanTestBase.h:53:14
#2 0x56bec4 in llvm::VPlanTestBase::buildHCFG(llvm::BasicBlock*) /b/sanitizer-x86_64-linux-bootstrap/build/llvm/unittests/Transforms/Vectorize/VPlanTestBase.h:57:3
#3 0x571f1e in llvm::(anonymous namespace)::VPlanHCFGTest_testVPInstructionToVPRecipesInner_Test::TestBody() /b/sanitizer-x86_64-linux-bootstrap/build/llvm/unittests/Transforms/Vectorize/VPlanHCFGTest.cpp:119:15
#4 0xed2291 in testing::Test::Run() /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/googletest/src/gtest.cc
#5 0xed44c8 in testing::TestInfo::Run() /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/googletest/src/gtest.cc:2656:11
#6 0xed5890 in testing::TestCase::Run() /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/googletest/src/gtest.cc:2774:28
#7 0xef3634 in testing::internal::UnitTestImpl::RunAllTests() /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/googletest/src/gtest.cc:4649:43
#8 0xef27e0 in testing::UnitTest::Run() /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/googletest/src/gtest.cc
#9 0xebbc23 in RUN_ALL_TESTS /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/googletest/include/gtest/gtest.h:2233:46
#10 0xebbc23 in main /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/UnitTestMain/TestMain.cpp:51
#11 0x7f65569592e0 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x202e0)
and more.
llvm-svn: 336718
Parsing invalid UTF-8 input is now a parse error.
Creating JSON values from invalid UTF-8 now triggers an assertion, and
(in no-assert builds) substitutes the unicode replacement character.
Strings retrieved from json::Value are always valid UTF-8.
llvm-svn: 336657