A register in CodeGen can be marked as reserved: In that case we
consider the register always live and do not use (or rather ignore)
kill/dead/undef operand flags.
LiveIntervalAnalysis however tracks liveness per register unit (not per
register). We already needed adjustments for this in r292871 to deal
with super/sub registers. However I did not look at aliased register
there. Looking at ARM:
FPSCR (regunits FPSCR, FPSCR~FPSCR_NZCV) aliases with FPSCR_NZCV
(regunits FPSCR_NZCV, FPSCR~FPSCR_NZCV) hence they share a register unit
(FPSCR~FPSCR_NZCV) that represents the aliased parts of the registers.
This shared register unit was previously considered non-reserved,
however given that we uses of the reserved FPSCR potentially violate
some rules (like uses without defs) we should make FPSCR~FPSCR_NZCV
reserved too and stop tracking liveness for it.
This patch:
- Defines a register unit as reserved when: At least for one root
register, the root register and all its super registers are reserved.
- Adjust LiveIntervals::computeRegUnitRange() for new reserved
definition.
- Add MachineRegisterInfo::isReservedRegUnit() to have a canonical way
of testing.
- Stop computing LiveRanges for reserved register units in HMEditor even
with UpdateFlags enabled.
- Skip verification of uses of reserved reg units in the machine
verifier (this usually didn't happen because there would be no cached
liverange but there is no guarantee for that and I would run into this
case before the HMEditor tweak, so may as well fix the verifier too).
Note that this should only affect ARMs FPSCR/FPSCR_NZCV registers today;
aliased registers are rarely used, the only other cases are hexagons
P0-P3/P3_0 and C8/USR pairs which are not mixing reserved/non-reserved
registers in an alias.
Differential Revision: https://reviews.llvm.org/D37356
llvm-svn: 312348
G_PHI has the same semantics as PHI but also has types.
This lets us verify that the types in the G_PHI are consistent.
This also allows specifying legalization actions for G_PHIs.
https://reviews.llvm.org/D36990
llvm-svn: 311596
Summary: Added MachineVerifier code to check register ties more thoroughly, especially so that physical registers that are tied are the same. This may help e.g. when creating MIR files.
Original patch by Jesper Antonsson
Reviewers: stoklund, sanjoy, qcolombet
Reviewed By: qcolombet
Subscribers: qcolombet, llvm-commits
Differential Revision: https://reviews.llvm.org/D34394
llvm-svn: 307259
(0) RegAllocPBQP: Since getRawAllocationOrder() may return a collection that includes reserved physical registers, iterate to find an un-reserved physical register.
(1) VirtRegMap: Enforce the invariant: "no reserved physical registers" in assignVirt2Phys(). Previously, this was checked only after the fact in VirtRegRewriter::rewrite.
(2) MachineVerifier: updated the test per MatzeB's review.
(3) +testcase
Patch by Nick Johnson<Nicholas.Paul.Johnson@deshawresearch.com>!
Differential Revision: https://reviews.llvm.org/D33947
llvm-svn: 305016
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
While doing so, clarify the comments and update them to reflect current reality.
Note: I'm going to let this sit for a week or so before adding further verification. I want to give this time to cycle through bots and merge it into our downstream tree before pushing this further.
llvm-svn: 304565
This initial patch doesn't actually do much useful. It's just to show where the new code goes. Once this is in, I'll extend the verification logic to check more useful properties.
For those curious, the more complicated version of this patch already found one very suspicious thing.
Differential Revision: https://reviews.llvm.org/D33819
llvm-svn: 304564
Using arguments with attribute inalloca creates problems for verification
of machine representation. This attribute instructs the backend that the
argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END
sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size
stored in CALLSEQ_START in this case does not count the size of this
argument. However CALLSEQ_END still keeps total frame size, as caller can
be responsible for cleanup of entire frame. So CALLSEQ_START and
CALLSEQ_END keep different frame size and the difference is treated by
MachineVerifier as stack error. Currently there is no way to distinguish
this case from actual errors.
This patch adds additional argument to CALLSEQ_START and its
target-specific counterparts to keep size of stack that is set up prior to
the call frame sequence. This argument allows MachineVerifier to calculate
actual frame size associated with frame setup instruction and correctly
process the case of inalloca arguments.
The changes made by the patch are:
- Frame setup instructions get the second mandatory argument. It
affects all targets that use frame pseudo instructions and touched many
files although the changes are uniform.
- Access to frame properties are implemented using special instructions
rather than calls getOperand(N).getImm(). For X86 and ARM such
replacement was made previously.
- Changes that reflect appearance of additional argument of frame setup
instruction. These involve proper instruction initialization and
methods that access instruction arguments.
- MachineVerifier retrieves frame size using method, which reports sum of
frame parts initialized inside frame instruction pair and outside it.
The patch implements approach proposed by Quentin Colombet in
https://bugs.llvm.org/show_bug.cgi?id=27481#c1.
It fixes 9 tests failed with machine verifier enabled and listed
in PR27481.
Differential Revision: https://reviews.llvm.org/D32394
llvm-svn: 302527
This exposes a method in MachineFrameInfo that calculates
MaxCallFrameSize and calls it after instruction selection in the ARM
target.
This avoids
ARMBaseRegisterInfo::canRealignStack()/ARMFrameLowering::hasReservedCallFrame()
giving different answers in early/late phases of codegen.
The testcase shows a particular nasty example result of that where we
would fail to properly align an alloca.
Differential Revision: https://reviews.llvm.org/D32622
llvm-svn: 302303
Instructions CALLSEQ_START..CALLSEQ_END and their target dependent
counterparts keep data like frame size, stack adjustment etc. These
data are accessed by getOperand using hard coded indices. It is
error prone way. This change implements the access by special methods,
which improve readability and allow changing data representation without
massive changes of index values.
Differential Revision: https://reviews.llvm.org/D31953
llvm-svn: 300196
If you run llc -stop-after=codegenprepare and feed the resulting MIR
to llc -start-after=codegenprepare, you'll have an empty machine
function since we haven't run any isel yet. Of course, this only works
if the MIRParser believes you that this is okay.
This is essentially a revert of r241862 with a fix for the problem it
was papering over.
llvm-svn: 299975
Instantiation of the MachineVerifierPass through
PassInfo::getNormalCtor would yield a segfault since the default
constructor of the MachineVerifierPass takes a reference to nullptr.
Patch by Simone Pellegrini.
Differential Revision: https://reviews.llvm.org/D31387
llvm-svn: 298987
Add an assert that checks whether liveins are up to date before they are
used.
- Do not print liveins into .mir files anymore in situations where they
are out of date anyway.
- The assert in the RegisterScavenger is superseded by the new one in
livein_begin().
- Skip parts of the liveness updating logic in IfConversion.cpp when
liveness isn't tracked anymore (just enough to avoid hitting the new
assert()).
Differential Revision: https://reviews.llvm.org/D27562
llvm-svn: 291169
We used to not check generic vregs, but that is actually a mistake given
nothing in the GlobalISel pipeline is going to fix the constraints on
target specific instructions. Therefore, the target has to have them
right from the start.
llvm-svn: 290380
Specifically avoid implicit conversions from/to integral types to
avoid potential errors when changing the underlying type. For example,
a typical initialization of a "full" mask was "LaneMask = ~0u", which
would result in a value of 0x00000000FFFFFFFF if the type was extended
to uint64_t.
Differential Revision: https://reviews.llvm.org/D27454
llvm-svn: 289820
No test case necessary as the problematic condition is checked with the
newly introduced assertAllSuperRegsMarked() function.
Differential Revision: https://reviews.llvm.org/D26648
llvm-svn: 288277
Summary: This makes a change to the state used to maintain visited information for depth first iterator. We know assume a method "completed(...)" which is called after all children of a node have been visited. In all existing cases, this method does nothing so this patch has no functional changes. It will however allow a client to distinguish back from cross edges in a DFS tree.
Reviewers: nadav, mehdi_amini, dberlin
Subscribers: MatzeB, mzolotukhin, twoh, freik, llvm-commits
Differential Revision: https://reviews.llvm.org/D25191
llvm-svn: 283391
It was only really there as a sentinel when instructions had to have precisely
one type. Now that registers are typed, each register really has to have a type
that is sized.
llvm-svn: 281599
These instructions were only necessary when type information was stored in the
MachineInstr (because only generic MachineInstrs possessed a type). Now that
it's in MachineRegisterInfo, COPY and PHI work fine.
llvm-svn: 281037
We want each register to have a canonical type, which means the best place to
store this is in MachineRegisterInfo rather than on every MachineInstr that
happens to use or define that register.
Most changes following from this are pretty simple (you need an MRI anyway if
you're going to be doing any transformations, so just check the type there).
But legalization doesn't really want to check redundant operands (when, for
example, a G_ADD only ever has one type) so I've made use of MCInstrDesc's
operand type field to encode these constraints and limit legalization's work.
As an added bonus, more validation is possible, both in MachineVerifier and
MachineIRBuilder (coming soon).
llvm-svn: 281035
Delete the dead code for Write(ilist_iterator) in the IR Verifier,
inline report(ilist_iterator) at its call sites in the MachineVerifier,
and use simple_ilist<>::iterator in SymbolTableListTraits.
The only remaining reference to ilist_iterator outside of the ilist
implementation is from MachineInstrBundleIterator. I'll get rid of that
in a follow-up.
llvm-svn: 280565
More preparation for dropping source types from MachineInstrs: regsters coming
out of already-selected code (i.e. non-generic instructions) don't have a type,
but that information is needed so we must add it manually.
This is done via a new G_TYPE instruction.
llvm-svn: 280292
We're intending to move to a world where the type of a register is determined
by its (unique) def. This is incompatible with physregs, which are untyped.
It also means the other passes don't have to worry quite so much about
register-class compatibility and inserting COPYs appropriately.
llvm-svn: 280132
MRI::getMaxLaneMaskForVReg does not always cover the whole register.
For example, on X86 the upper 16 bits of EAX cannot be accessed via
any subregister. Consequently, there is no lane mask that only covers
that part of EAX. The getMaxLaneMaskForVReg will return the union of
the lane masks for all subregisters, and in case of EAX, that union
will not cover the upper 16 bits.
This fixes https://llvm.org/bugs/show_bug.cgi?id=29132
llvm-svn: 279969
Rename AllVRegsAllocated to NoVRegs. This avoids the connotation of
running after register and simply describes that no vregs are used in
a machine function. With that we can simply compute the property and do
not need to dump/parse it in .mir files.
Differential Revision: http://reviews.llvm.org/D23850
llvm-svn: 279698
The register allocator can split a live interval of a register into a set
of smaller intervals. After the allocation of registers is complete, the
rewriter will modify the IR to replace virtual registers with the corres-
ponding physical registers. At this stage, if a register corresponding
to a subregister of a virtual register is used, the rewriter will check
if that subregister is undefined, and if so, it will add the <undef> flag
to the machine operand. The function verifying liveness of the subregis-
ter would assume that it is undefined, unless any of the subranges of the
live interval proves otherwise.
The problem is that the live intervals created during splitting do not
have any subranges, even if the original parent interval did. This could
result in the <undef> flag placed on a register that is actually defined.
Differential Revision: http://reviews.llvm.org/D21189
llvm-svn: 279625
Specifying isSSA is an extra line at best and results in invalid MI at
worst. Compute the value instead.
Differential Revision: http://reviews.llvm.org/D22722
llvm-svn: 279600
I want to compute the SSA property of .mir files automatically in
upcoming patches. The problem with this is that some inputs will be
reported as static single assignment with some passes claiming not to
support SSA form. In reality though those passes do not support PHI
instructions => Track the presence of PHI instructions separate from the
SSA property.
Differential Revision: https://reviews.llvm.org/D22719
llvm-svn: 279573
After instruction selection, there should be no pre-isel generic
instructions remaining, nor should generic virtual registers be
used. Verify that.
llvm-svn: 277483
LLT() has a particular meaning: it's one invalid type. But we really
want selected instructions to have no type whatsoever.
Also verify that types don't linger after ISel, and enable the verifier
on the AArch64 select test.
llvm-svn: 277001
This is mostly a mechanical change to make TargetInstrInfo API take
MachineInstr& (instead of MachineInstr* or MachineBasicBlock::iterator)
when the argument is expected to be a valid MachineInstr. This is a
general API improvement.
Although it would be possible to do this one function at a time, that
would demand a quadratic amount of churn since many of these functions
call each other. Instead I've done everything as a block and just
updated what was necessary.
This is mostly mechanical fixes: adding and removing `*` and `&`
operators. The only non-mechanical change is to split
ARMBaseInstrInfo::getOperandLatencyImpl out from
ARMBaseInstrInfo::getOperandLatency. Previously, the latter took a
`MachineInstr*` which it updated to the instruction bundle leader; now,
the latter calls the former either with the same `MachineInstr&` or the
bundle leader.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
Note: I updated WebAssembly, Lanai, and AVR (despite being
off-by-default) since it turned out to be easy. I couldn't run tests
for AVR since llc doesn't link with it turned on.
llvm-svn: 274189
It is fine for subregister ranges to be undefined on some CFG paths as
we may have a "vregX:other_subreg<read-undef> =" def on that path. We
do not (and should not) have live segments for the subregister ranges.
The MachineVerifier should not complain about this.
This is a slight variant of http://llvm.org/PR27705
llvm-svn: 270290
virtual registers.
Generic virtual registers:
- May not have a register class
- May not have a register bank
- If they do not have a register class they must have a size
- If they have a register bank, the size of the register bank must be
greater or equal to the size of the virtual register (basically check
that the virtual register will fit into that register class)
llvm-svn: 265798