leaks though) and add methods to its interface for adding/finding specializations.
Simplifies its users a bit and we no longer need to replace specializations in the folding set with
their redeclarations. We just return the most recent redeclarations.
As a bonus, it fixes http://llvm.org/PR7670.
llvm-svn: 108832
expression such as the "foo" in "this->blah.foo<1, 2>", and we can't
look into the type of "this->blah" (e.g., because it is dependent),
look into the local scope of a template of the same name. Fixes
<rdar://problem/8198511>.
llvm-svn: 108531
definition, we're likely going to end up breaking the invariants of
the template system, e.g., that the depths of template parameter lists
match up with the nesting template of the template. So, make sure we
mark such ill-formed declarations as invalid or don't even build them
at all.
llvm-svn: 108372
class templates within class scope (which is ill-formed), and recover
by dropping the explicit specialization entirely. Fixes the infinite
loop in PR7622.
llvm-svn: 108217
parameters starts at the end of the template-parameter rather than at
the point where the template parameter name is encounted. For example,
given:
typedef unsigned char T;
template<typename T = T> struct X0 { };
The "T" in the default argument refers to the typedef of "unsigned
char", rather than referring to the newly-introduced template type
parameter 'T'.
Addresses <rdar://problem/8122812>.
llvm-svn: 107354
(or operator-function-id) as a template, but the context is actually
non-dependent or the current instantiation, allow us to use knowledge
of what kind of template it is, e.g., type template vs. function
template, for further syntactic disambiguation. This allows us to
parse properly in the presence of stray "template" keywords, which is
necessary in C++0x and it's good recovery in C++98/03.
llvm-svn: 106167
disambiguation keywords outside of templates in C++98/03. Previously,
the warning would fire when the associated nested-name-specifier was
not dependent, but that was a misreading of the C++98/03 standard:
now, we complain only when we're outside of any template.
llvm-svn: 106161
introduced by using decls are hidden even if their template parameter lists
or return types differ from the "overriding" declaration.
Propagate using shadow declarations around more effectively when looking up
template-ids. Reperform lookup for template-ids in member expressions so that
access control is properly set up.
Fix some number of latent bugs involving template-ids with totally invalid
base types. You can only actually get these with a scope specifier, since
otherwise the template-id won't parse as a template-id.
Fixes PR7384.
llvm-svn: 106093
in C++ that involve both integral and enumeration types. Convert all
of the callers to Type::isIntegralType() that are meant to work with
both integral and enumeration types over to
Type::isIntegralOrEnumerationType(), to prepare to eliminate
enumeration types as integral types.
llvm-svn: 106071
case of an elaborated-type-specifier like 'typename A<T>::foo', and
DependentTemplateSpecializationType represents the case of an
elaborated-type-specifier like 'typename A<T>::template B<T>'. The TypeLoc
representation of a DependentTST conveniently exactly matches that of an
ElaboratedType wrapping a TST.
Kill off the explicit rebuild methods for RebuildInCurrentInstantiation;
the standard implementations work fine because the nested name specifier
is computable in the newly-entered context.
llvm-svn: 105801
a member template, and you try to call the member template with an explicit
template argument. See PR7247
For example, this downgrades the error to a warning in:
template<typename T> struct set{};
struct Value {
template<typename T>
void set(T value) {
}
};
void foo() {
Value v;
v.set<double>(3.2); // Warning here.
}
llvm-svn: 105518
VLA restrictions so that one can use VLAs in templates (even
accidentally), but not as part of a non-type template parameter (which
would be very bad).
llvm-svn: 104471
in several important ways:
- VLAs of non-POD types are not permitted.
- VLAs cannot be used in conjunction with C++ templates.
These restrictions are intended to keep VLAs out of the parts of the
C++ type system where they cause the most trouble. Fixes PR5678 and
<rdar://problem/8013618>.
llvm-svn: 104443
the required "template" keyword, using the same heuristics we do for
dependent template names in member access expressions, e.g.,
test/SemaTemplate/dependent-template-recover.cpp:11:8: error: use 'template'
keyword to treat 'getAs' as a dependent template name
T::getAs<U>();
^
template
Fixes PR5404.
llvm-svn: 104409
that is missing the 'template' keyword, e.g.,
t->getAs<T>()
where getAs is a member of an unknown specialization. C++ requires
that we treat "getAs" as a value, but that would fail to parse since T
is the name of a type. We would then fail at the '>', since a type
cannot be followed by a '>'.
This is a very common error for C++ programmers to make, especially
since GCC occasionally allows it when it shouldn't (as does Visual
C++). So, when we are in this case, we use tentative parsing to see if
the tokens starting at "<" can only be parsed as a template argument
list. If so, we produce a diagnostic with a fix-it that states that
the 'template' keyword is needed:
test/SemaTemplate/dependent-template-recover.cpp:5:8: error: 'template' keyword
is required to treat 'getAs' as a dependent template name
t->getAs<T>();
^
template
This is just a start of this patch; I'd like to apply the same
approach to everywhere that a template-id with dependent template name
can be parsed.
llvm-svn: 104406
"used" (e.g., we will refer to the vtable in the generated code) and
when they are defined (i.e., because we've seen the key function
definition). Previously, we were effectively tracking "potential
definitions" rather than uses, so we were a bit too eager about emitting
vtables for classes without key functions.
The new scheme:
- For every use of a vtable, Sema calls MarkVTableUsed() to indicate
the use. For example, this occurs when calling a virtual member
function of the class, defining a constructor of that class type,
dynamic_cast'ing from that type to a derived class, casting
to/through a virtual base class, etc.
- For every definition of a vtable, Sema calls MarkVTableUsed() to
indicate the definition. This happens at the end of the translation
unit for classes whose key function has been defined (so we can
delay computation of the key function; see PR6564), and will also
occur with explicit template instantiation definitions.
- For every vtable defined/used, we mark all of the virtual member
functions of that vtable as defined/used, unless we know that the key
function is in another translation unit. This instantiates virtual
member functions when needed.
- At the end of the translation unit, Sema tells CodeGen (via the
ASTConsumer) which vtables must be defined (CodeGen will define
them) and which may be used (for which CodeGen will define the
vtables lazily).
From a language perspective, both the old and the new schemes are
permissible: we're allowed to instantiate virtual member functions
whenever we want per the standard. However, all other C++ compilers
were more lazy than we were, and our eagerness was both a performance
issue (we instantiated too much) and a portability problem (we broke
Boost test cases, which now pass).
Notes:
(1) There's a ton of churn in the tests, because the order in which
vtables get emitted to IR has changed. I've tried to isolate some of
the larger tests from these issues.
(2) Some diagnostics related to
implicitly-instantiated/implicitly-defined virtual member functions
have moved to the point of first use/definition. It's better this
way.
(3) I could use a review of the places where we MarkVTableUsed, to
see if I missed any place where the language effectively requires a
vtable.
Fixes PR7114 and PR6564.
llvm-svn: 103718
explicit instantiations of template. C++0x clarifies the intent
(they're ill-formed in some cases; see [temp.explicit] for
details). However, one could squint at the C++98/03 standard and
conclude they are permitted, so reduce the error to a warning
(controlled by -Wc++0x-compat) in C++98/03 mode.
llvm-svn: 103482
different tag kind ("struct" vs. "class") than the primary template,
which has an affect on access control.
Should fix the last remaining Boost.Accumulors failure.
llvm-svn: 103144
ParseOptionalCXXScopeSpecifier() only annotates the subset of
template-ids which are not subject to lexical ambiguity. Add support
for the more general case in ParseUnqualifiedId() to handle cases
such as A::template B().
Also improve some diagnostic locations.
Fixes PR7030, from Alp Toker!
llvm-svn: 103081
parameter with pointer-to-member type, we may have to perform a
qualification conversion, since the pointee type of the parameter
might be more qualified than the pointee type of the argument we form
from the declaration. Fixes PR6986.
llvm-svn: 102777
of the mapping from local declarations to their instantiated
counterparts during template instantiation. Previously, we tried to do
some unholy merging of local instantiation scopes that involved
storing a single hash table along with an "undo" list on the
side... which was ugly, and never handled function parameters
properly.
Now, we just keep separate hash tables for each local instantiation
scope, and "combining" two scopes means that we'll look in each of the
combined hash tables. The combined scope stack is rarely deep, and
this makes it easy to avoid the "undo" issues we were hitting. Also,
I've simplified the logic for function parameters: if we're declaring
a function and we need the function parameters to live longer, we just
push them back into the local instantiation scope where we need them.
Fixes PR6990.
llvm-svn: 102732
specializations, which keeps track of the order in which they were
originally declared. We use this number so that we can always walk the
list of partial specializations in a predictable order during matching
or template instantiation. This also fixes a failure in Boost.Proto,
where SourceManager::isBeforeInTranslationUnit was behaving
poorly in inconsistent ways.
llvm-svn: 102693
entering the current instantiation. Set up a little to preserve type location
information for typename types while we're in there.
Fixes a Boost failure.
llvm-svn: 102673
bindings when the template argument is still an expression; it happens
while checking the template arguments of a class template partial
specializations. Fixes PR6964.
llvm-svn: 102595