Commit Graph

494 Commits

Author SHA1 Message Date
Matthew Simpson 1d4b163fc0 [LV] Account for predicated stores in instruction costs
This patch ensures that we scale the estimated cost of predicated stores by
block probability. This is a follow-on patch for r284123.

llvm-svn: 284126
2016-10-13 14:54:31 +00:00
Matthew Simpson 6cdb5a6f96 [LV] Avoid rounding errors for predicated instruction costs
This patch modifies the cost calculation of predicated instructions (div and
rem) to avoid the accumulation of rounding errors due to multiple truncating
integer divisions. The calculation for predicated stores will be addressed in a
follow-on patch since we currently don't scale the cost of predicated stores by
block probability.

Differential Revision: https://reviews.llvm.org/D25333

llvm-svn: 284123
2016-10-13 14:19:48 +00:00
Matthew Simpson a371c14ffe [LV] Don't mark multi-use branch conditions uniform
Previously, we marked the branch conditions of latch blocks uniform after
vectorization if they were instructions contained in the loop. However, if a
condition instruction has users other than the branch, it may not remain
uniform. This patch ensures the conditions we mark uniform are only used by the
branch. This should fix PR30627.

Reference: https://llvm.org/bugs/show_bug.cgi?id=30627
llvm-svn: 283563
2016-10-07 15:20:13 +00:00
Michael Kuperstein 5185b7dde3 [LV] Remove triples from target-independent vectorizer tests. NFC.
Vectorizer tests in the target-independent directory should not have a target
triple. If a test really needs to query a specific backend, it belongs in the
right target subdirectory (which "REQUIRES" the right backend). Otherwise, it
should not specify a triple.

llvm-svn: 283512
2016-10-06 23:57:25 +00:00
Matthew Simpson 7808833e28 [LV] Build all scalar steps for non-uniform induction variables
When building the steps for scalar induction variables, we previously attempted
to determine if all the scalar users of the induction variable were uniform. If
they were, we would only emit the step corresponding to vector lane zero. This
optimization was too aggressive. We generally don't know the entire set of
induction variable users that will be scalar. We have
isScalarAfterVectorization, but this is only a conservative estimate of the
instructions that will be scalarized. Thus, an induction variable may have
scalar users that aren't already known to be scalar. To avoid emitting unused
steps, we can only check that the induction variable is uniform. This should
fix PR30542.

Reference: https://llvm.org/bugs/show_bug.cgi?id=30542
llvm-svn: 282863
2016-09-30 15:13:52 +00:00
Matthew Simpson b764aba2ab [LV] Scalarize instructions marked scalar after vectorization
This patch ensures that we actually scalarize instructions marked scalar after
vectorization. Previously, such instructions may have been vectorized instead.

Differential Revision: https://reviews.llvm.org/D23889

llvm-svn: 282418
2016-09-26 17:08:37 +00:00
Matthew Simpson 15869f86d8 [LV] Don't emit unused scalars for uniform instructions
If we identify an instruction as uniform after vectorization, we know that we
should only use the value corresponding to the first vector lane of each unroll
iteration. However, when scalarizing such instructions, we still produce values
for the other vector lanes. This patch prevents us from generating the unused
scalars.

Differential Revision: https://reviews.llvm.org/D24275

llvm-svn: 282087
2016-09-21 16:50:24 +00:00
Adam Nemet e3cef93727 [LV] When reporting about a specific instruction without debug location use loop's
This can occur for example if some optimization drops the debug location.

llvm-svn: 282048
2016-09-21 03:14:20 +00:00
Elena Demikhovsky 5f8cc0c346 [Loop Vectorizer] Consecutive memory access - fixed and simplified
Amended consecutive memory access detection in Loop Vectorizer.
Load/Store were not handled properly without preceding GEP instruction.

Differential Revision: https://reviews.llvm.org/D20789

llvm-svn: 281853
2016-09-18 13:56:08 +00:00
Matthew Simpson b25e87fca5 [LV] Process pointer IVs with PHINodes in collectLoopUniforms
This patch moves the processing of pointer induction variables in
collectLoopUniforms from the consecutive pointer phase of the analysis to the
phi node phase. Previously, if a pointer induction variable was used by both a
scalarized non-memory instruction as well as a vectorized memory instruction,
we would incorrectly identify the pointer as uniform. Pointer induction
variables should be treated the same as other phi nodes. That is, they are
uniform if all users of the induction variable and induction variable update
are uniform.

Differential Revision: https://reviews.llvm.org/D24511

llvm-svn: 281485
2016-09-14 14:47:40 +00:00
Peter Collingbourne d4135bbc30 DebugInfo: New metadata representation for global variables.
This patch reverses the edge from DIGlobalVariable to GlobalVariable.
This will allow us to more easily preserve debug info metadata when
manipulating global variables.

Fixes PR30362. A program for upgrading test cases is attached to that
bug.

Differential Revision: http://reviews.llvm.org/D20147

llvm-svn: 281284
2016-09-13 01:12:59 +00:00
Matthew Simpson bfe5e1817b [LV] Ensure proper handling of multi-use case when collecting uniforms
The test case included in r280979 wasn't checking what it was supposed to be
checking for the predicated store case. Fixing the test revealed that the
multi-use case (when a pointer is used by both vectorized and scalarized memory
accesses) wasn't being handled properly. We can't skip over
non-consecutive-like pointers since they may have looked consecutive-like with
a different memory access.

llvm-svn: 280992
2016-09-08 21:38:26 +00:00
Matthew Simpson 408a3abcfe [LV] Don't mark pointers used by scalarized memory accesses uniform
Previously, all consecutive pointers were marked uniform after vectorization.
However, if a consecutive pointer is used by a memory access that is eventually
scalarized, the pointer won't remain uniform after all. An example is
predicated stores. Even though a predicated store may be consecutive, it will
still be scalarized, making it's pointer operand non-uniform.

This patch updates the logic in collectLoopUniforms to consider the cases where
a memory access may be scalarized. If a memory access may be scalarized, its
pointer operand is not marked uniform. The determination of whether a given
memory instruction will be scalarized or not has been moved into a common
function that is used by the vectorizer, cost model, and legality analysis.

Differential Revision: https://reviews.llvm.org/D24271

llvm-svn: 280979
2016-09-08 19:11:07 +00:00
Matthew Simpson b65c230eab [LV] Ensure reverse interleaved group GEPs remain uniform
For uniform instructions, we're only required to generate a scalar value for
the first vector lane of each unroll iteration. Thus, if we have a reverse
interleaved group, computing the member index off the scalar GEP corresponding
to the last vector lane of its pointer operand technically makes the GEP
non-uniform. We should compute the member index off the first scalar GEP
instead.

I've added the updated member index computation to the existing reverse
interleaved group test.

llvm-svn: 280497
2016-09-02 16:19:22 +00:00
Michael Kuperstein 2954d1db77 [LoopVectorizer] Predicate instructions in blocks with several incoming edges
We don't need to limit predication to blocks that have a single incoming
edge, we just need to use the right mask.
This fixes PR30172.

Differential Revision: https://reviews.llvm.org/D24009

llvm-svn: 280148
2016-08-30 20:22:21 +00:00
Matthew Simpson df19502b16 [LV] Move insertelement sequence after scalar definitions
After r279649 when getting a vector value from VectorLoopValueMap, we create an
insertelement sequence on-demand if the value has been scalarized instead of
vectorized. We previously inserted this insertelement sequence before the
value's first vector user. However, this insert location is problematic if that
user is the phi node of a first-order recurrence. With this patch, we move the
insertelement sequence after the last scalar instruction we created when
scalarizing the value. Thus, the value's vector definition in the new loop will
immediately follow its scalar definitions. This should fix PR30183.

Reference: https://llvm.org/bugs/show_bug.cgi?id=30183
llvm-svn: 280001
2016-08-29 20:14:04 +00:00
Elena Demikhovsky 3622fbfc68 [Loop Vectorizer] Fixed memory confilict checks.
Fixed a bug in run-time checks for possible memory conflicts inside loop.
The bug is in Low <-> High boundaries calculation. The High boundary should be calculated as "last memory access pointer + element size".

Differential revision: https://reviews.llvm.org/D23176

llvm-svn: 279930
2016-08-28 08:53:53 +00:00
Matthew Simpson abd2be1e2e [LV] Unify vector and scalar maps
This patch unifies the data structures we use for mapping instructions from the
original loop to their corresponding instructions in the new loop. Previously,
we maintained two distinct maps for this purpose: WidenMap and ScalarIVMap.
WidenMap maintained the vector values each instruction from the old loop was
represented with, and ScalarIVMap maintained the scalar values each scalarized
induction variable was represented with. With this patch, all values created
for the new loop are maintained in VectorLoopValueMap.

The change allows for several simplifications. Previously, when an instruction
was scalarized, we had to insert the scalar values into vectors in order to
maintain the mapping in WidenMap. Then, if a user of the scalarized value was
also scalar, we had to extract the scalar values from the temporary vector we
created. We now aovid these unnecessary scalar-to-vector-to-scalar conversions.
If a scalarized value is used by a scalar instruction, the scalar value is used
directly. However, if the scalarized value is needed by a vector instruction,
we generate the needed insertelement instructions on-demand.

A common idiom in several locations in the code (including the scalarization
code), is to first get the vector values an instruction from the original loop
maps to, and then extract a particular scalar value. This patch adds
getScalarValue for this purpose along side getVectorValue as an interface into
VectorLoopValueMap. These functions work together to return the requested
values if they're available or to produce them if they're not.

The mapping has also be made less permissive. Entries can be added to
VectorLoopValue map with the new initVector and initScalar functions.
getVectorValue has been modified to return a constant reference to the mapped
entries.

There's no real functional change with this patch; however, in some cases we
will generate slightly different code. For example, instead of an insertelement
sequence following the definition of an instruction, it will now precede the
first use of that instruction. This can be seen in the test case changes.

Differential Revision: https://reviews.llvm.org/D23169

llvm-svn: 279649
2016-08-24 18:23:17 +00:00
Gil Rapaport 550148b2f6 [Loop Vectorizer] Support predication of div/rem
div/rem instructions in basic blocks that require predication currently prevent
vectorization. This patch extends the existing mechanism for predicating stores
to handle other instructions and leverages it to predicate divs and rems.

Differential Revision: https://reviews.llvm.org/D22918

llvm-svn: 279620
2016-08-24 11:37:57 +00:00
Tim Shen c9c0d2dcb5 [LoopVectorize] Detect loops in the innermost loop before creating InnerLoopVectorizer
InnerLoopVectorizer shouldn't handle a loop with cycles inside the loop
body, even if that cycle isn't a natural loop.

Fixes PR28541.

Differential Revision: https://reviews.llvm.org/D22952

llvm-svn: 278573
2016-08-12 22:47:13 +00:00
David Majnemer a19d0f2f3e [ValueTracking] Teach computeKnownBits about [su]min/max
Reasoning about a select in terms of a min or max allows us to derive a
tigher bound on the result.

llvm-svn: 277914
2016-08-06 08:16:00 +00:00
Michael Kuperstein 3ceac2bbd5 [LV, X86] Be more optimistic about vectorizing shifts.
Shifts with a uniform but non-constant count were considered very expensive to
vectorize, because the splat of the uniform count and the shift would tend to
appear in different blocks. That made the splat invisible to ISel, and we'd
scalarize the shift at codegen time.

Since r201655, CodeGenPrepare sinks those splats to be next to their use, and we
are able to select the appropriate vector shifts. This updates the cost model to
to take this into account by making shifts by a uniform cheap again.

Differential Revision: https://reviews.llvm.org/D23049

llvm-svn: 277782
2016-08-04 22:48:03 +00:00
Wei Mi dc7001afb2 [LoopVectorize] Change comment for isOutOfScope in collectLoopUniforms, NFC
Update comment for isOutOfScope and add a testcase for uniform value being used
out of scope.

Differential Revision: https://reviews.llvm.org/D23073

llvm-svn: 277515
2016-08-02 20:27:49 +00:00
Matthew Simpson 18d8898317 [LV] Generate both scalar and vector integer induction variables
This patch enables the vectorizer to generate both scalar and vector versions
of an integer induction variable for a given loop. Previously, we only
generated a scalar induction variable if we knew all its users were going to be
scalar. Otherwise, we generated a vector induction variable. In the case of a
loop with both scalar and vector users of the induction variable, we would
generate the vector induction variable and extract scalar values from it for
the scalar users. With this patch, we now generate both versions of the
induction variable when there are both scalar and vector users and select which
version to use based on whether the user is scalar or vector.

Differential Revision: https://reviews.llvm.org/D22869

llvm-svn: 277474
2016-08-02 15:25:16 +00:00
Matthew Simpson 58f562887b [LV] Untangle the concepts of uniform and scalar
This patch refactors the logic in collectLoopUniforms and
collectValuesToIgnore, untangling the concepts of "uniform" and "scalar". It
adds isScalarAfterVectorization along side isUniformAfterVectorization to
distinguish the two. Known scalar values include those that are uniform,
getelementptr instructions that won't be vectorized, and induction variables
and induction variable update instructions whose users are all known to be
scalar.

This patch includes the following functional changes:

- In collectLoopUniforms, we mark uniform the pointer operands of interleaved
  accesses. Although non-consecutive, these pointers are treated like
  consecutive pointers during vectorization.

- In collectValuesToIgnore, we insert a value into VecValuesToIgnore if it
  isScalarAfterVectorization rather than isUniformAfterVectorization. This
  differs from the previous functionaly in that we now add getelementptr
  instructions that will not be vectorized into VecValuesToIgnore.

This patch also removes the ValuesNotWidened set used for induction variable
scalarization since, after the above changes, it is now equivalent to
isScalarAfterVectorization.

Differential Revision: https://reviews.llvm.org/D22867

llvm-svn: 277460
2016-08-02 14:29:41 +00:00
Igor Breger f44b79d08e [AVX512] Don't use i128 masked gather/scatter/load/store. Do more accurately dataWidth check.
Differential Revision: http://reviews.llvm.org/D23055

llvm-svn: 277435
2016-08-02 09:15:28 +00:00
Craig Topper d2b2d745ff [AVX-512] Fix a test missed in r277327.
llvm-svn: 277330
2016-08-01 08:15:30 +00:00
Matt Masten a6669a1e05 Initial support for vectorization using svml (short vector math library).
Differential Revision: https://reviews.llvm.org/D19544

llvm-svn: 277166
2016-07-29 16:42:44 +00:00
Wei Mi 315bb33f27 Fix the assertion error in collectLoopUniforms caused by empty Worklist before expanding.
Contributed-by: David Callahan

Differential Revision: https://reviews.llvm.org/D22886

llvm-svn: 276943
2016-07-27 23:53:58 +00:00
Elena Demikhovsky 376a18bd92 [Loop Vectorizer] Handling loops FP induction variables.
Allowed loop vectorization with secondary FP IVs. Like this:
float *A;
float x = init;
for (int i=0; i < N; ++i) {
  A[i] = x;
  x -= fp_inc;
}

The auto-vectorization is possible when the induction binary operator is "fast" or the function has "unsafe" attribute.

Differential Revision: https://reviews.llvm.org/D21330

llvm-svn: 276554
2016-07-24 07:24:54 +00:00
Matthew Simpson 102729cf1b [LV] Move vector int induction update to end of latch
This patch moves the update instruction for vectorized integer induction phi
nodes to the end of the latch block. This ensures consistent placement of all
induction updates across all the kinds of int inductions we create (scalar,
splat vector, or vector phi).

Differential Revision: https://reviews.llvm.org/D22416

llvm-svn: 276339
2016-07-21 21:20:15 +00:00
Adam Nemet 7cfd5971ab [OptDiag,LV] Add hotness attribute to applied-optimization remarks
Test coverage is provided by modifying the function in the FP-math
testcase that we are allowed to vectorize.

llvm-svn: 276223
2016-07-21 01:07:13 +00:00
Adam Nemet 0e0e2d5d26 [OptDiag,LV] Add hotness attribute to the derived analysis remarks
This includes FPCompute and Aliasing.

Testcase is based on no_fpmath.ll.

llvm-svn: 276211
2016-07-20 23:50:32 +00:00
Adam Nemet 5b3a5cf6b0 [OptDiag,LV] Add hotness attribute to analysis remarks
The earlier change added hotness attribute to missed-optimization
remarks.  This follows up with the analysis remarks (the ones explaining
the reason for the missed optimization).

llvm-svn: 276192
2016-07-20 21:44:26 +00:00
Adam Nemet 67c8929a2c [LV] Add hotness attribute to missed-optimization remarks
The new OptimizationRemarkEmitter analysis pass is hooked up to both new
and old PM passes.

llvm-svn: 276080
2016-07-20 04:03:43 +00:00
Wei Mi 79997a24d7 Recommit the patch "Use uniforms set to populate VecValuesToIgnore".
For instructions in uniform set, they will not have vector versions so
add them to VecValuesToIgnore.
For induction vars, those only used in uniform instructions or consecutive
ptrs instructions have already been added to VecValuesToIgnore above. For
those induction vars which are only used in uniform instructions or
non-consecutive/non-gather scatter ptr instructions, the related phi and
update will also be added into VecValuesToIgnore set.

The change will make the vector RegUsages estimation less conservative.

Differential Revision: https://reviews.llvm.org/D20474

The recommit fixed the testcase global_alias.ll.

llvm-svn: 275936
2016-07-19 00:50:43 +00:00
Wei Mi f9afff71a2 Revert rL275912.
llvm-svn: 275915
2016-07-18 21:14:43 +00:00
Wei Mi 1fd25726af Use uniforms set to populate VecValuesToIgnore.
For instructions in uniform set, they will not have vector versions so
add them to VecValuesToIgnore.
For induction vars, those only used in uniform instructions or consecutive
ptrs instructions have already been added to VecValuesToIgnore above. For
those induction vars which are only used in uniform instructions or
non-consecutive/non-gather scatter ptr instructions, the related phi and
update will also be added into VecValuesToIgnore set.

The change will make the vector RegUsages estimation less conservative.

Differential Revision: https://reviews.llvm.org/D20474

llvm-svn: 275912
2016-07-18 20:59:53 +00:00
Matthew Simpson 65ca32b83c [LV] Allow interleaved accesses in loops with predicated blocks
This patch allows the formation of interleaved access groups in loops
containing predicated blocks. However, the predicated accesses are prevented
from forming groups.

Differential Revision: https://reviews.llvm.org/D19694

llvm-svn: 275471
2016-07-14 20:59:47 +00:00
Matthew Simpson 3c3b4a257b [LV] Avoid unnecessary IV scalar-to-vector-to-scalar conversions
This patch prevents increases in the number of instructions, pre-instcombine,
due to induction variable scalarization. An increase in instructions can lead
to an increase in the compile-time required to simplify the induction
variables. We now maintain a new map for scalarized induction variables to
prevent us from converting between the scalar and vector forms.

This patch should resolve compile-time regressions seen after r274627.

llvm-svn: 275419
2016-07-14 14:36:06 +00:00
Michael Kuperstein a99c46cc73 [LV] Remove wrong assumption about LCSSA
The LCSSA pass itself will not generate several redundant PHI nodes in a single
exit block. However, such redundant PHI nodes don't violate LCSSA form, and may
be introduced by passes that preserve LCSSA, and/or preserved by the LCSSA pass
itself. So, assuming a single PHI node per exit block is not safe.

llvm-svn: 275217
2016-07-12 21:24:06 +00:00
Michael Kuperstein f0c59330e9 [X86] Make some cast costs more precise
Make some AVX and AVX512 cast costs more precise.
Based on part of a patch by Elena Demikhovsky (D15604).

Differential Revision: http://reviews.llvm.org/D22064

llvm-svn: 275106
2016-07-11 21:39:44 +00:00
Sean Silva db90d4d9c1 [PM] Port LoopVectorize to the new PM.
llvm-svn: 275000
2016-07-09 22:56:50 +00:00
Elena Demikhovsky fc1e969dfc Fixed a bug in vectorizing GEP before gather/scatter intrinsic.
Vectorizing GEP was incorrect and broke SSA in some cases.
 
The patch fixes PR27997 https://llvm.org/bugs/show_bug.cgi?id=27997.

Differential revision: http://reviews.llvm.org/D22035

llvm-svn: 274735
2016-07-07 06:06:46 +00:00
Michael Kuperstein aa71bdd3af [TTI] The cost model should not assume vector casts get completely scalarized
The cost model should not assume vector casts get completely scalarized, since
on targets that have vector support, the common case is a partial split up to
the legal vector size. So, when a vector cast  gets split, the resulting casts
end up legal and cheap.

Instead of pessimistically assuming scalarization, base TTI can use the costs
the concrete TTI provides for the split vector, plus a fudge factor to account
for the cost of the split itself. This fudge factor is currently 1 by default,
except on AMDGPU where inserts and extracts are considered free.

Differential Revision: http://reviews.llvm.org/D21251

llvm-svn: 274642
2016-07-06 17:30:56 +00:00
Matthew Simpson 433cb1dfe3 [LV] Don't widen trivial induction variables
We currently always vectorize induction variables. However, if an induction
variable is only used for counting loop iterations or computing addresses with
getelementptr instructions, we don't need to do this. Vectorizing these trivial
induction variables can create vector code that is difficult to simplify later
on. This is especially true when the unroll factor is greater than one, and we
create vector arithmetic when computing step vectors. With this patch, we check
if an induction variable is only used for counting iterations or computing
addresses, and if so, scalarize the arithmetic when computing step vectors
instead. This allows for greater simplification.

This patch addresses the suboptimal pointer arithmetic sequence seen in
PR27881.

Reference: https://llvm.org/bugs/show_bug.cgi?id=27881
Differential Revision: http://reviews.llvm.org/D21620

llvm-svn: 274627
2016-07-06 14:26:59 +00:00
Matt Arsenault 727e279ac4 SLPVectorizer: Move propagateMetadata to VectorUtils
This will be re-used by the LoadStoreVectorizer.

Fix handling of range metadata and testcase by Justin Lebar.

llvm-svn: 274281
2016-06-30 21:17:59 +00:00
Wei Mi 95685faeee Refine the set of UniformAfterVectorization instructions.
Except the seed uniform instructions (conditional branch and consecutive ptr
instructions), dependencies to be added into uniform set should only be used
by existing uniform instructions or intructions outside of current loop.

Differential Revision: http://reviews.llvm.org/D21755

llvm-svn: 274262
2016-06-30 18:42:56 +00:00
Elena Demikhovsky 5e21c94f25 Reverted patch 273864
llvm-svn: 274115
2016-06-29 10:01:06 +00:00
Artur Pilipenko 7ad95ec22d Support arbitrary addrspace pointers in masked load/store intrinsics
This is a resubmittion of 263158 change after fixing the existing problem with intrinsics mangling (see LTO and intrinsics mangling llvm-dev thread for details).

This patch fixes the problem which occurs when loop-vectorize tries to use @llvm.masked.load/store intrinsic for a non-default addrspace pointer. It fails with "Calling a function with a bad signature!" assertion in CallInst constructor because it tries to pass a non-default addrspace pointer to the pointer argument which has default addrspace.

The fix is to add pointer type as another overloaded type to @llvm.masked.load/store intrinsics.

Reviewed By: reames

Differential Revision: http://reviews.llvm.org/D17270

llvm-svn: 274043
2016-06-28 18:27:25 +00:00