Summary:
pickNodeBidirectional tried to compare the best top candidate and the
best bottom candidate by examining TopCand.Reason and BotCand.Reason.
This is unsound because, after calling pickNodeFromQueue, Cand.Reason
does not reflect the most important reason why Cand was chosen. Rather
it reflects the most recent reason why it beat some other potential
candidate, which could have been for some low priority tie breaker
reason.
I have seen this cause problems where TopCand is a good candidate, but
because TopCand.Reason is ORDER (which is very low priority) it is
repeatedly ignored in favour of a mediocre BotCand. This is not how
bidirectional scheduling is supposed to work.
To fix this I changed the code to always compare TopCand and BotCand
directly, like the generic implementation of pickNodeBidirectional does.
This removes some uncommented AMDGPU-specific logic; if this logic turns
out to be important then perhaps it could be moved into an override of
tryCandidate instead.
Graphics shader benchmarking on gfx10 shows a lot more positive than
negative effects from this change.
Reviewers: arsenm, tstellar, rampitec, kzhuravl, vpykhtin, dstuttard, tpr, atrick, MatzeB
Subscribers: jvesely, wdng, nhaehnle, yaxunl, t-tye, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68338
This also allows three op patterns to use increased constant bus
limit of GFX10.
Differential Revision: https://reviews.llvm.org/D61763
llvm-svn: 360395
Reassociate adds to collect scalar operands in a single
instruction when possible. That will result in a scalar
add followed by vector instead of two vector adds, thus
better utilizing SALU.
Differential Revision: https://reviews.llvm.org/D58220
llvm-svn: 354066
Summary:
We have seen performance regression when v_add3 is generated. The major reason is that the v_mad pattern
is broken when v_add3 is generated. We also see the register pressure increased. While we could not properly
estimate register pressure during instruction selection, we can give mad a higher priority.
In this work, we raise the priority for mad24 in selection and resolve the performance regression.
Reviewers:
rampitec
Differential Revision:
https://reviews.llvm.org/D56745
llvm-svn: 351273