refactorings in that revision, and some of the subsequent bugfixes, which
seem to be relevant even without delayed exception specification parsing.
llvm-svn: 156031
exception specifications on member functions until after the closing
'}' for the containing class. This allows, for example, a member
function to throw an instance of its own class. Fixes PR12564 and a
fairly embarassing oversight in our C++98/03 support.
llvm-svn: 154844
a type specifier and can be combined with unsigned. This allows libstdc++4.7 to
be used with clang in c++98 mode.
Several other changes are still required for libstdc++4.7 to work with clang in
c++11 mode.
llvm-svn: 153999
which enables support for C99 storage-class specifiers.
This extension is intended to be used by implementations to implement
OpenCL C built-in functions.
llvm-svn: 141271
When performing semantic analysis on a member declaration, fix the check for whether we are declaring a function to check for parenthesized declarators, declaration via decltype, etc.
Also fix the semantic check to not treat FuncType* as a function type.
llvm-svn: 133862
declaration, determine whether the declaration will end up declaring a
function using semantic criteria (e.g., it will have function type)
rather than purely syntactic criteria (e.g., it has the form of a
function declarator). Fixes <rdar://problem/9670557>.
llvm-svn: 133854
lifetime is well-known and restricted, cleaning them up manually is easy to miss and cause a leak.
Use it to plug the leaking of TemplateIdAnnotation objects. rdar://9634138.
llvm-svn: 133610
type that turns one type into another. This is used as the basis to
implement __underlying_type properly - with TypeSourceInfo and proper
behavior in the face of templates.
llvm-svn: 132017
AttributeLists do not accumulate over the lifetime of parsing, but are
instead reused. Also make the arguments array not require a separate
allocation, and make availability attributes store their stuff in
augmented memory, too.
llvm-svn: 128209
1) When we do an instantiation of the injected-class-name type,
provide a proper source location. This is just plain good hygiene.
2) When we're building a NestedNameSpecifierLoc from a CXXScopeSpec,
only return an empty NestedNameSpecifierLoc if there's no
representation.
Both problems contributed to the horrible test case in PR9390 that I
couldn't reduce down to something palatable.
llvm-svn: 126961
source-location information into a NestedNameSpecifierLocBuilder
class, which lives within the AST library and centralize all knowledge
of the format of nested-name-specifier location information here.
No functionality change.
llvm-svn: 126716
nested-name-specifiers throughout the parser, and provide a new class
(NestedNameSpecifierLoc) that contains a nested-name-specifier along
with its type-source information.
Right now, this information is completely useless, because we don't
actually store the source-location information anywhere in the
AST. Call this Step 1/N.
llvm-svn: 126391
way it keeps track of namespaces. Previously, we would map from the
namespace alias to its underlying namespace when building a
nested-name-specifier, losing source information in the process.
llvm-svn: 126358
with another component in the nested-name-specifiers, updating its
representation (a NestedNameSpecifier) and source-location information
(currently a SourceRange) simultaneously. This is groundwork for
adding source-location information to nested-name-specifiers.
llvm-svn: 126346