Add one more simplification for floordiv and mod affine expressions.
Examples:
(2*d0 + 1) floordiv 2 is simplified to d0
(8*d0 + 4*d1 + d2) floordiv 4 simplified to 4*d0 + d1 + d2 floordiv 4.
etc.
Similarly, (4*d1 + 1) mod 2 is simplified to 1,
(2*d0 + 8*d1) mod 8 simplified to 2*d0 mod 8.
Change getLargestKnownDivisor to return int64_t to be consistent and
to avoid casting at call sites (since the return value is used in expressions
of int64_t/index type).
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#202
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/202 from bondhugula:affine b13fcb2f1c00a39ca5434613a02408e085a80e77
PiperOrigin-RevId: 284866710
Now that we have unrolling as a declarative pattern, we can drop a full pass that has gone stale. In the future we may want to add specific unrolling patterns for VectorTransferReadOp.
PiperOrigin-RevId: 283806880
In the replaceAllUsesExcept utility function called from loop coalescing the
iteration over the use-chain is incorrect. The use list nodes (IROperands) have
next/prev links, and bluntly resetting the use would make the loop to continue
on uses of the value that was replaced instead of the original one. As a
result, it could miss the existing uses and update the wrong ones. Make sure we
increment the iterator before updating the use in the loop body.
Reported-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#291.
PiperOrigin-RevId: 283754195
tensorflow/mlir#162 introduced a bug that
incorrectly allowed fusion of producer loops with multiple outgoing
edges. This commit fixes that problem. It also introduces a new flag to
disable sibling loop fusion so that we can test producer-consumer fusion
in isolation.
Closestensorflow/mlir#259
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/259 from dcaballe:dcaballe/fix_multi_out_edge_producer_fusion 578d5661705fd5c56c555832d5e0528df88c5282
PiperOrigin-RevId: 283531105
Depending on which of the offsets, sizes, or strides are constant, the
subview op can be canonicalized in different ways. Add such
canonicalizations, which generalize the existing approach of
canonicalizing subview op only if all of offsets, sizes and shapes are
constants.
PiperOrigin-RevId: 282010703
This moves the different canonicalizations of regions into one place and invokes them in the fixed-point iteration of the canonicalizer.
PiperOrigin-RevId: 281617072
This is a simple multi-level DCE pass that operates pretty generically on
the IR. Its key feature compared to the existing peephole dead op folding
that happens during canonicalization is being able to delete recursively
dead cycles of the use-def graph, including block arguments.
PiperOrigin-RevId: 281568202
This method is needed for N->1 conversion patterns to retrieve remapped
Values used in the original N operations.
Closestensorflow/mlir#237
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/237 from dcaballe:dcaballe/getRemappedValue 1f64fadcf2b203f7b336ff0c5838b116ae3625db
PiperOrigin-RevId: 281321881
This CL utilizies the more robust fusion feasibility analysis being built out in LoopFusionUtils, which will eventually be used to replace the current affine loop fusion pass.
PiperOrigin-RevId: 281112340
In essence, std.subview is just an abstract indexing transformation (somewhat
akin to a gep in llvm) and by itself has no effect. From a practical perspective
this helps, as it allows to remove dead subview operations.
PiperOrigin-RevId: 280630046
This is step 1/n in refactoring infrastructure along the Vector dialect to make it ready for retargetability and composable progressive lowering.
PiperOrigin-RevId: 280529784
This CL moves VectorOps to Tablegen and cleans up the implementation.
This is almost NFC but 2 changes occur:
1. an interface change occurs in the padding value specification in vector_transfer_read:
the value becomes non-optional. As a shortcut we currently use %f0 for all paddings.
This should become an OpInterface for vectorization in the future.
2. the return type of vector.type_cast is trivial and simplified to `memref<vector<...>>`
Relevant roundtrip and invalid tests that used to sit in core are moved to the vector dialect.
The op documentation is moved to the .td file.
PiperOrigin-RevId: 280430869
This refactors the implementation of block signature(type) conversion to not insert fake cast operations to perform the type conversion, but to instead create a new block containing the proper signature. This has the benefit of enabling the use of pre-computed analyses that rely on mapping values. It also leads to a much cleaner implementation overall. The major user facing change is that applySignatureConversion will now replace the entry block of the region, meaning that blocks generally shouldn't be cached over calls to applySignatureConversion.
PiperOrigin-RevId: 280226936
A pattern rewriter hook, mergeBlock, is added that allows for merging the operations of one block into the end of another. This is used to support a canonicalization pattern for branch operations that folds the branch when the successor has a single predecessor(the branch block).
Example:
^bb0:
%c0_i32 = constant 0 : i32
br ^bb1(%c0_i32 : i32)
^bb1(%x : i32):
return %x : i32
becomes:
^bb0:
%c0_i32 = constant 0 : i32
return %c0_i32 : i32
PiperOrigin-RevId: 278677825
The current lowering of loops to GPU only supports lowering of loop
nests where the loops mapped to workgroups and workitems are perfectly
nested. Here a new lowering is added to handle lowering of imperfectly
nested loop body with the following properties
1) The loops partitioned to workgroups are perfectly nested.
2) The loop body of the inner most loop partitioned to workgroups can
contain one or more loop nests that are to be partitioned across
workitems. Each individual loops nests partitioned to workitems should
also be perfectly nested.
3) The number of workgroups and workitems are not deduced from the
loop bounds but are passed in by the caller of the lowering as values.
4) For statements within the perfectly nested loop nest partitioned
across workgroups that are not loops, it is valid to have all threads
execute that statement. This is NOT verified.
PiperOrigin-RevId: 277958868
Rewrite patterns may make modifications to the CFG, including dropping edges between blocks. This change adds a simple unreachable block elimination run at the end of each iteration to ensure that the CFG remains valid.
PiperOrigin-RevId: 277545805
In some cases, it may be desirable to mark entire regions of operations as legal. This provides an additional granularity of context to the concept of "legal". The `ConversionTarget` supports marking operations, that were previously added as `Legal` or `Dynamic`, as `recursively` legal. Recursive legality means that if an operation instance is legal, either statically or dynamically, all of the operations nested within are also considered legal. An operation can be marked via `markOpRecursivelyLegal<>`:
```c++
ConversionTarget &target = ...;
/// The operation must first be marked as `Legal` or `Dynamic`.
target.addLegalOp<MyOp>(...);
target.addDynamicallyLegalOp<MySecondOp>(...);
/// Mark the operation as always recursively legal.
target.markOpRecursivelyLegal<MyOp>();
/// Mark optionally with a callback to allow selective marking.
target.markOpRecursivelyLegal<MyOp, MySecondOp>([](Operation *op) { ... });
/// Mark optionally with a callback to allow selective marking.
target.markOpRecursivelyLegal<MyOp>([](MyOp op) { ... });
```
PiperOrigin-RevId: 277086382
This allows for them to be used on other non-function, or even other function-like, operations. The algorithms are already generic, so this is simply changing the derived pass type. The majority of this change is just ensuring that the nesting of these passes remains the same, as the pass manager won't auto-nest them anymore.
PiperOrigin-RevId: 276573038
This simplifies defining expected-* directives when there are multiple that apply to the next or previous line. @below applies the directive to the next non-designator line, i.e. the next line that does not contain an expected-* designator. @above applies to the previous non designator line.
Examples:
// Expect an error on the next line that does not contain a designator.
// expected-remark@below {{remark on function below}}
// expected-remark@below {{another remark on function below}}
func @bar(%a : f32)
// Expect an error on the previous line that does not contain a designator.
func @baz(%a : f32)
// expected-remark@above {{remark on function above}}
// expected-remark@above {{another remark on function above}}
PiperOrigin-RevId: 276369085
This allows mixing linalg operations with vector transfer operations (with additional modifications to affine ops) and is a step towards solving tensorflow/mlir#189.
PiperOrigin-RevId: 275543361
When dealing with regions, or other patterns that need to generate temporary operations, it is useful to be able to replace other operations than the root op being matched. Before this PR, these operations would still be considered for legalization meaning that the conversion would either fail, erroneously need to mark these ops as legal, or add unnecessary patterns.
PiperOrigin-RevId: 274598513
This will allow for inlining newly devirtualized calls, as well as give a more accurate cost model(when we have one). Currently canonicalization will only run for nodes that have no child edges, as the child nodes may be erased during canonicalization. We can support this in the future, but it requires more intricate deletion tracking.
PiperOrigin-RevId: 274011386
When an operation with regions gets replaced, we currently require that all of the remaining nested operations are still converted even though they are going to be replaced when the rewrite is finished. This cl adds a tracking for a minimal set of operations that are known to be "dead". This allows for ignoring the legalization of operations that are won't survive after conversion.
PiperOrigin-RevId: 274009003
variadic result.
Add missing test for single line fix to `void OpEmitter::genFolderDecls()`
entitled "Fold away reduction over 0 dimensions."
PiperOrigin-RevId: 273880337
This PR is a stepping stone towards supporting generic multi-store
source loop nests in affine loop fusion. It extends the algorithm to
support fusion of multi-store loop nests that:
1. have only one store that writes to a function-local live out, and
2. the remaining stores are involved in loop nest self dependences
or no dependences within the function.
Closestensorflow/mlir#162
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/162 from dcaballe:dcaballe/multi-output-fusion 7fb7dec6fe8b45f5ce176f018bfe37b256420c45
PiperOrigin-RevId: 273773907
This allows individual passes to define options structs and for these options to be parsed per instance of the pass while building the pass pipeline from the command line provided textual specification.
The user can specify these per-instance pipeline options like so:
```
struct MyPassOptions : public PassOptions<MyPassOptions> {
Option<int> exampleOption{*this, "flag-name", llvm:🆑:desc("...")};
List<int> exampleListOption{*this, "list-flag-name", llvm:🆑:desc("...")};
};
static PassRegistration<MyPass, MyPassOptions> pass("my-pass", "description");
```
PiperOrigin-RevId: 273650140
This is similar to the `inlineRegionBefore` hook, except the original blocks are unchanged. The region to be cloned *must* not have been modified during the conversion process at the point of cloning, i.e. it must belong an operation that has yet to be converted, or the operation that is currently being converted.
PiperOrigin-RevId: 273622533
- bodies would earlier appear in the order (i, i+3, i+2, i+1) instead of
(i, i+1, i+2, i+3) for example for factor 4.
- clean up hardcoded test cases
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#170
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/170 from bondhugula:ujam b66b405b2b1894a03b376952e32a9d0292042665
PiperOrigin-RevId: 273613131
Some dialects have implicit conversions inherent in their modeling, meaning that a call may have a different type that the type that the callable expects. To support this, a hook is added to the dialect interface that allows for materializing conversion operations during inlining when there is a mismatch. A hook is also added to the callable interface to allow for introspecting the expected result types.
PiperOrigin-RevId: 272814379
This allows for the inliner to work on arbitrary call operations. The updated inliner will also work bottom-up through the callgraph enabling support for multiple levels of inlining.
PiperOrigin-RevId: 272813876
- introduce splat op in standard dialect (currently for int/float/index input
type, output type can be vector or statically shaped tensor)
- implement LLVM lowering (when result type is 1-d vector)
- add constant folding hook for it
- while on Ops.cpp, fix some stale names
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#141
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/141 from bondhugula:splat 48976a6aa0a75be6d91187db6418de989e03eb51
PiperOrigin-RevId: 270965304
- fix store to load forwarding for a certain set of cases (where
forwarding shouldn't have happened); use AffineValueMap difference
based MemRefAccess equality checking; utility logic is also greatly
simplified
- add missing equality/inequality operators for AffineExpr ==/!= ints
- add == != operators on MemRefAccess
Closestensorflow/mlir#136
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/136 from bondhugula:store-load-forwarding d79fd1add8bcfbd9fa71d841a6a9905340dcd792
PiperOrigin-RevId: 270457011
- allow symbols in index remapping provided for memref replacement
- fix memref normalize crash on cases with layout maps with symbols
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Reported by: Alex Zinenko
Closestensorflow/mlir#139
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/139 from bondhugula:memref-rep-symbols 2f48c1fdb5d4c58915bbddbd9f07b18541819233
PiperOrigin-RevId: 269851182
- add canonicalization pattern to compose maps into affine loads/stores;
templatize the pattern and reuse it for affine.apply as well
- rename getIndices -> getMapOperands() (getIndices is confusing since
these are no longer the indices themselves but operands to the map
whose results are the indices). This also makes the accessor uniform
across affine.apply/load/store. Change arg names on the affine
load/store builder to avoid confusion. Drop an unused confusing build
method on AffineStoreOp.
- update incomplete doc comment for canonicalizeMapAndOperands (this was
missed from a previous update).
Addresses issue tensorflow/mlir#121
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#122
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/122 from bondhugula:compose-load-store e71de1771e56a85c4282c10cb43f30cef0701c4f
PiperOrigin-RevId: 269619540