Commit Graph

18 Commits

Author SHA1 Message Date
Hal Finkel 9e0baa6d3a [PowerPC] Add some missing VSX bitcast patterns
llvm-svn: 205352
2014-04-01 19:24:27 +00:00
Hal Finkel b4240ca0f4 [PowerPC] Don't ever expand BUILD_VECTOR of v2i64 with shuffles
If we have two unique values for a v2i64 build vector, this will always result
in two vector loads if we expand using shuffles. Only one is necessary.

llvm-svn: 205231
2014-03-31 17:48:16 +00:00
Hal Finkel 02807595fb Look at shuffles of build_vectors in DAGCombiner::visitEXTRACT_VECTOR_ELT
When the loop vectorizer vectorizes code that uses the loop induction variable,
we often end up with IR like this:

  %b1 = insertelement <2 x i32> undef, i32 %v, i32 0
  %b2 = shufflevector <2 x i32> %b1, <2 x i32> undef, <2 x i32> zeroinitializer
  %i = add <2 x i32> %b2, <i32 2, i32 3>

If the add in this example is not legal (as is the case on PPC with VSX), it
will be scalarized, and we'll end up with a number of extract_vector_elt nodes
with the vector shuffle as the input operand, and that vector shuffle is fed by
one or more build_vector nodes. By the time that vector operations are
expanded, visitEXTRACT_VECTOR_ELT will not create new extract_vector_elt by
looking through the vector shuffle (to make sure that no illegal operations are
created), and so the extract_vector_elt -> vector shuffle -> build_vector is
never simplified to an operand of the build vector.

By looking at build_vectors through a shuffle we fix this particular situation,
preventing a vector from being built, only to be deconstructed again (for the
scalarized add) -- an expensive proposition when this all needs to be done via
the stack. We probably want a more comprehensive fix here where we look back
recursively through any shuffles to any build_vectors or scalar_to_vectors,
etc. but that can come later.

llvm-svn: 205179
2014-03-31 11:43:19 +00:00
Hal Finkel 90adf0fe06 Make use of previously generated stores in SelectionDAGLegalize::ExpandExtractFromVectorThroughStack
When expanding EXTRACT_VECTOR_ELT and EXTRACT_SUBVECTOR using
SelectionDAGLegalize::ExpandExtractFromVectorThroughStack, we store the entire
vector and then load the piece we want. This is fine in isolation, but
generating a new store (and corresponding stack slot) for each extraction ends
up producing code of poor quality. When we scalarize a vector operation (using
SelectionDAG::UnrollVectorOp for example) we generate one EXTRACT_VECTOR_ELT
for each element in the vector. This used to generate one stored copy of the
vector for each element in the vector. Now we search the uses of the vector for
a suitable store before generating a new one, which results in much more
efficient scalarization code.

llvm-svn: 205153
2014-03-30 15:10:18 +00:00
Hal Finkel 5c0d1454d6 [PowerPC] Handle VSX v2i64 SIGN_EXTEND_INREG
sitofp from v2i32 to v2f64 ends up generating a SIGN_EXTEND_INREG v2i64 node
(and similarly for v2i16 and v2i8). Even though there are no sign-extension (or
algebraic shifts) for v2i64 types, we can handle v2i32 sign extensions by
converting two and from v2i64. The small trick necessary here is to shift the
i32 elements into the right lanes before the i32 -> f64 step. This is because
of the big Endian nature of the system, we need the i32 portion in the high
word of the i64 elements.

For v2i16 and v2i8 we can do the same, but we first use the default Altivec
shift-based expansion from v2i16 or v2i8 to v2i32 (by casting to v4i32) and
then apply the above procedure.

llvm-svn: 205146
2014-03-30 13:22:59 +00:00
Hal Finkel 777c9dd90a [PowerPC] Handle v2i64 comparisons
v2i64 is a legal type under VSX, however we don't have native vector
comparisons. We can handle eq/ne by casting it to an Altivec type, but
everything else must be expanded.

llvm-svn: 205106
2014-03-29 16:04:40 +00:00
Hal Finkel 2583b06310 [PowerPC] Fix VSX permutation isel
Not only did I invert the indices when I wrote the code, but I also did the
same thing when I wrote the regression test. Oops.

llvm-svn: 205046
2014-03-28 20:24:55 +00:00
Hal Finkel 82569b6366 [PowerPC] Fix v2f64 vector extract and related patterns
First, v2f64 vector extract had not been declared legal (and so the existing
patterns were not being used). Second, the patterns for that, and for
scalar_to_vector, should really be a regclass copy, not a subregister
operation, because the VSX registers directly hold both the vector and scalar data.

llvm-svn: 204971
2014-03-27 22:22:48 +00:00
Hal Finkel ad801b7459 [PowerPC] Expand v2i64 shifts
These operations need to be expanded during legalization so that isel does not
crash. In theory, we might be able to custom lower some of these. That,
however, would need to be follow-up work.

llvm-svn: 204963
2014-03-27 21:26:33 +00:00
Hal Finkel df3e34d944 [PowerPC] Generate VSX permutations for v2[fi]64 vectors
llvm-svn: 204873
2014-03-26 22:58:37 +00:00
Hal Finkel 6e28e6aaaf [PowerPC] VSX loads and stores support unaligned access
I've not yet updated PPCTTI because I'm not sure what the actual relative cost
is compared to the aligned uses.

llvm-svn: 204848
2014-03-26 19:39:09 +00:00
Hal Finkel 7279f4b00d [PowerPC] Use v2f64 <-> v2i64 VSX conversion instructions
llvm-svn: 204843
2014-03-26 19:13:54 +00:00
Hal Finkel 9281c9a38b [PowerPC] Use VSX vector load/stores for v2[fi]64
These instructions have access to the complete VSX register file. In addition,
they "swap" the order of the elements so that element 0 (the scalar part) comes
first in memory and element 1 follows at a higher address.

llvm-svn: 204838
2014-03-26 18:26:30 +00:00
Hal Finkel a6c8b51212 [PowerPC] Add v2i64 as a legal VSX type
v2i64 needs to be a legal VSX type because it is the SetCC result type from
v2f64 comparisons. We need to expand all non-arithmetic v2i64 operations.

This fixes the lowering for v2f64 VSELECT.

llvm-svn: 204828
2014-03-26 16:12:58 +00:00
Hal Finkel 732f0f73a7 [PowerPC] Lower VSELECT using xxsel when VSX is available
With VSX there is a real vector select instruction, and so we should use it.
Note that VSELECT will still scalarize for v2f64 because the corresponding
SetCC result type (v2i64) is not currently a legal type.

llvm-svn: 204801
2014-03-26 12:49:28 +00:00
Hal Finkel bd4de9d478 [PowerPC] Generate logical vector VSX instructions
These instructions are essentially the same as their Altivec counterparts, but
have access to the larger VSX register file.

llvm-svn: 204782
2014-03-26 04:55:40 +00:00
Hal Finkel 55805eb562 [PowerPC] Fix the VSX v2f64 return register
v2f64 values, like other 128-bit values, are returned under VSX in register
vs34 (Altivec register v2).

llvm-svn: 204543
2014-03-22 18:24:43 +00:00
Hal Finkel 27774d9274 [PowerPC] Initial support for the VSX instruction set
VSX is an ISA extension supported on the POWER7 and later cores that enhances
floating-point vector and scalar capabilities. Among other things, this adds
<2 x double> support and generally helps to reduce register pressure.

The interesting part of this ISA feature is the register configuration: there
are 64 new 128-bit vector registers, the 32 of which are super-registers of the
existing 32 scalar floating-point registers, and the second 32 of which overlap
with the 32 Altivec vector registers. This makes things like vector insertion
and extraction tricky: this can be free but only if we force a restriction to
the right register subclass when needed. A new "minipass" PPCVSXCopy takes care
of this (although it could do a more-optimal job of it; see the comment about
unnecessary copies below).

Please note that, currently, VSX is not enabled by default when targeting
anything because it is not yet ready for that.  The assembler and disassembler
are fully implemented and tested. However:

 - CodeGen support causes miscompiles; test-suite runtime failures:
      MultiSource/Benchmarks/FreeBench/distray/distray
      MultiSource/Benchmarks/McCat/08-main/main
      MultiSource/Benchmarks/Olden/voronoi/voronoi
      MultiSource/Benchmarks/mafft/pairlocalalign
      MultiSource/Benchmarks/tramp3d-v4/tramp3d-v4
      SingleSource/Benchmarks/CoyoteBench/almabench
      SingleSource/Benchmarks/Misc/matmul_f64_4x4

 - The lowering currently falls back to using Altivec instructions far more
   than it should. Worse, there are some things that are scalarized through the
   stack that shouldn't be.

 - A lot of unnecessary copies make it past the optimizers, and this needs to
   be fixed.

 - Many more regression tests are needed.

Normally, I'd fix these things prior to committing, but there are some
students and other contributors who would like to work this, and so it makes
sense to move this development process upstream where it can be subject to the
regular code-review procedures.

llvm-svn: 203768
2014-03-13 07:58:58 +00:00