LLVM IR types are defined using MLIR's extendable type system. The dialect
provides the only type kind, LLVMType, that wraps an llvm::Type*. Since LLVM
IR types are pointer-unique, MLIR type systems relies on those pointers to
perform its own type unique'ing. Type parsing and printing is delegated to
LLVM libraries.
Define MLIR operations for the LLVM IR instructions currently used by the
translation to the LLVM IR Target to simplify eventual transition. Operations
classes are defined using TableGen. LLVM IR instruction operands that are only
allowed to take constant values are accepted as attributes instead. All
operations are using verbose form for printing and parsing.
PiperOrigin-RevId: 229400375
MLIR has support for type-polymorphic instructions, i.e. instructions that may
take arguments of different types. For example, standard arithmetic operands
take scalars, vectors or tensors. In order to express such instructions in
TableGen, we need to be able to verify that a type object satisfies certain
constraints, but we don't need to construct an instance of this type. The
existing TableGen definition of Type requires both. Extract out a
TypeConstraint TableGen class to define restrictions on types. Define the Type
TableGen class as a subclass of TypeConstraint for consistency. Accept records
of the TypeConstraint class instead of the Type class as values in the
Arguments class when defining operators.
Replace the predicate logic TableGen class based on conjunctive normal form
with the predicate logic classes allowing for abitrary combinations of
predicates using Boolean operators (AND/OR/NOT). The combination is
implemented using simple string rewriting of C++ expressions and, therefore,
respects the short-circuit evaluation order. No logic simplification is
performed at the TableGen level so all expressions must be valid C++.
Maintaining CNF using TableGen only would have been complicated when one needed
to introduce top-level disjunction. It is also unclear if it could lead to a
significantly simpler emitted C++ code. In the future, we may replace inplace
predicate string combination with a tree structure that can be simplified in
TableGen's C++ driver.
Combined, these changes allow one to express traits like ArgumentsAreFloatLike
directly in TableGen instead of relying on C++ trait classes.
PiperOrigin-RevId: 229398247
DenseElementAttr currently does not support value bitwidths of > 64. This can result in asan failures and crashes when trying to invoke DenseElementsAttr::writeBits/DenseElementsAttr::readBits.
PiperOrigin-RevId: 229241125
*) LoopFusion: Adds fusion cost function which compares the cost of the fused loop nest, with the cost of the two unfused loop nests to determine if it is profitable to fuse the candidate loop nests. The fusion cost function is run for various combinations for src/dst loop depths attempting find the minimum cost setting for src/dst loop depths which does not increase the computational cost when the loop nests are fused. Combinations of src/dst loop depth are evaluated attempting to maximize loop depth (i.e. take a bigger computation slice from the source loop nest, and insert it deeper in the destination loop nest for better locality).
*) LoopFusion: Adds utility to compute op instance count for loop nests, sliced loop nests, and to compute the cost of a loop nest fused with another sliced loop nest.
*) LoopFusion: canonicalizes slice bound AffineMaps (and updates related tests).
*) Analysis::Utils: Splits getBackwardComputationSlice into two functions: one which calculates and returns the slice loop bounds for analysis by LoopFusion, and the other for insertion of the computation slice (ones fusion has calculated the min-cost src/dst loop depths).
*) Test: Adds multiple unit tests to test the new functionality.
PiperOrigin-RevId: 229219757
This CL adds a short term remedy to an issue that was found during execution
tests.
Lowering of vector transfer ops uses the permutation map to determine which
ForInst have been super-vectorized. During materialization to HW vector sizes
however, some of those dimensions may be fully unrolled and do not appear in
the permutation map.
Such dimensions were then not clipped and may have accessed out of bounds.
This CL conservatively clips all dimensions to ensure no out of bounds access.
The longer term solution is still up for debate but will probably require
either passing more information between Materialization and lowering, or just
merging the 2 passes.
PiperOrigin-RevId: 228980787
- should be testing on the output of -dma-generate and not '-dma-generate
-canonicalize'; save trouble for those updating -canonicalize in the future!
PiperOrigin-RevId: 228915192
The const folding logic is structurally similar, so use a template
to abstract the common part.
Moved mul(x, 0) to a legalization pattern to be consistent with
mul(x, 1).
Also promoted getZeroAttr() to be a method on Builder since it is
expected to be frequently used.
PiperOrigin-RevId: 228891989
This CL is the 5th on the path to simplifying AffineMap composition.
This removes the distinction between normalized single-result AffineMap and
more general composed multi-result map.
One nice byproduct of making the implementation driven by single-result is
that the multi-result extension is a trivial change: the implementation is
still single-result and we just use:
```
unsigned idx = getIndexOf(...);
map.getResult(idx);
```
This CL also fixes an AffineNormalizer implementation issue related to symbols.
Namely it stops performing substitutions on symbols in AffineNormalizer and
instead concatenates them all to be consistent with the call to
`AffineMap::compose(AffineMap)`. This latter call to `compose` cannot perform
simplifications of symbols coming from different maps based on positions only:
i.e. dims are applied and renumbered but symbols must be concatenated.
The only way to determine whether symbols from different AffineApply are the
same is to look at the concrete values. The canonicalizeMapAndOperands is thus
extended with behavior to support replacing operands that appear multiple
times.
Lastly, this CL demonstrates that the implementation is correct by rewriting
ComposeAffineMaps using only `makeComposedAffineApply`. The implementation
uses a matcher because AffineApplyOp are introduced as composed operations on
the fly instead of iteratively forwardSubstituting. For this purpose, a walker
would revisit freshly introduced AffineApplyOp. Regardless, ComposeAffineMaps
is scheduled to disappear, this CL replaces the implementation based on
iterative `forwardSubstitute` by a composed-by-construction
`makeComposedAffineApply`.
Remaining calls to `forwardSubstitute` will be removed in the next CL.
PiperOrigin-RevId: 228830443
- FM has a worst case exponential complexity. For our purposes, this worst case
is rarely expected, but could still appear due to improperly constructed
constraints (a logical/memory error in other methods for eg.) or artificially
created arbitrarily complex integer sets (adversarial / fuzz tests).
Add a check to detect such an explosion in the number of constraints and
conservatively return false from isEmpty() (instead of running out of memory
or running for too long).
- Add an artifical virus test case.
PiperOrigin-RevId: 228753496
This implements the lowering of `floordiv`, `ceildiv` and `mod` operators from
affine expressions to the arithmetic primitive operations. Integer division
rules in affine expressions explicitly require rounding towards either negative
or positive infinity unlike machine implementations that round towards zero.
In the general case, implementing `floordiv` and `ceildiv` using machine signed
division requires computing both the quotient and the remainder. When the
divisor is positive, this can be simplified by adjusting the dividend and the
quotient by one and switching signs.
In the current use cases, we are unlikely to encounter affine expressions with
negative divisors (affine divisions appear in loop transformations such as
tiling that guarantee that divisors are positive by construction). Therefore,
it is reasonable to use branch-free single-division implementation. In case of
affine maps, divisors can only be literals so we can check the sign and
implement the case for negative divisors when the need arises.
The affine lowering pass can still fail when applied to semi-affine maps
(division or modulo by a symbol).
PiperOrigin-RevId: 228668181
- the double buffer should be indexed (iv floordiv step) % 2 and NOT (iv % 2);
step wasn't being accounted for.
- fix test cases, enable failing test cases
PiperOrigin-RevId: 228635726
Originally, terminators were special kinds of operation and could not be
extended by dialects. Only builtin terminators were supported and they had
custom parsers and printers. Currently, "terminator" is a property of an
operation, making it possible for dialects to define custom terminators.
However, verbose forms of operation syntax were not designed to support
terminators that may have a list of successors (each successor contains a block
name and an optional operand list). Calling printDefaultOp on a terminator
drops all successor information. Dialects are thus required to provide custom
parsers and printers for their terminators.
Introduce the syntax for the list of successors in the verbose from of the
operation. Add support for printing and parsing verbose operations with
successors.
Note that this does not yet add support for unregistered terminators since
"terminator" is a property stored in AsbtractOperation and therefore is only
available for registered operations that have an instance of AbstractOperation.
Add tests for verbose parsing. It is currently impossible to test round-trip
for verbose terminators because none of the known dialects use verbose syntax
for printing terminators by default, however the printer was exercised on the
LLVM IR dialect prototype.
PiperOrigin-RevId: 228566453
- fix visitDivExpr: constraints constructed for localVarCst used the original
divisor instead of the simplified divisor; fix this. Add a simple test case
in memref-bound-check that reproduces this bug - although this was encountered in the
context of slicing for fusion.
- improve mod expr flattening: when flattening mod expressions,
cancel out the GCD of the numerator and denominator so that we can get a
simpler flattened form along with a simpler floordiv local var for it
PiperOrigin-RevId: 228539928
Supervectorization does not plan on handling multi-result AffineMaps and
non-canonical chains of > 1 AffineApplyOp.
This CL uses the simpler single-result unbounded AffineApplyOp in the
MaterializeVectors pass.
PiperOrigin-RevId: 228469085
This CL is the 2nd on the path to simplifying AffineMap composition.
This CL uses the now accepted `AffineExpr::compose(AffineMap)` to
implement `AffineMap::compose(AffineMap)`.
Implications of keeping the simplification function in
Analysis are documented where relevant.
PiperOrigin-RevId: 228276646
Alias identifiers can be used in the place of the types that they alias, and are defined as:
type-alias-def ::= '!' alias-name '=' 'type' type
type-alias ::= '!' alias-name
Example:
!avx.m128 = type vector<4 x f32>
...
"foo"(%x) : vector<4 x f32> -> ()
// becomes:
"foo"(%x) : !avx.m128 -> ()
PiperOrigin-RevId: 228271372
This CL is the 1st on the path to simplifying AffineMap composition.
This CL uses the now accepted AffineExpr.replaceDimsAndSymbols to
implement `AffineExpr::compose(AffineMap)`.
Arguably, `simplifyAffineExpr` should be part of IR and not Analysis but
this CL does not yet pull the trigger on that.
PiperOrigin-RevId: 228265845
- refactor toAffineFromEq and the code surrounding it; refactor code into
FlatAffineConstraints::getSliceBounds
- add FlatAffineConstraints methods to detect identifiers as mod's and div's of other
identifiers
- add FlatAffineConstraints::getConstantLower/UpperBound
- Address b/122118218 (don't assert on invalid fusion depths cmdline flags -
instead, don't do anything; change cmdline flags
src-loop-depth -> fusion-src-loop-depth
- AffineExpr/Map print method update: don't fail on null instances (since we have
a wrapper around a pointer, it's avoidable); rationale: dump/print methods should
never fail if possible.
- Update memref-dataflow-opt to add an optimization to avoid a unnecessary call to
IsRangeOneToOne when it's trivially going to be true.
- Add additional test cases to exercise the new support
- update a few existing test cases since the maps are now generated uniformly with
all destination loop operands appearing for the backward slice
- Fix projectOut - fix wrong range for getBestElimCandidate.
- Fix for getConstantBoundOnDimSize() - didn't show up in any test cases since
we didn't have any non-hyperrectangular ones.
PiperOrigin-RevId: 228265152
- Detect 'mod' to replace the combination of floordiv, mul, and subtract when
possible at construction time; when 'c' is a power of two, this reduces the number of
operations; also more compact and readable. Update simplifyAdd for this.
On a side note:
- with the affine expr flattening we have, a mod expression like d0 mod c
would be flattened into d0 - c * q, c * q <= d0 <= c*q + c - 1, with 'q'
being added as the local variable (q = d0 floordiv c); as a result, a mod
was turned into a floordiv whenever the expression was reconstructed back,
i.e., as d0 - c * (d0 floordiv c); as a result of this change, we recover
the mod back.
- rename SimplifyAffineExpr -> SimplifyAffineStructures (pass had been renamed but
the file hadn't been).
PiperOrigin-RevId: 228258120
The `for` instruction defines the loop induction variable it uses. In the
well-formed IR, the induction variable can only be used by the body of the
`for` loop. Existing implementation was explicitly cleaning the body of the
for loop to remove all uses of the induction variable before removing its
definition. However, in ill-formed IR that may appear in some stages of
parsing, there may be (invalid) users of the loop induction variable outside
the loop body. In case of unsuccessful parsing, destructor of the
ForInst-defined Value would assert because there are remaining though invalid
users of this Value. Explicitly drop all uses of the loop induction Value when
destroying a ForInst. It is no longer necessary to explicitly clean the body
of the loop, destructor of the block will take care of this.
PiperOrigin-RevId: 228168880
When destroying a FunctionParser in case of parsing failure, we clean up all
uses of undefined forward-declared references. This has been implemented as
iteration over the list of uses. However, deleting one use from the list
invalidates the iterator (`IROperand::drop` sets `nextUse` to `nullptr` while
the iterator reads `nextUse` to advance; therefore only the first use was
deleted from the list). Get a new iterator before calling drop to avoid
invalidation.
PiperOrigin-RevId: 228168849
Integer comparisons can be constant folded if both of their arguments are known
constants, which we can compare in the compiler. This requires implementing
all comparison predicates, but thanks to consistency between LLVM and MLIR
comparison predicates, we have a one-to-one correspondence between predicates
and llvm::APInt comparison functions. Constant folding of comparsions with
maximum/minimum values of the integer type are left for future work.
This will be used to test the lowering of mod/floordiv/ceildiv in affine
expressions at compile time.
PiperOrigin-RevId: 228077580
These operations trivially map to LLVM IR counterparts for operands of scalar
and (one-dimensional) vector type. Multi-dimensional vector and tensor type
operands would fail type conversion before the operation conversion takes
place. Add tests for scalar and vector cases. Also add a test for vector
`select` instruction for consistency with other tests.
PiperOrigin-RevId: 228077564
This adds signed/unsigned integer division and remainder operations to the
StandardOps dialect. Two versions are required because MLIR integers are
signless, but the meaning of the leading bit is important in division and
affects the results. LLVM IR made a similar choice. Define the operations in
the tablegen file and add simple constant folding hooks in the C++
implementation. Handle signed division overflow and division by zero errors in
constant folding. Canonicalization is left for future work.
These operations are necessary to lower affine_apply's down to LLVM IR.
PiperOrigin-RevId: 228077549
- this is CL 1/2 that does a clean up and gets rid of one limitation in an
underlying method - as a result, fusion works for more cases.
- fix bugs/incomplete impl. in toAffineMapFromEq
- fusing across rank changing reshapes for example now just works
For eg. given a rank 1 memref to rank 2 memref reshape (64 -> 8 x 8) like this,
-loop-fusion -memref-dataflow-opt now completely fuses and inlines/store-forward
to get rid of the temporary:
INPUT
// Rank 1 -> Rank 2 reshape
for %i0 = 0 to 64 {
%v = load %A[%i0]
store %v, %B[%i0 floordiv 8, i0 mod 8]
}
for %i1 = 0 to 8
for %i2 = 0 to 8
%w = load %B[%i1, i2]
"foo"(%w) : (f32) -> ()
OUTPUT
$ mlir-opt -loop-fusion -memref-dataflow-opt fuse_reshape.mlir
#map0 = (d0, d1) -> (d0 * 8 + d1)
mlfunc @fuse_reshape(%arg0: memref<64xf32>) {
for %i0 = 0 to 8 {
for %i1 = 0 to 8 {
%0 = affine_apply #map0(%i0, %i1)
%1 = load %arg0[%0] : memref<64xf32>
"foo"(%1) : (f32) -> ()
}
}
}
AFAIK, there is no polyhedral tool / compiler that can perform such fusion -
because it's not really standard loop fusion, but possible through a
generalized slicing-based approach such as ours.
PiperOrigin-RevId: 227918338
Supervectorization does not plan on handling multi-result AffineMaps and
non-canonical chains of > 1 AffineApplyOp.
This CL introduces a simpler abstraction and composition of single-result
unbounded AffineApplyOp by using the existing unbound AffineMap composition.
This CL adds a simple API call and relevant tests:
```c++
OpPointer<AffineApplyOp> makeNormalizedAffineApply(
FuncBuilder *b, Location loc, AffineMap map, ArrayRef<Value*> operands);
```
which creates a single-result unbounded AffineApplyOp.
The operands of AffineApplyOp are not themselves results of AffineApplyOp by
consrtuction.
This represent the simplest possible interface to complement the composition
of (mathematical) AffineMap, for the cases when we are interested in applying
it to Value*.
In this CL the composed AffineMap is not compressed (i.e. there exist operands
that are not part of the result). A followup commit will compress to normal
form.
The single-result unbounded AffineApplyOp abstraction will be used in a
followup CL to support the MaterializeVectors pass.
PiperOrigin-RevId: 227879021
symbols.
Included with this is some other infra:
- Testcases for other canonicalizations that I will implement next.
- Some helpers in AffineMap/Expr for doing simple walks without defining whole
visitor classes.
- A 'replaceDimsAndSymbols' facility that I'll be using to simplify maps and
exprs, e.g. to fold one constant into a mapping and to drop/renumber unused dims.
- Allow index (and everything else) to work in memref's, as we previously
discussed, to make the testcase easier to write.
- A "getAffineBinaryExpr" helper to produce a binop when you know the kind as
an enum.
This line of work will eventually subsume the ComposeAffineApply pass, but it is no where close to that yet :-)
PiperOrigin-RevId: 227852951
Dialect specific types are registered similarly to operations, i.e. registerType<...> within the dialect. Unlike operations, there is no notion of a "verbose" type, that is *all* types must be registered to a dialect. Casting support(isa/dyn_cast/etc.) is implemented by reserving a range of type kinds in the top level Type class as opposed to string comparison like operations.
To support derived types a few hooks need to be implemented:
In the concrete type class:
- static char typeID;
* A unique identifier for the type used during registration.
In the Dialect:
- typeParseHook and typePrintHook must be implemented to provide parser support.
The syntax for dialect extended types is as follows:
dialect-type: '!' dialect-namespace '<' '"' type-specific-data '"' '>'
The 'type-specific-data' is information used to identify different types within the dialect, e.g:
- !tf<"variant"> // Tensor Flow Variant Type
- !tf<"string"> // Tensor Flow String Type
TensorFlow/TensorFlowControl types are now implemented as dialect specific types as a proof
of concept.
PiperOrigin-RevId: 227580052
This change is mechanical and merges the LowerAffineApplyPass and
LowerIfAndForPass into a single LowerAffinePass. It makes a step towards
defining an "affine dialect" that would contain all polyhedral-related
constructs. The motivation for merging these two passes is based on retiring
MLFunctions and, eventually, transforming If and For statements into regular
operations. After that happens, LowerAffinePass becomes yet another
legalization.
PiperOrigin-RevId: 227566113
Existing implementation was created before ML/CFG unification refactoring and
did not concern itself with further lowering to separate concerns. As a
result, it emitted `affine_apply` instructions to implement `for` loop bounds
and `if` conditions and required a follow-up function pass to lower those
`affine_apply` to arithmetic primitives. In the unified function world,
LowerForAndIf is mostly a lowering pass with low complexity. As we move
towards a dialect for affine operations (including `for` and `if`), it makes
sense to lower `for` and `if` conditions directly to arithmetic primitives
instead of relying on `affine_apply`.
Expose `expandAffineExpr` function in LoweringUtils. Use this function
together with `expandAffineMaps` to emit primitives that implement loop and
branch conditions directly.
Also remove tests that become unnecessary after transforming LowerForAndIf into
a function pass.
PiperOrigin-RevId: 227563608
The entire compiler now looks at structural properties of the function (e.g.
does it have one block, does it contain an if/for stmt, etc) so the only thing
holding up this difference is round tripping through the parser/printer syntax.
Removing this shrinks the compile by ~140LOC.
This is step 31/n towards merging instructions and statements. The last step
is updating the docs, which I will do as a separate patch in order to split it
from this mostly mechanical patch.
PiperOrigin-RevId: 227540453
This commit adds support for the "select" operation that lowers directly into
its LLVM IR counterpart. A simple test is included.
PiperOrigin-RevId: 227527893
runOnCFG/MLFunction override locations. Passes that care can handle this
filtering if they choose. Also, eliminate one needless difference between
CFG/ML functions in the parser.
This is step 30/n towards merging instructions and statements.
PiperOrigin-RevId: 227515912
This CL introduces a simple set of Embedded Domain-Specific Components (EDSCs)
in MLIR components:
1. a `Type` system of shell classes that closely matches the MLIR type system. These
types are subdivided into `Bindable` leaf expressions and non-bindable `Expr`
expressions;
2. an `MLIREmitter` class whose purpose is to:
a. maintain a map of `Bindable` leaf expressions to concrete SSAValue*;
b. provide helper functionality to specify bindings of `Bindable` classes to
SSAValue* while verifying comformable types;
c. traverse the `Expr` and emit the MLIR.
This is used on a concrete example to implement MemRef load/store with clipping in the
LowerVectorTransfer pass. More specifically, the following pseudo-C++ code:
```c++
MLFuncBuilder *b = ...;
Location location = ...;
Bindable zero, one, expr, size;
// EDSL expression
auto access = select(expr < zero, zero, select(expr < size, expr, size - one));
auto ssaValue = MLIREmitter(b)
.bind(zero, ...)
.bind(one, ...)
.bind(expr, ...)
.bind(size, ...)
.emit(location, access);
```
is used to emit all the MLIR for a clipped MemRef access.
This simple EDSL can easily be extended to more powerful patterns and should
serve as the counterpart to pattern matchers (and could potentially be unified
once we get enough experience).
In the future, most of this code should be TableGen'd but for now it has
concrete valuable uses: make MLIR programmable in a declarative fashion.
This CL also adds Stmt, proper supporting free functions and rewrites
VectorTransferLowering fully using EDSCs.
The code for creating the EDSCs emitting a VectorTransferReadOp as loops
with clipped loads is:
```c++
Stmt block = Block({
tmpAlloc = alloc(tmpMemRefType),
vectorView = vector_type_cast(tmpAlloc, vectorMemRefType),
ForNest(ivs, lbs, ubs, steps, {
scalarValue = load(scalarMemRef, accessInfo.clippedScalarAccessExprs),
store(scalarValue, tmpAlloc, accessInfo.tmpAccessExprs),
}),
vectorValue = load(vectorView, zero),
tmpDealloc = dealloc(tmpAlloc.getLHS())});
emitter.emitStmt(block);
```
where `accessInfo.clippedScalarAccessExprs)` is created with:
```c++
select(i + ii < zero, zero, select(i + ii < N, i + ii, N - one));
```
The generated MLIR resembles:
```mlir
%1 = dim %0, 0 : memref<?x?x?x?xf32>
%2 = dim %0, 1 : memref<?x?x?x?xf32>
%3 = dim %0, 2 : memref<?x?x?x?xf32>
%4 = dim %0, 3 : memref<?x?x?x?xf32>
%5 = alloc() : memref<5x4x3xf32>
%6 = vector_type_cast %5 : memref<5x4x3xf32>, memref<1xvector<5x4x3xf32>>
for %i4 = 0 to 3 {
for %i5 = 0 to 4 {
for %i6 = 0 to 5 {
%7 = affine_apply #map0(%i0, %i4)
%8 = cmpi "slt", %7, %c0 : index
%9 = affine_apply #map0(%i0, %i4)
%10 = cmpi "slt", %9, %1 : index
%11 = affine_apply #map0(%i0, %i4)
%12 = affine_apply #map1(%1, %c1)
%13 = select %10, %11, %12 : index
%14 = select %8, %c0, %13 : index
%15 = affine_apply #map0(%i3, %i6)
%16 = cmpi "slt", %15, %c0 : index
%17 = affine_apply #map0(%i3, %i6)
%18 = cmpi "slt", %17, %4 : index
%19 = affine_apply #map0(%i3, %i6)
%20 = affine_apply #map1(%4, %c1)
%21 = select %18, %19, %20 : index
%22 = select %16, %c0, %21 : index
%23 = load %0[%14, %i1, %i2, %22] : memref<?x?x?x?xf32>
store %23, %5[%i6, %i5, %i4] : memref<5x4x3xf32>
}
}
}
%24 = load %6[%c0] : memref<1xvector<5x4x3xf32>>
dealloc %5 : memref<5x4x3xf32>
```
In particular notice that only 3 out of the 4-d accesses are clipped: this
corresponds indeed to the number of dimensions in the super-vector.
This CL also addresses the cleanups resulting from the review of the prevous
CL and performs some refactoring to simplify the abstraction.
PiperOrigin-RevId: 227367414
function pass, and eliminating the need to copy over code and do
interprocedural updates. While here, also improve it to make fewer empty
blocks, and rename it to "LowerIfAndFor" since that is what it does. This is
a net reduction of ~170 lines of code.
As drive-bys, change the splitBlock method to *not* insert an unconditional
branch, since that behavior is annoying for all clients. Also improve the
AsmPrinter to not crash when a block is referenced that isn't linked into a
function.
PiperOrigin-RevId: 227308856
- the load/store forwarding relies on memref dependence routines as well as
SSA/dominance to identify the memref store instance uniquely supplying a value
to a memref load, and replaces the result of that load with the value being
stored. The memref is also deleted when possible if only stores remain.
- add methods for post dominance for MLFunction blocks.
- remove duplicated getLoopDepth/getNestingDepth - move getNestingDepth,
getMemRefAccess, getNumCommonSurroundingLoops into Analysis/Utils (were
earlier static)
- add a helper method in FlatAffineConstraints - isRangeOneToOne.
PiperOrigin-RevId: 227252907
better order.
- update isEmpty() to eliminate IDs in a better order. Speed improvement for
complex cases (for eg. high-d reshape's involving mod's/div's).
- minor efficiency update to projectOut (was earlier making an extra albeit
benign call to gaussianEliminateIds) (NFC).
- move getBestIdToEliminate further up in the file (NFC).
- add the failing test case.
- add debug info to checkMemRefAccessDependence.
PiperOrigin-RevId: 227244634
printing the entry block in a CFG function's argument line. Since I'm touching
all of the testcases anyway, change the argument list from printing as
"%arg : type" to "%arg: type" which is more consistent with bb arguments.
In addition to being more consistent, this is a much nicer look for cfg functions.
PiperOrigin-RevId: 227240069
have a designator. This improves diagnostics and merges handling between CFG
and ML functions more. This also eliminates hard coded parser knowledge of
terminator keywords, allowing dialects to define their own terminators.
PiperOrigin-RevId: 227239398
requires enhancing DominanceInfo to handle the structure of an ML function,
which is required anyway. Along the way, this also fixes a const correctness
problem with Instruction::getBlock().
This is step 24/n towards merging instructions and statements.
PiperOrigin-RevId: 227228900
the function signature, giving them common functionality to ml functions. This
is a strictly additive patch that adds new capability without changing behavior
in a significant way (other than a few diagnostic cleanups). A subsequent
patch will change the printer to use this behavior, which will require updating
a ton of testcases. :)
This exposes the fact that we need to make a grammar change for block
arguments, as is tracked by b/122119779
This is step 23/n towards merging instructions and statements, and one of the
first steps towards eliminating the "cfg vs ml" distinction at a syntax and
semantic level.
PiperOrigin-RevId: 227228342
by ~80 lines. This causes a slight change to diagnostics, but
is otherwise behavior preserving.
This is step 22/n towards merging instructions and statements, MFC.
PiperOrigin-RevId: 227187857
consistent and moving the using declarations over. Hopefully this is the last
truly massive patch in this refactoring.
This is step 21/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 227178245
- extend/complete dependence tester to utilize local var info while adding
access function equality constraints; one more step closer to get slicing
based fusion working in the general case of affine_apply's involving mod's/div's.
- update test case to reflect more accurate dependence information; remove
inaccurate comment on test case mod_deps.
- fix a minor "bug" in equality addition in addMemRefAccessConstraints (doesn't
affect correctness, but the fixed version is more intuitive).
- some more surrounding code clean up
- move simplifyAffineExpr out of anonymous AffineExprFlattener class - the
latter has state, and the former should reside outside.
PiperOrigin-RevId: 227175600
Supervectorization uses null pointers to SSA values as a means of communicating
the failure to vectorize. In operation vectorization, all operations producing
the values of operation arguments must be vectorized for the given operation to
be vectorized. The existing check verified if any of the value "def"
statements was vectorized instead, sometimes leading to assertions inside `isa`
called on a null pointer. Fix this to check that all "def" statements were
vectorized.
PiperOrigin-RevId: 226941552
The binary subtraction operations were not supported by the lowering because
they were not essential for the testing flow. Add support for these
operations.
PiperOrigin-RevId: 226941463
* Extend to handle rewrite patterns with output attributes;
- Constant attributes are defined with a value and a type;
- The type of the value is mapped to the corresponding attribute type (string -> StringAttr);
* Verifies the type of operands in the resultant matches the defined op's operands;
PiperOrigin-RevId: 226468908
reuse existing ones.
- drop IterationDomainContext, redundant since FlatAffineConstraints has
MLValue information associated with its dimensions.
- refactor to use existing support
- leads to a reduction in LOC
- as a result of these changes, non-constant loop bounds get naturally
supported for dep analysis.
- update test cases to include a couple with non-constant loop bounds
- rename addBoundsFromForStmt -> addForStmtDomain
- complete TODO for getLoopIVs (handle 'if' statements)
PiperOrigin-RevId: 226082008
- when adding constraints from a 'for' stmt into FlatAffineConstraints,
correctly add bound operands of the 'for' stmt as a dimensional identifier or
a symbolic identifier depending on whether the bound operand is a valid
MLFunction symbol
- update test case to exercise this.
PiperOrigin-RevId: 225988511
addDomainConstraints; add support for mod/div for dependence testing.
- add support for mod/div expressions in dependence analysis
- refactor addMemRefAccessConstraints to use getFlattenedAffineExprs (instead
of getFlattenedAffineExpr); update addDomainConstraints.
- rename AffineExprFlattener::cst -> localVarCst
PiperOrigin-RevId: 225933306
This operation is produced and used by the super-vectorization passes and has
been emitted as an abstract unregistered operation until now. For end-to-end
testing purposes, it has to be eventually lowered to LLVM IR. Matching
abstract operation by name goes into the opposite direction of the generic
lowering approach that is expected to be used for LLVM IR lowering in the
future. Register vector_type_cast operation as a part of the SuperVector
dialect.
Arguably, this operation is a special case of the `view` operation from the
Standard dialect. The semantics of `view` is not fully specified at this point
so it is safer to rely on a custom operation. Additionally, using a custom
operation may help to achieve clear dialect separation.
PiperOrigin-RevId: 225887305
*) Adds simple greedy fusion algorithm to drive experimentation. This algorithm greedily fuses loop nests with single-writer/single-reader memref dependences to improve locality.
*) Adds support for fusing slices of a loop nest computation: fusing one loop nest into another by adjusting the source loop nest's iteration bounds (after it is fused into the destination loop nest). This is accomplished by solving for the source loop nest's IVs in terms of the destination loop nests IVs and symbols using the dependece polyhedron, then creating AffineMaps of these functions for the loop bounds of the fused source loop.
*) Adds utility function 'insertMemRefComputationSlice' which computes and inserts computation slice from loop nest surrounding a source memref access into the loop nest surrounding the destingation memref access.
*) Adds FlatAffineConstraints::toAffineMap function which returns and AffineMap which represents an equality contraint where one dimension identifier is represented as a function of all others in the equality constraint.
*) Adds multiple fusion unit tests.
PiperOrigin-RevId: 225842944
Store FloatAttr using more appropriate fltSemantics (mostly fixing up F32/F64 storage, F16/BF16 pending). Previously F32 type was used incorrectly for double (the storage was double). Also add query method that returns fltSemantics for IEEE fp types and use that to verify that the APfloat given matches the type:
* FloatAttr created using APFloat is verified that the semantics of the type and APFloat matches;
* FloatAttr created using double has the APFloat created to match the semantics of the type;
Change parsing of tensor negative splat element to pass in the element type expected. Misc other changes to account for the storage type matching the attribute.
PiperOrigin-RevId: 225821834
- extend memref-bound-check to store op's
- make the bound check an analysis util and move to lib/Analysis/Utils.cpp (so that
one doesn't need to always create a pass to use it)
PiperOrigin-RevId: 225564830
- if a local id was already for a specific mod/div expression, just reuse it if
the expression repeats (instead of adding a new one).
- drastically reduces the number of local variables added during flattening for
real use cases - since the same div's and mod expressions often repeat.
- add getFlattenedAffineExprs for AffineMap, IntegerSet based on the above
As a natural result of the above:
- FlatAffineConstraints(IntegerSet) ctor now deals with integer sets that have mod
and div constraints as well, and these get simplified as well from -simplify-affine-structures
PiperOrigin-RevId: 225452174
trivially redundant constraints. Update projectOut to eliminate identifiers in
a more efficient order. Fix b/120801118.
- add method to remove duplicate / trivially redundant constraints from
FlatAffineConstraints (use a hashing-based approach with DenseSet)
- update projectOut to eliminate identifiers in a more efficient order
(A sequence of affine_apply's like this (from a real use case) finally exposed
the lack of the above trivial/low hanging simplifications).
for %ii = 0 to 64 {
for %jj = 0 to 9 {
%a0 = affine_apply (d0, d1) -> (d0 * (9 * 1024) + d1 * 128) (%ii, %jj)
%a1 = affine_apply (d0) ->
(d0 floordiv (2 * 3 * 3 * 128 * 128),
(d0 mod 294912) floordiv (3 * 3 * 128 * 128),
(((d0 mod 294912) mod 147456) floordiv 1152) floordiv 8,
(((d0 mod 294912) mod 147456) mod 1152) floordiv 384,
((((d0 mod 294912) mod 147456) mod 1152) mod 384) floordiv 128,
(((((d0 mod 294912) mod 147456) mod 1152) mod 384) mod 128)
floordiv 128) (%a0)
%v0 = load %in[%a1tensorflow/mlir#0, %a1tensorflow/mlir#1, %a1tensorflow/mlir#3, %a1tensorflow/mlir#4, %a1tensorflow/mlir#2, %a1tensorflow/mlir#5]
: memref<2x2x3x3x16x1xi32>
}
}
- update FlatAffineConstraints::print to print number of constraints.
PiperOrigin-RevId: 225397480
- These test cases had to be updated post the switch to exclusive upper bound;
however, the test cases hadn't originally been written to check correctly; as
a result, they didn't fail and weren't updated. Update test case and fix
upper bound.
PiperOrigin-RevId: 225194016
Introduce initial support for 1D vector operations. LLVM does not support
higher-dimensional vectors so the caller must make sure they don't appear in
the input MLIR. Handle the presence of higher-dimensional vectors by failing
gracefully.
Introduce the type conversion for 1D vector types and hook it up with the rest
of the type convresion system. Support "splat" constants for vector types. As
a side effect, this refactors constant operation emission by separating out
scalar integer constants into a separate case and by extracting out the helper
function for scalar float construction. Existing binary operations apply to
vectors transparently.
PiperOrigin-RevId: 225172349
Originally, loop steps were implemented using `addi` and `constant` operations
because `affine_apply` was not handled in the first implementation. The
support for `affine_apply` has been added, use it to implement the update of
the loop induction variable. This is more consistent with the lower and upper
bounds of the loop that are also implemented as `affine_apply`, removes the
dependence of the converted function on the StandardOps dialect and makes it
clear from the CFG function that all operations on the loop induction variable
are purely affine.
PiperOrigin-RevId: 225165337
An extensive discussion demonstrated that it is difficult to support `index`
types as elements of compound (vector, memref, tensor) types. In particular,
their size is unknown until the target-specific lowering takes place. MLIR may
need to store constants of the fixed-shape compound types (e.g.,
vector<4 x index>) internally and must know the size of the element type and
data layout constraints. The same information is necessary for target-specific
lowering and translation to reliably support compound types with `index`
elements, but MLIR does not have a dedicated target description mechanism yet.
The uses cases for compound types with `index` elements, should they appear,
can be handled via an `index_cast` operation that converts between `index` and
fixed-size integer types at the SSA value level instead of the type level.
PiperOrigin-RevId: 225064373
- loop step wasn't handled and there wasn't a TODO or an assertion; fix this.
- rename 'delay' to shift for consistency/readability.
- other readability changes.
- remove duplicate attribute print for DmaStartOp; fix misplaced attribute
print for DmaWaitOp
- add build method for AddFOp (unrelated to this CL, but add it anyway)
PiperOrigin-RevId: 224892958
- adding a conservative check for now (TODO: use the dependence analysis pass
once the latter is extended to deal with DMA ops). resolve an existing bug on
a test case.
- update test cases
PiperOrigin-RevId: 224869526
- add method normalizeConstraintsByGCD
- call normalizeConstraintsByGCD() and GCDTightenInequalities() at the end of
projectOut.
- remove call to GCDTightenInequalities() from getMemRefRegion
- change isEmpty() to check isEmptyByGCDTest() / hasInvalidConstraint() each
time an identifier is eliminated (to detect emptiness early).
- make FourierMotzkinEliminate, gaussianEliminateId(s),
GCDTightenInequalities() private
- improve / update stale comments
PiperOrigin-RevId: 224866741
- fix replaceAllMemRefUsesWith call to replace only inside loop body.
- handle the case where DMA buffers are dynamic; extend doubleBuffer() method
to handle dynamically shaped DMA buffers (pass the right operands to AllocOp)
- place alloc's for DMA buffers at the depth at which pipelining is being done
(instead of at top-level)
- add more test cases
PiperOrigin-RevId: 224852231
are a max/min of several expressions.
- Extend loop tiling to handle non-constant loop bounds and bounds that
are a max/min of several expressions, i.e., bounds using multi-result affine
maps
- also fix b/120630124 as a result (the IR was in an invalid state when tiled
loop generation failed; SSA uses were created that weren't plugged into the IR).
PiperOrigin-RevId: 224604460
- generate DMAs correctly now using strided DMAs where needed
- add support for multi-level/nested strides; op still supports one level of
stride for now.
Other things
- add test case for symbolic lower/upper bound; cases where the DMA buffer
size can't be bounded by a known constant
- add test case for dynamic shapes where the DMA buffers are however bounded by
constants
- refactor some of the '-dma-generate' code
PiperOrigin-RevId: 224584529
This CL adds a pass that lowers VectorTransferReadOp and VectorTransferWriteOp
to a simple loop nest via local buffer allocations.
This is an MLIR->MLIR lowering based on builders.
A few TODOs are left to address in particular:
1. invert the permutation map so the accesses to the remote memref are coalesced;
2. pad the alloc for bank conflicts in local memory (e.g. GPUs shared_memory);
3. support broadcast / avoid copies when permutation_map is not of full column rank
4. add a proper "element_cast" op
One notable limitation is this does not plan on supporting boundary conditions.
It should be significantly easier to use pre-baked MLIR functions to handle such paddings.
This is left for future consideration.
Therefore the current CL only works properly for full-tile cases atm.
This CL also adds 2 simple tests:
```mlir
for %i0 = 0 to %M step 3 {
for %i1 = 0 to %N step 4 {
for %i2 = 0 to %O {
for %i3 = 0 to %P step 5 {
vector_transfer_write %f1, %A, %i0, %i1, %i2, %i3 {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d0)} : vector<5x4x3xf32>, memref<?x?x?x?xf32, 0>, index, index, index, index
```
lowers into:
```mlir
for %i0 = 0 to %arg0 step 3 {
for %i1 = 0 to %arg1 step 4 {
for %i2 = 0 to %arg2 {
for %i3 = 0 to %arg3 step 5 {
%1 = alloc() : memref<5x4x3xf32>
%2 = "element_type_cast"(%1) : (memref<5x4x3xf32>) -> memref<1xvector<5x4x3xf32>>
store %cst, %2[%c0] : memref<1xvector<5x4x3xf32>>
for %i4 = 0 to 5 {
%3 = affine_apply (d0, d1) -> (d0 + d1) (%i3, %i4)
for %i5 = 0 to 4 {
%4 = affine_apply (d0, d1) -> (d0 + d1) (%i1, %i5)
for %i6 = 0 to 3 {
%5 = affine_apply (d0, d1) -> (d0 + d1) (%i0, %i6)
%6 = load %1[%i4, %i5, %i6] : memref<5x4x3xf32>
store %6, %0[%5, %4, %i2, %3] : memref<?x?x?x?xf32>
dealloc %1 : memref<5x4x3xf32>
```
and
```mlir
for %i0 = 0 to %M step 3 {
for %i1 = 0 to %N {
for %i2 = 0 to %O {
for %i3 = 0 to %P step 5 {
%f = vector_transfer_read %A, %i0, %i1, %i2, %i3 {permutation_map: (d0, d1, d2, d3) -> (d3, 0, d0)} : (memref<?x?x?x?xf32, 0>, index, index, index, index) -> vector<5x4x3xf32>
```
lowers into:
```mlir
for %i0 = 0 to %arg0 step 3 {
for %i1 = 0 to %arg1 {
for %i2 = 0 to %arg2 {
for %i3 = 0 to %arg3 step 5 {
%1 = alloc() : memref<5x4x3xf32>
%2 = "element_type_cast"(%1) : (memref<5x4x3xf32>) -> memref<1xvector<5x4x3xf32>>
for %i4 = 0 to 5 {
%3 = affine_apply (d0, d1) -> (d0 + d1) (%i3, %i4)
for %i5 = 0 to 4 {
for %i6 = 0 to 3 {
%4 = affine_apply (d0, d1) -> (d0 + d1) (%i0, %i6)
%5 = load %0[%4, %i1, %i2, %3] : memref<?x?x?x?xf32>
store %5, %1[%i4, %i5, %i6] : memref<5x4x3xf32>
%6 = load %2[%c0] : memref<1xvector<5x4x3xf32>>
dealloc %1 : memref<5x4x3xf32>
```
PiperOrigin-RevId: 224552717
This CL adds the following free functions:
```
/// Returns the AffineExpr e o m.
AffineExpr compose(AffineExpr e, AffineMap m);
/// Returns the AffineExpr f o g.
AffineMap compose(AffineMap f, AffineMap g);
```
This addresses the issue that AffineMap composition is only available at a
distance via AffineValueMap and is thus unusable on Attributes.
This CL thus implements AffineMap composition in a more modular and composable
way.
This CL does not claim that it can be a good replacement for the
implementation in AffineValueMap, in particular it does not support bounded
maps atm.
Standalone tests are added that replicate some of the logic of the AffineMap
composition pass.
Lastly, affine map composition is used properly inside MaterializeVectors and
a standalone test is added that requires permutation_map composition with a
projection map.
PiperOrigin-RevId: 224376870
This CL hooks up and uses permutation_map in vector_transfer ops.
In particular, when going into the nuts and bolts of the implementation, it
became clear that cases arose that required supporting broadcast semantics.
Broadcast semantics are thus added to the general permutation_map.
The verify methods and tests are updated accordingly.
Examples of interest include.
Example 1:
The following MLIR snippet:
```mlir
for %i3 = 0 to %M {
for %i4 = 0 to %N {
for %i5 = 0 to %P {
%a5 = load %A[%i4, %i5, %i3] : memref<?x?x?xf32>
}}}
```
may vectorize with {permutation_map: (d0, d1, d2) -> (d2, d1)} into:
```mlir
for %i3 = 0 to %0 step 32 {
for %i4 = 0 to %1 {
for %i5 = 0 to %2 step 256 {
%4 = vector_transfer_read %arg0, %i4, %i5, %i3
{permutation_map: (d0, d1, d2) -> (d2, d1)} :
(memref<?x?x?xf32>, index, index) -> vector<32x256xf32>
}}}
````
Meaning that vector_transfer_read will be responsible for reading the 2-D slice:
`%arg0[%i4, %i5:%15+256, %i3:%i3+32]` into vector<32x256xf32>. This will
require a transposition when vector_transfer_read is further lowered.
Example 2:
The following MLIR snippet:
```mlir
%cst0 = constant 0 : index
for %i0 = 0 to %M {
%a0 = load %A[%cst0, %cst0] : memref<?x?xf32>
}
```
may vectorize with {permutation_map: (d0) -> (0)} into:
```mlir
for %i0 = 0 to %0 step 128 {
%3 = vector_transfer_read %arg0, %c0_0, %c0_0
{permutation_map: (d0, d1) -> (0)} :
(memref<?x?xf32>, index, index) -> vector<128xf32>
}
````
Meaning that vector_transfer_read will be responsible of reading the 0-D slice
`%arg0[%c0, %c0]` into vector<128xf32>. This will require a 1-D vector
broadcast when vector_transfer_read is further lowered.
Additionally, some minor cleanups and refactorings are performed.
One notable thing missing here is the composition with a projection map during
materialization. This is because I could not find an AffineMap composition
that operates on AffineMap directly: everything related to composition seems
to require going through SSAValue and only operates on AffinMap at a distance
via AffineValueMap. I have raised this concern a bunch of times already, the
followup CL will actually do something about it.
In the meantime, the projection is hacked at a minimum to pass verification
and materialiation tests are temporarily incorrect.
PiperOrigin-RevId: 224376828
The recently introduced `select` operation enables ConvertToCFG to support
min(max) in loop bounds. Individual min(max) is implemented as
`cmpi "lt"`(`cmpi "gt"`) followed by a `select` between the compared values.
Multiple results of an `affine_apply` operation extracted from the loop bounds
are reduced using min(max) in a sequential manner. While this may decrease the
potential for instruction-level parallelism, it is easier to recognize for the
following passes, in particular for the vectorizer.
PiperOrigin-RevId: 224376233
- add optional stride arguments for DmaStartOp
- add DmaStartOp::verify(), and missing test cases for DMA op's in
test/IR/memory-ops.mlir.
PiperOrigin-RevId: 224232466
update/improve/clean up API.
- update FlatAffineConstraints::getConstBoundDifference; return constant
differences between symbolic affine expressions, look at equalities as well.
- fix buffer size computation when generating DMAs symbolic in outer loops,
correctly handle symbols at various places (affine access maps, loop bounds,
loop IVs outer to the depth at which DMA generation is being done)
- bug fixes / complete some TODOs for getMemRefRegion
- refactor common code b/w memref dependence check and getMemRefRegion
- FlatAffineConstraints API update; added methods employ trivial checks /
detection - sufficient to handle hyper-rectangular cases in a precise way
while being fast / low complexity. Hyper-rectangular cases fall out as
trivial cases for these methods while other cases still do not cause failure
(either return conservative or return failure that is handled by the caller).
PiperOrigin-RevId: 224229879
Symbols can be used as dim identifiers and symbolic identifiers, and so we must preserve the symbolic identifies from the input AffineMap during forward substitution, even if that same identifier is used as a dimension identifier in the target AffineMap.
Test case added.
Going forward, we may want to explore solutions where we do not maintain this split between dimensions and symbols, and instead verify the validity of each use of each AffineMap operand AffineMap in the context where the AffineMap operand usage is required to be a symbol: in the denominator of floordiv/ceildiv/mod for semi-affine maps, and in instructions that can capture symbols (i.e. alloc)
PiperOrigin-RevId: 224017364
The condition of the "if" statement is an integer set, defined as a conjunction
of affine constraints. An affine constraints consists of an affine expression
and a flag indicating whether the expression is strictly equal to zero or is
also allowed to be greater than zero. Affine maps, accepted by `affine_apply`
are also formed from affine expressions. Leverage this fact to implement the
checking of "if" conditions. Each affine expression from the integer set is
converted into an affine map. This map is applied to the arguments of the "if"
statement. The result of the application is compared with zero given the
equality flag to obtain the final boolean value. The conjunction of conditions
is tested sequentially with short-circuit branching to the "else" branch if any
of the condition evaluates to false.
Create an SESE region for the if statement (including its "then" and optional
"else" statement blocks) and append it to the end of the current region. The
conditional region consists of a sequence of condition-checking blocks that
implement the short-circuit scheme, followed by a "then" SESE region and an
"else" SESE region, and the continuation block that post-dominates all blocks
of the "if" statement. The flow of blocks that correspond to the "then" and
"else" clauses are constructed recursively, enabling easy nesting of "if"
statements and if-then-else-if chains.
Note that MLIR semantics does not require nor prohibit short-circuit
evaluation. Since affine expressions do not have side effects, there is no
observable difference in the program behavior. We may trade off extra
operations for operation-level parallelism opportunity by first performing all
`affine_apply` and comparison operations independently, and then performing a
tree pattern reduction of the resulting boolean values with the `muli i1`
operations (in absence of the dedicated bit operations). The pros and cons are
not clear, and since MLIR does not include parallel semantics, we prefer to
minimize the number of sequentially executed operations.
PiperOrigin-RevId: 223970248
Unlike MLIR, LLVM IR does not support functions that return multiple values.
Simulate this by packing values into the LLVM structure type in the same order
as they appear in the MLIR return. If the function returns only a single
value, return it directly without packing.
PiperOrigin-RevId: 223964886
This CL implements and uses VectorTransferOps in lieu of the former custom
call op. Tests are updated accordingly.
VectorTransferOps come in 2 flavors: VectorTransferReadOp and
VectorTransferWriteOp.
VectorTransferOps can be thought of as a backend-independent
pseudo op/library call that needs to be legalized to MLIR (whiteboxed) before
it can be lowered to backend-dependent IR.
Note that the current implementation does not yet support a real permutation
map. Proper support will come in a followup CL.
VectorTransferReadOp
====================
VectorTransferReadOp performs a blocking read from a scalar memref
location into a super-vector of the same elemental type. This operation is
called 'read' by opposition to 'load' because the super-vector granularity
is generally not representable with a single hardware register. As a
consequence, memory transfers will generally be required when lowering
VectorTransferReadOp. A VectorTransferReadOp is thus a mid-level abstraction
that supports super-vectorization with non-effecting padding for full-tile
only code.
A vector transfer read has semantics similar to a vector load, with additional
support for:
1. an optional value of the elemental type of the MemRef. This value
supports non-effecting padding and is inserted in places where the
vector read exceeds the MemRef bounds. If the value is not specified,
the access is statically guaranteed to be within bounds;
2. an attribute of type AffineMap to specify a slice of the original
MemRef access and its transposition into the super-vector shape. The
permutation_map is an unbounded AffineMap that must represent a
permutation from the MemRef dim space projected onto the vector dim
space.
Example:
```mlir
%A = alloc(%size1, %size2, %size3, %size4) : memref<?x?x?x?xf32>
...
%val = `ssa-value` : f32
// let %i, %j, %k, %l be ssa-values of type index
%v0 = vector_transfer_read %src, %i, %j, %k, %l
{permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} :
(memref<?x?x?x?xf32>, index, index, index, index) ->
vector<16x32x64xf32>
%v1 = vector_transfer_read %src, %i, %j, %k, %l, %val
{permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} :
(memref<?x?x?x?xf32>, index, index, index, index, f32) ->
vector<16x32x64xf32>
```
VectorTransferWriteOp
=====================
VectorTransferWriteOp performs a blocking write from a super-vector to
a scalar memref of the same elemental type. This operation is
called 'write' by opposition to 'store' because the super-vector
granularity is generally not representable with a single hardware register. As
a consequence, memory transfers will generally be required when lowering
VectorTransferWriteOp. A VectorTransferWriteOp is thus a mid-level
abstraction that supports super-vectorization with non-effecting padding
for full-tile only code.
A vector transfer write has semantics similar to a vector store, with
additional support for handling out-of-bounds situations.
Example:
```mlir
%A = alloc(%size1, %size2, %size3, %size4) : memref<?x?x?x?xf32>.
%val = `ssa-value` : vector<16x32x64xf32>
// let %i, %j, %k, %l be ssa-values of type index
vector_transfer_write %val, %src, %i, %j, %k, %l
{permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} :
(vector<16x32x64xf32>, memref<?x?x?x?xf32>, index, index, index, index)
```
PiperOrigin-RevId: 223873234
FlatAffineConstraints::composeMap: should return false instead of asserting on
a semi-affine map. Make getMemRefRegion just propagate false when encountering
semi-affine maps (instead of crashing!)
PiperOrigin-RevId: 223828743
The check for whether the memref was used in a non-derefencing context had to
be done inside, i.e., only for the op stmt's that the replacement was specified
to be performed on (by the domStmtFilter arg if provided). As such, it is
completely fine for example for a function to return a memref while the replacement
is being performed only a specific loop's body (as in the case of DMA
generation).
PiperOrigin-RevId: 223827753
The algorithm collects defining operations within a scoped hash table. The scopes within the hash table correspond to nodes within the dominance tree for a function. This cl only adds support for simple operations, i.e non side-effecting. Such operations, e.g. load/store/call, will be handled in later patches.
PiperOrigin-RevId: 223811328
This CL added two new traits, SameOperandsAndResultShape and
ResultsAreBoolLike, and changed CmpIOp to embody these two
traits. As a consequence, CmpIOp's result type now is verified
to be bool-like.
PiperOrigin-RevId: 223208438
The semantics of 'select' is conventional: return the second operand if the
first operand is true (1 : i1) and the third operand otherwise. It is
applicable to vectors and tensors element-wise, similarly to LLVM instruction.
This operation is necessary to implement min/max to lower 'for' loops with
complex bounds to CFG functions and to support ternary operations in ML
functions. It is preferred to first-class min/max because of its simplicity,
e.g. it is not concered with signedness.
PiperOrigin-RevId: 223160860
Add support for translating 'dim' opreation on MemRefs to LLVM IR. For a
static size, this operation merely defines an LLVM IR constant value that may
not appear in the output IR if not used (and had not been removed before by
DCE). For a dynamic size, this operation is translated into an access to the
MemRef descriptor that contains the dynamic size.
PiperOrigin-RevId: 223160774
Introduce initial support for MemRef types, including type conversion,
allocation and deallocation, read and write element-wise access, passing
MemRefs to and returning from functions. Affine map compositions and
non-default memory spaces are NOT YET supported.
Lowered code needs to handle potentially dynamic sizes of the MemRef. To do
so, it replaces a MemRef-typed value with a special MemRef descriptor that
carries the data and the dynamic sizes together. A MemRef type is converted to
LLVM's first-class structure type with the first element being the pointer to
the data buffer with data layed out linearly, followed by as many integer-typed
elements as MemRef has dynamic sizes. The type of these elements is that of
MLIR index lowered to LLVM. For example, `memref<?x42x?xf32>` is converted to
`{ f32*, i64, i64 }` provided `index` is lowered to `i64`. While it is
possible to convert MemRefs with fully static sizes to simple pointers to their
elemental types, we opted for consistency and convert them to the
single-element structure. This makes the conversion code simpler and the
calling convention of the generated LLVM IR functions consistent.
Loads from and stores to a MemRef element are lowered to a sequence of LLVM
instructions that, first, computes the linearized index of the element in the
data buffer using the access indices and combining the static sizes with the
dynamic sizes stored in the descriptor, and then loads from or stores to the
buffer element indexed by the linearized subscript. While some of the index
computations may be redundant (i.e., consecutive load and store to the same
location in the same scope could reuse the linearized index), we emit them for
every operation. A subsequent optimization pass may eliminate them if
necessary.
MemRef allocation and deallocation is performed using external functions
`__mlir_alloc(index) -> i8*` and `__mlir_free(i8*)` that must be implemented by
the caller. These functions behave similarly to `malloc` and `free`, but can
be extended to support different memory spaces in future. Allocation and
deallocation instructions take care of casting the pointers. Prior to calling
the allocation function, the emitted code creates an SSA Value for the
descriptor and uses it to store the dynamic sizes of the MemRef passed to the
allocation operation. It further emits instructions that compute the dynamic
amount of memory to allocate in bytes. Finally, the allocation stores the
result of calling the `__mlir_alloc` in the MemRef descriptor. Deallocation
extracts the pointer to the allocated memory from the descriptor and calls
`__mlir_free` on it. The descriptor itself is not modified and, being
stack-allocated, ceases to exist when it goes out of scope.
MLIR functions that access MemRef values as arguments or return them are
converted to LLVM IR functions that accept MemRef descriptors as LLVM IR
structure types by value. This significantly simplifies the calling convention
at the LLVM IR level and avoids handling descriptors in the dynamic memory,
however is not always comaptible with LLVM IR functions emitted from C code
with similar signatures. A separate LLVM pass may be introduced in the future
to provide C-compatible calling conventions for LLVM IR functions generated
from MLIR.
PiperOrigin-RevId: 223134883
Several things were suggested in post-submission reviews. In particular, use
pointers in function interfaces instead of references (still use references
internally). Clarify the behavior of the pass in presence of MLFunctions.
PiperOrigin-RevId: 222556851
This CL adds tooling for computing slices as an independent CL.
The first consumer of this analysis will be super-vector materialization in a
followup CL.
In particular, this adds:
1. a getForwardStaticSlice function with documentation, example and a
standalone unit test;
2. a getBackwardStaticSlice function with documentation, example and a
standalone unit test;
3. a getStaticSlice function with documentation, example and a standalone unit
test;
4. a topologicalSort function that is exercised through the getStaticSlice
unit test.
The getXXXStaticSlice functions take an additional root (resp. terminators)
parameter which acts as a boundary that the transitive propagation algorithm
is not allowed to cross.
PiperOrigin-RevId: 222446208
cases.
- fix bug in calculating index expressions for DMA buffers in certain cases
(affected tiled loop nests); add more test cases for better coverage.
- introduce an additional optional argument to replaceAllMemRefUsesWith;
additional operands to the index remap AffineMap can now be supplied by the
client.
- FlatAffineConstraints::addBoundsForStmt - fix off by one upper bound,
::composeMap - fix position bug.
- Some clean up and more comments
PiperOrigin-RevId: 222434628
This function pass replaces affine_apply operations in CFG functions with
sequences of primitive arithmetic instructions that form the affine map.
The actual replacement functionality is located in LoweringUtils as a
standalone function operating on an individual affine_apply operation and
inserting the result at the location of the original operation. It is expected
to be useful for other, target-specific lowering passes that may start at
MLFunction level that Deaffinator does not support.
PiperOrigin-RevId: 222406692
Initial restricted implementaiton of the MLIR to LLVM IR translation.
Introduce a new flow into the mlir-translate tool taking an MLIR module
containing CFG functions only and producing and LLVM IR module. The MLIR
features supported by the translator are as follows:
- primitive and function types;
- integer constants;
- cfg and ext functions with 0 or 1 return values;
- calls to these functions;
- basic block conversion translation of arguments to phi nodes;
- conversion between arguments of the first basic block and function arguments;
- (conditional) branches;
- integer addition and comparison operations.
Are NOT supported:
- vector and tensor types and operations on them;
- memrefs and operations on them;
- allocations;
- functions returning multiple values;
- LLVM Module triple and data layout (index type is hardcoded to i64).
Create a new MLIR library and place it under lib/Target/LLVMIR. The "Target"
library group is similar to the one present in LLVM and is intended to contain
all future public MLIR translation targets.
The general flow of MLIR to LLVM IR convresion will include several lowering
and simplification passes on the MLIR itself in order to make the translation
as simple as possible. In particular, ML functions should be transformed to
CFG functions by the recently introduced pass, operations on structured types
will be converted to sequences of operations on primitive types, complex
operations such as affine_apply will be converted into sequence of primitive
operations, primitive operations themselves may eventually be converted to an
LLVM dialect that uses LLVM-like operations.
Introduce the first translation test so that further changes make sure the
basic translation functionality is not broken.
PiperOrigin-RevId: 222400112
Translations performed by mlir-translate only have MLIR on one end.
MLIR-to-MLIR conversions (including dialect changes) should be treated as
passes and run by mlir-opt. Individual translations should not care about
reading or writing MLIR and should work on in-memory representation of MLIR
modules instead. Split the TranslateFunction interface and the translate
registry into two parts: "from MLIR" and "to MLIR".
Update mlir-translate to handle both registries together by wrapping
translation functions into source-to-source convresions. Remove MLIR parsing
and writing from individual translations and make them operate on Modules
instead. This removes the need for individual translators to include
tools/mlir-translate/mlir-translate.h, which can now be safely removed.
Remove mlir-to-mlir translation that only existed as a registration example and
use mlir-opt instead for tests.
PiperOrigin-RevId: 222398707
This CL refactors a few things in Vectorize.cpp:
1. a clear distinction is made between:
a. the LoadOp are the roots of vectorization and must be vectorized
eagerly and propagate their value; and
b. the StoreOp which are the terminals of vectorization and must be
vectorized late (i.e. they do not produce values that need to be
propagated).
2. the StoreOp must be vectorized late because in general it can store a value
that is not reachable from the subset of loads defined in the
current pattern. One trivial such case is storing a constant defined at the
top-level of the MLFunction and that needs to be turned into a splat.
3. a description of the algorithm is given;
4. the implementation matches the algorithm;
5. the last example is made parametric, in practice it will fully rely on the
implementation of vector_transfer_read/write which will handle boundary
conditions and padding. This will happen by lowering to a lower-level
abstraction either:
a. directly in MLIR (whether DMA or just loops or any async tasks in the
future) (whiteboxing);
b. in LLO/LLVM-IR/whatever blackbox library call/ search + swizzle inventor
one may want to use;
c. a partial mix of a. and b. (grey-boxing)
5. minor cleanups are applied;
6. mistakenly disabled unit tests are re-enabled (oopsie).
With this CL, this MLIR snippet:
```
mlfunc @vector_add_2d(%M : index, %N : index) -> memref<?x?xf32> {
%A = alloc (%M, %N) : memref<?x?xf32>
%B = alloc (%M, %N) : memref<?x?xf32>
%C = alloc (%M, %N) : memref<?x?xf32>
%f1 = constant 1.0 : f32
%f2 = constant 2.0 : f32
for %i0 = 0 to %M {
for %i1 = 0 to %N {
// non-scoped %f1
store %f1, %A[%i0, %i1] : memref<?x?xf32>
}
}
for %i4 = 0 to %M {
for %i5 = 0 to %N {
%a5 = load %A[%i4, %i5] : memref<?x?xf32>
%b5 = load %B[%i4, %i5] : memref<?x?xf32>
%s5 = addf %a5, %b5 : f32
// non-scoped %f1
%s6 = addf %s5, %f1 : f32
store %s6, %C[%i4, %i5] : memref<?x?xf32>
}
}
return %C : memref<?x?xf32>
}
```
vectorized with these arguments:
```
-vectorize -virtual-vector-size 256 --test-fastest-varying=0
```
vectorization produces this standard innermost-loop vectorized code:
```
mlfunc @vector_add_2d(%arg0 : index, %arg1 : index) -> memref<?x?xf32> {
%0 = alloc(%arg0, %arg1) : memref<?x?xf32>
%1 = alloc(%arg0, %arg1) : memref<?x?xf32>
%2 = alloc(%arg0, %arg1) : memref<?x?xf32>
%cst = constant 1.000000e+00 : f32
%cst_0 = constant 2.000000e+00 : f32
for %i0 = 0 to %arg0 {
for %i1 = 0 to %arg1 step 256 {
%cst_1 = constant splat<vector<256xf32>, 1.000000e+00> : vector<256xf32>
"vector_transfer_write"(%cst_1, %0, %i0, %i1) : (vector<256xf32>, memref<?x?xf32>, index, index) -> ()
}
}
for %i2 = 0 to %arg0 {
for %i3 = 0 to %arg1 step 256 {
%3 = "vector_transfer_read"(%0, %i2, %i3) : (memref<?x?xf32>, index, index) -> vector<256xf32>
%4 = "vector_transfer_read"(%1, %i2, %i3) : (memref<?x?xf32>, index, index) -> vector<256xf32>
%5 = addf %3, %4 : vector<256xf32>
%cst_2 = constant splat<vector<256xf32>, 1.000000e+00> : vector<256xf32>
%6 = addf %5, %cst_2 : vector<256xf32>
"vector_transfer_write"(%6, %2, %i2, %i3) : (vector<256xf32>, memref<?x?xf32>, index, index) -> ()
}
}
return %2 : memref<?x?xf32>
}
```
Of course, much more intricate n-D imperfectly-nested patterns can be emitted too in a fully declarative fashion, but this is enough for now.
PiperOrigin-RevId: 222280209
In the general case, loop bounds can be expressed as affine maps of the outer
loop iterators and function arguments. Relax the check for loop bounds to be
known integer constants and also accept one-dimensional affine bounds in
ConvertToCFG ForStmt lowering. Emit affine_apply operations for both the upper
and the lower bound. The semantics of MLFunctions guarantees that both bounds
can be computed before the loop starts iterating. Constant bounds are merely a
short-hand notation for zero-dimensional affine maps and get supported
transparently.
Multidimensional affine bounds are not yet supported because the target IR
dialect lacks min/max operations necessary to implement the corresponding
semantics.
PiperOrigin-RevId: 222275801
op-stats pass currently returns the number of occurrences of different operations in a Module. Useful for verifying transformation properties (e.g., 3 ops of specific dialect, 0 of another), but probably not useful outside of that so keeping it local to mlir-opt. This does not consider op attributes when counting.
PiperOrigin-RevId: 222259727
This CL adds some vector support in prevision of the upcoming vector
materialization pass. In particular this CL adds 2 functions to:
1. compute the multiplicity of a subvector shape in a supervector shape;
2. help match operations on strict super-vectors. This is defined for a given
subvector shape as an operation that manipulates a vector type that is an
integral multiple of the subtype, with multiplicity at least 2.
This CL also adds a TestUtil pass where we can dump arbitrary testing of
functions and analysis that operate at a much smaller granularity than a pass
(e.g. an analysis for which it is convenient to write a bit of artificial MLIR
and write some custom test). This is in order to keep using Filecheck for
things that essentially look and feel like C++ unit tests.
PiperOrigin-RevId: 222250910
This does create an inconsistency between the print formats (e.g., attributes are normally before operands) but fixes an invalid parsing & keeps constant uniform wrt itself (function or int attributes have type at same place). And specifying the specific type for a int/float attribute might get revised shortly.
Also add test to verify that output printed can be parsed again.
PiperOrigin-RevId: 221923893
and getMemRefRegion() to work with specified loop depths; add support for
outgoing DMAs, store op's.
- add support for getMemRefRegion symbolic in outer loops - hence support for
DMAs symbolic in outer surrounding loops.
- add DMA generation support for outgoing DMAs (store op's to lower memory
space); extend getMemoryRegion to store op's. -memref-bound-check now works
with store op's as well.
- fix dma-generate (references to the old memref in the dma_start op were also
being replaced with the new buffer); we need replace all memref uses to work
only on a subset of the uses - add a new optional argument for
replaceAllMemRefUsesWith. update replaceAllMemRefUsesWith to take an optional
'operation' argument to serve as a filter - if provided, only those uses that
are dominated by the filter are replaced.
- Add missing print for attributes for dma_start, dma_wait op's.
- update the FlatAffineConstraints API
PiperOrigin-RevId: 221889223
* Optionally attach the type of integer and floating point attributes to the attributes, this allows restricting a int/float to specific width.
- Currently this allows suffixing int/float constant with type [this might be revised in future].
- Default to i64 and f32 if not specified.
* For index types the APInt width used is 64.
* Change callers to request a specific attribute type.
* Store iN type with APInt of width N.
* This change does not handle the folding of constants of different types (e.g., doing int type promotions to support constant folding i3 and i32), and instead restricts the constant folding to only operate on the same types.
PiperOrigin-RevId: 221722699
Array attributes can nested and function attributes can appear anywhere at that
level. They should be remapped to point to the generated CFGFunction after
ML-to-CFG conversion, similarly to plain function attributes. Extract the
nested attribute remapping functionality from the Parser to Utils. Extract out
the remapping function for individual Functions from the module remapping
function. Use these new functions in the ML-to-CFG conversion pass and in the
parser.
PiperOrigin-RevId: 221510997
This CL adds support for and a vectorization test to perform scalar 2-D addf.
The support extension notably comprises:
1. extend vectorizable test to exclude vector_transfer operations and
expose them to LoopAnalysis where they are needed. This is a temporary
solution a concrete MLIR Op exists;
2. add some more functional sugar mapKeys, apply and ScopeGuard (which became
relevant again);
3. fix improper shifting during coarsening;
4. rename unaligned load/store to vector_transfer_read/write and simplify the
design removing the unnecessary AllocOp that were introduced prematurely:
vector_transfer_read currently has the form:
(memref<?x?x?xf32>, index, index, index) -> vector<32x64x256xf32>
vector_transfer_write currently has the form:
(vector<32x64x256xf32>, memref<?x?x?xf32>, index, index, index) -> ()
5. adds vectorizeOperations which traverses the operations in a ForStmt and
rewrites them to their vector form;
6. add support for vector splat from a constant.
The relevant tests are also updated.
PiperOrigin-RevId: 221421426
Branch instruction arguments were defined and used inconsistently across
different instructions, in both the spec and the implementation. In
particular, conditional and unconditional branch instructions were using
different syntax in the implementation. This led to the IR we produce not
being accepted by the parser. Update the printer to use common syntax: `(`
list-of-SSA-uses `:` list-of-types `)`. The motivation for choosing this
syntax as opposed to the one in the spec, `(` list-of-SSA-uses `)` `:`
list-of-types is double-fold. First, it is tricky to differentiate the label
of the false branch from the type while parsing conditional branches (which is
what apparently motivated the implementation to diverge from the spec in the
first place). Second, the ongoing convergence between terminator instructions
and other operations prompts for consistency between their operand list syntax.
After this change, the only remaining difference between the two is the use of
parentheses. Update the comment of the parser that did not correspond to the
code. Remove the unused isParenthesized argument from parseSSAUseAndTypeList.
Update the spec accordingly. Note that the examples in the spec were _not_
using the EBNF defined a couple of lines above them, but were using the current
syntax. Add a supplementary example of a branch to a basic block with multiple
arguments.
PiperOrigin-RevId: 221162655
Implement a pass converting a subset of MLFunctions to CFGFunctions. Currently
supports arbitrarily complex imperfect loop nests with statically constant
(i.e., not affine map) bounds filled with operations. Does NOT support
branches and non-constant loop bounds.
Conversion is performed per-function and the function names are preserved to
avoid breaking any external references to the current module. In-memory IR is
updated to point to the right functions in direct calls and constant loads.
This behavior is tested via a really hidden flag that enables function
renaming.
Inside each function, the control flow conversion is based on single-entry
single-exit regions, i.e. subgraphs of the CFG that have exactly one incoming
and exactly one outgoing edge. Since an MLFunction must have a single "return"
statement as per MLIR spec, it constitutes an SESE region. Individual
operations are appended to this region. Control flow statements are
recursively converted into such regions that are concatenated with the current
region. Bodies of the compound statement also form SESE regions, which allows
to nest control flow statements easily. Note that SESE regions are not
materialized in the code. It is sufficent to keep track of the end of the
region as the current instruction insertion point as long as all recursive
calls update the insertion point in the end.
The converter maintains a mapping between SSA values in ML functions and their
CFG counterparts. The mapping is used to find the operands for each operation
and is updated to contain the results of each operation as the conversion
continues.
PiperOrigin-RevId: 221162602
This was unsafe after cr/219372163 and seems to be the only such case in the
change. All other usage of dyn_cast are either handling the nullptr or are
implicitly safe. For example, they are being extracted from operand or result
SSAValue.
TESTED with unit test
PiperOrigin-RevId: 220905942
Updates MemRefDependenceCheck to check and report on all memref access pairs at all loop nest depths.
Updates old and adds new memref dependence check tests.
Resolves multiple TODOs.
PiperOrigin-RevId: 220816515
- constant bounded memory regions, static shapes, no handling of
overlapping/duplicate regions (through union) for now; also only, load memory
op's.
- add build methods for DmaStartOp, DmaWaitOp.
- move getMemoryRegion() into Analysis/Utils and expose it.
- fix addIndexSet, getMemoryRegion() post switch to exclusive upper bounds;
update test cases for memref-bound-check and memref-dependence-check for
exclusive bounds (missed in a previous CL)
PiperOrigin-RevId: 220729810
This CL introduces the following related changes:
- factor out element type validity checking to a static member function
VectorType::isValidElementType;
- introduce get/getChecked similarly to MemRefType, where the checked function
emits errors and returns nullptrs;
- remove duplicate element type validity checking from the parser and rely on
the type constructor to emit errors instead.
PiperOrigin-RevId: 220693828
It is unclear why vector types were not allowed to have "index" as element
type. Index values are integers, although of unknown bit width, and should
behave as such. Vectors of integers are allowed and so are tensors of indices
(for indirection purposes), it is more consistent to also have vectors of
indices.
PiperOrigin-RevId: 220630123
Arithmetic and comparison instructions are necessary to implement, e.g.,
control flow when lowering MLFunctions to CFGFunctions. (While it is possible
to replace some of the arithmetics by affine_apply instructions for loop
bounds, it is still necessary for loop bounds checking, steps, if-conditions,
non-trivial memref subscripts, etc.) Furthermore, working with indirect
accesses in, e.g., lookup tables for large embeddings, may require operating on
tensors of indexes. For example, the equivalents to C code "LUT[Index[i]]" or
"ResultIndex[i] = i + j" where i, j are loop induction variables require the
arithmetics on indices as well as the possibility to operate on tensors
thereof. Allow arithmetic and comparison operations to apply to index types by
declaring them integer-like. Allow tensors whose element type is index for
indirection purposes.
The absence of vectors with "index" element type is explicitly tested, but the
only justification for this restriction in the CL introducing the test is
"because we don't need them". Do NOT enable vectors of index types, although
it makes vector and tensor types inconsistent with respect to allowed element
types.
PiperOrigin-RevId: 220614055
This binary operation is applicable to integers, vectors and tensors thereof
similarly to binary arithmetic operations. The operand types must match
exactly, and the shape of the result type is the same as that of the operands.
The element type of the result is always i1. The kind of the comparison is
defined by the "predicate" integer attribute. This attribute requests one of:
- equals to;
- not equals to;
- signed less than;
- signed less than or equals;
- signed greater than;
- signed greater than or equals;
- unsigned less than;
- unsigned less than or equals;
- unsigned greater than;
- unsigned greater than or equals.
Since integer values themselves do not have a sign, the comparison operator
specifies whether to use signed or unsigned comparison logic, i.e. whether to
interpret values where the foremost bit is set as negatives expressed as two's
complements or as positive values. For non-scalar operands, pairwise
per-element comparison is performed. Comparison operators on scalars are
necessary to implement basic control flow with conditional branches.
PiperOrigin-RevId: 220613566
This CL implement exclusive upper bound behavior as per b/116854378.
A followup CL will update the semantics of the for loop.
PiperOrigin-RevId: 220448963
- simple perfectly nested band tiling with fixed tile sizes.
- only the hyper-rectangular case is handled, with other limitations of
getIndexSet applying (constant loop bounds, etc.); once
the latter utility is extended, tiled code generation should become more
general.
- Add FlatAffineConstraints::isHyperRectangular()
PiperOrigin-RevId: 220324933
Adds equality constraints to dependence constraint system for accesses using dims/symbols where the defining operation of the dim/symbol is a constant.
PiperOrigin-RevId: 219814740
Introduce a new public static member function, MemRefType::getChecked, intended
for the users that want detailed error messages to be emitted during MemRefType
construction and can gracefully handle these errors. This function takes a
Location of the "MemRef" token if known. The parser is one user of getChecked
that has location information, it outputs errors as compiler diagnostics.
Other users may pass in an instance of UnknownLoc and still have error messages
emitted. Compiler-internal users not expecting the MemRefType construction to
fail should call MemRefType::get, which now aborts on failure with a generic
message.
Both "getChecked" and "get" call to a static free function that does actual
construction with well-formedness checks, optionally emits errors and returns
nullptr on failure.
The location information passed to getChecked has voluntarily coarse precision.
The error messages are intended for compiler engineers and do not justify
heavier API than a single location. The text of the messages can be written so
that it pinpoints the actual location of the error within a MemRef declaration.
PiperOrigin-RevId: 219765902
variables from mod's and div's when converting to flat form.
- propagate mod, floordiv, ceildiv / local variables constraint information
when flattening affine expressions and converting them into flat affine
constraints; resolve multiple TODOs.
- enables memref bound checker to work with arbitrary affine expressions
- update FlatAffineConstraints API with several new methods
- test/exercise functionality mostly through -memref-bound-check
- other analyses such as dependence tests, etc. should now be able to work in the
presence of any affine composition of add, mul, floor, ceil, mod.
PiperOrigin-RevId: 219711806
- Builds access functions and iterations domains for each access.
- Builds dependence polyhedron constraint system which has equality constraints for equated access functions and inequality constraints for iteration domain loop bounds.
- Runs elimination on the dependence polyhedron to test if no dependence exists between the accesses.
- Adds a trivial LoopFusion transformation pass with a simple test policy to test dependence between accesses to the same memref in adjacent loops.
- The LoopFusion pass will be extended in subsequent CLs.
PiperOrigin-RevId: 219630898
This CL adds support for vectorization using more interesting 2-D and 3-D
patterns. Note in particular the fact that we match some pretty complex
imperfectly nested 2-D patterns with a quite minimal change to the
implementation: we just add a bit of recursion to traverse the matched
patterns and actually vectorize the loops.
For instance, vectorizing the following loop by 128:
```
for %i3 = 0 to %0 {
%7 = affine_apply (d0) -> (d0)(%i3)
%8 = load %arg0[%c0_0, %7] : memref<?x?xf32>
}
```
Currently generates:
```
#map0 = ()[s0] -> (s0 + 127)
#map1 = (d0) -> (d0)
for %i3 = 0 to #map0()[%0] step 128 {
%9 = affine_apply #map1(%i3)
%10 = alloc() : memref<1xvector<128xf32>>
%11 = "n_d_unaligned_load"(%arg0, %c0_0, %9, %10, %c0) :
(memref<?x?xf32>, index, index, memref<1xvector<128xf32>>, index) ->
(memref<?x?xf32>, index, index, memref<1xvector<128xf32>>, index)
%12 = load %10[%c0] : memref<1xvector<128xf32>>
}
```
The above is subject to evolution.
PiperOrigin-RevId: 219629745
Introduce analysis to check memref accesses (in MLFunctions) for out of bound
ones. It works as follows:
$ mlir-opt -memref-bound-check test/Transforms/memref-bound-check.mlir
/tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1
%x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32>
^
/tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1
%x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32>
^
/tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#2
%x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32>
^
/tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#2
%x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32>
^
/tmp/single.mlir:12:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1
%y = load %B[%idy] : memref<128 x i32>
^
/tmp/single.mlir:12:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1
%y = load %B[%idy] : memref<128 x i32>
^
#map0 = (d0, d1) -> (d0, d1)
#map1 = (d0, d1) -> (d0 * 128 - d1)
mlfunc @test() {
%0 = alloc() : memref<9x9xi32>
%1 = alloc() : memref<128xi32>
for %i0 = -1 to 9 {
for %i1 = -1 to 9 {
%2 = affine_apply #map0(%i0, %i1)
%3 = load %0[%2tensorflow/mlir#0, %2tensorflow/mlir#1] : memref<9x9xi32>
%4 = affine_apply #map1(%i0, %i1)
%5 = load %1[%4] : memref<128xi32>
}
}
return
}
- Improves productivity while manually / semi-automatically developing MLIR for
testing / prototyping; also provides an indirect way to catch errors in
transformations.
- This pass is an easy way to test the underlying affine analysis
machinery including low level routines.
Some code (in getMemoryRegion()) borrowed from @andydavis cl/218263256.
While on this:
- create mlir/Analysis/Passes.h; move Pass.h up from mlir/Transforms/ to mlir/
- fix a bug in AffineAnalysis.cpp::toAffineExpr
TODO: extend to non-constant loop bounds (straightforward). Will transparently
work for all accesses once floordiv, mod, ceildiv are supported in the
AffineMap -> FlatAffineConstraints conversion.
PiperOrigin-RevId: 219397961
This CL is a first in a series that implements early vectorization of
increasingly complex patterns. In particular, early vectorization will support
arbitrary loop nesting patterns (both perfectly and imperfectly nested), at
arbitrary depths in the loop tree.
This first CL builds the minimal support for applying 1-D patterns.
It relies on an unaligned load/store op abstraction that can be inplemented
differently on different HW.
Future CLs will support higher dimensional patterns, but 1-D patterns already
exhibit interesting properties.
In particular, we want to separate pattern matching (i.e. legality both
structural and dependency analysis based), from profitability analysis, from
application of the transformation.
As a consequence patterns may intersect and we need to verify that a pattern
can still apply by the time we get to applying it.
A non-greedy analysis on profitability that takes into account pattern
intersection is left for future work.
Additionally the CL makes the following cleanups:
1. the matches method now returns a value, not a reference;
2. added comments about the MLFunctionMatcher and MLFunctionMatches usage by
value;
3. added size and empty methods to matches;
4. added a negative vectorization test with a conditional, this exhibited a
but in the iterators. Iterators now return nullptr if the underlying storage
is nullpt.
PiperOrigin-RevId: 219299489
Unbounded identity maps do not affect the accesses through MemRefs in any way.
A previous CL dropped such maps only if they were alone in the composition. Go
further and drop such maps everywhere they appear in the composition.
Update the parser test to check for unique'd hoisted map to be present but
without assuming any particular order. Because some of the hoisted identity
maps still apear due to the nested "for" statements, we need to check for them.
However, they no longer appear above the non-identity maps because they are no
longer necessary for the extfunc memref declarations that are textually first
in the test file. This order may change further as map simplification is
improved, there is no reason to assume a particular order.
PiperOrigin-RevId: 219287280
- Added a mechanism for specifying pattern matching more concisely like LLVM.
- Added support for canonicalization of addi/muli over vector/tensor splat
- Added ValueType to Attribute class hierarchy
- Allowed creating constant splat
PiperOrigin-RevId: 219149621
As per MLIR spec, the absence of affine maps in MemRef type is interpreted as
an implicit identity affine map. Therefore, MemRef types declared with
explicit or implicit identity map should be considered equal at the MemRefType
level. During MemRefType construction, drop trivial identity affine map
compositions. A trivial identity composition consists of a single unbounded
identity map. It is unclear whether affine maps should be composed in-place to
a single map during MemRef type construction, so non-trivial compositions that
could have been simplified to an identity are NOT removed. We chose to drop
the trivial identity map rather than inject it in places that assume its
present implicitly because it makes the code simpler by reducing boilerplate;
identity mappings are obvious defaults.
Update tests that were checking for the presence of trivial identity map
compositions in the outputs.
PiperOrigin-RevId: 218862454
This check was being performed in AllocOp::verify. However it is not specific
to AllocOp and should apply to all MemRef type declarations. At the same time,
the unique *Type factory functions in MLIRContext do not have access to
location information necessary to properly emit diagnostics. Emit the error in
Parser where the location information is available. Keep the error emission in
AllocOp for the cases of programmatically-constructed, e.g. through Builders,
IR with a note. Once we decided on the diagnostic infrastructure in type
construction system, the type-related checks should be removed from specific
Ops.
Correct several parser test cases that have been using affine maps of
mismatching dimensionality.
This CL prepares for an upcoming change that will drop trivial identity affine
map compositions during MemRefType construction. In that case, the
dimensionality mismatch error must be emitted before dropping the identity map,
i.e. during the type construction at the latest and before "verify" being
called.
PiperOrigin-RevId: 218844127
1) We incorrectly reassociated non-reassociative operations like subi, causing
miscompilations.
2) When constant folding, we didn't add users of the new constant back to the
worklist for reprocessing, causing us to miss some cases (pointed out by
Uday).
The code for tensorflow/mlir#2 is gross, but I'll add the new APIs in a followup patch.
PiperOrigin-RevId: 218803984
- Introduce Fourier-Motzkin variable elimination to eliminate a dimension from
a system of linear equalities/inequalities. Update isEmpty to use this.
Since FM is only exact on rational/real spaces, an emptiness check based on
this is guaranteed to be exact whenever it says the underlying set is empty;
if it says, it's not empty, there may still be no integer points in it.
Also, supports a version that computes "dark shadows".
- Test this by checking for "always false" conditionals in if statements.
- Unique IntegerSet's that are small (few constraints, few variables). This
basically means the canonical empty set and other small sets that are
likely commonly used get uniqued; allows checking for the canonical empty set
by pointer. IntegerSet::kUniquingThreshold gives the threshold constraint size
for uniqui'ing.
- rename simplify-affine-expr -> simplify-affine-structures
Other cleanup
- IntegerSet::numConstraints, AffineMap::numResults are no longer needed;
remove them.
- add copy assignment operators for AffineMap, IntegerSet.
- rename Invalid() -> Null() on AffineExpr, AffineMap, IntegerSet
- Misc cleanup for FlatAffineConstraints API
PiperOrigin-RevId: 218690456
- Adds FlatAffineConstraints::isEmpty method to test if there are no solutions to the system.
- Adds GCD test check if equality constraints have no solution.
- Adds unit test cases.
PiperOrigin-RevId: 218546319
"shape_cast" only applies to tensors, and there are other operations that
actually affect shape, for example "reshape". Rename "shape_cast" to
"tensor_cast" in both the code and the documentation.
PiperOrigin-RevId: 218528122
is a straight-forward change, but required adding missing moveBefore() methods
on operations (requiring moving some traits around to make C++ happy). This
also fixes a constness issue with the getBlock/getFunction() methods on
Instruction, and adds a missing getFunction() method on MLFuncBuilder.
PiperOrigin-RevId: 218523905
For some of the constant vector / tesor, if the compiler doesn't need to
interpret their elements content, they can be stored in this class to save the
serialize / deserialize cost.
syntax:
`opaque<` tensor-type `,` opaque-string `>`
opaque-string ::= `0x` [0-9a-fA-F]*
PiperOrigin-RevId: 218399426
- Add a few canonicalization patterns to fold memref_cast into
load/store/dealloc.
- Canonicalize alloc(constant) into an alloc with a constant shape followed by
a cast.
- Add a new PatternRewriter::updatedRootInPlace API to make this more convenient.
SimplifyAllocConst and the testcase is heavily based on Uday's implementation work, just
in a different framework.
PiperOrigin-RevId: 218361237
This was left as a TODO in the code. Move the type verification from
MLFuncVerifier::verifyReturn to ReturnOp::verify. Since the return operation
can only appear as the last statement of an MLFunction, i.e. where the
surrounding block is the function itself, it is easy to access the function
descriptor (ReturnOp::verify already relies on this). From the function
descriptor, one can easily access the type information. Note that this
slightly modifies the error message due to the use of emitOpError instead of a
plain emitError.
Drop the obsolete TODO comment in MLFunction::verify about checking that
"return" only appears as the last operation of an MLFunction since
ReturnOp::verify explicitly checks for that.
PiperOrigin-RevId: 218347843
This was left as a TODO in the code. Note that the spec does not explicitly
prohibit the first basic block from having a predecessor, and may be worth
updating.
The error is reported at the location of the cfgfunc to which the basic block
belongs since the location information of the block label is not propagated
beyond the IR parser. Arguably, pointing to a function that starts with an
ill-formed block is better than pointing to the first operation in that block
as it makes easier to follow the code down until the first block label.
PiperOrigin-RevId: 218343654
The SparseElementsAttr uses (COO) Coordinate List encoding to represents a
sparse tensor / vector. Specifically, the coordinates and values are stored as
two dense elements attributes. The first dense elements attribute is a 2-D
attribute with shape [N, ndims], which contains the indices of the elements
with nonzero values in the constant vector/tensor. The second elements
attribute is a 1-D attribute list with shape [N], which supplies the values for
each element in the first elements attribute. ndims is the rank of the
vector/tensor and N is the total nonzero elements.
The syntax is:
`sparse<` (tensor-type | vector-type)`, ` indices-attribute-list, values-attribute-list `>`
Example: a sparse tensor
sparse<vector<3x4xi32>, [[0, 0], [1, 2]], [1, 2]> represents the dense tensor
[[1, 0, 0, 0]
[0, 0, 2, 0]
[0, 0, 0, 0]]
PiperOrigin-RevId: 217764319
The syntax of dense vecor/tensor attribute value is
`dense<` (tensor-type | vector-type)`,` attribute-list`>`
and
attribute-list ::= `[` attribute-list (`, ` attribute-list)* `]`.
The construction of the dense vector/tensor attribute takes a vector/tensor
type and a character array as arguments. The size of the input array should be
larger than the size specified by the type argument. It also assumes the
elements of the vector or tensor have been trunked to the data type sizes in
the input character array, so it extends the trunked data to 64 bits when it is
retrieved.
PiperOrigin-RevId: 217762811
multiple TODOs.
- replace the fake test pass (that worked on just the first loop in the
MLFunction) to perform DMA pipelining on all suitable loops.
- nested DMAs work now (DMAs in an outer loop, more DMAs in nested inner loops)
- fix bugs / assumptions: correctly copy memory space and elemental type of source
memref for double buffering.
- correctly identify matching start/finish statements, handle multiple DMAs per
loop.
- introduce dominates/properlyDominates utitilies for MLFunction statements.
- move checkDominancePreservationOnShifts to LoopAnalysis.h; rename it
getShiftValidity
- refactor getContainingStmtPos -> findAncestorStmtInBlock - move into
Analysis/Utils.h; has two users.
- other improvements / cleanup for related API/utilities
- add size argument to dma_wait - for nested DMAs or in general, it makes it
easy to obtain the size to use when lowering the dma_wait since we wouldn't
want to identify the matching dma_start, and more importantly, in general/in the
future, there may not always be a dma_start dominating the dma_wait.
- add debug information in the pass
PiperOrigin-RevId: 217734892
This CL implements a very simple loop vectorization **test** and the basic
infrastructure to support it.
The test simply consists in:
1. matching the loops in the MLFunction and all the Load/Store operations
nested under the loop;
2. testing whether all the Load/Store are contiguous along the innermost
memory dimension along that particular loop. If any reference is
non-contiguous (i.e. the ForStmt SSAValue appears in the expression), then
the loop is not-vectorizable.
The simple test above can gradually be extended with more interesting
behaviors to account for the fact that a layout permutation may exist that
enables contiguity etc. All these will come in due time but it is worthwhile
noting that the test already supports detection of outer-vetorizable loops.
In implementing this test, I also added a recursive MLFunctionMatcher and some
sugar that can capture patterns
such as `auto gemmLike = Doall(Doall(Red(LoadStore())))` and allows iterating
on the matched IR structures. For now it just uses in order traversal but
post-order DFS will be useful in the future once IR rewrites start occuring.
One may note that the memory management design decision follows a different
pattern from MLIR. After evaluating different designs and how they quickly
increase cognitive overhead, I decided to opt for the simplest solution in my
view: a class-wide (threadsafe) RAII context.
This way, a pass that needs MLFunctionMatcher can just have its own locally
scoped BumpPtrAllocator and everything is cleaned up when the pass is destroyed.
If passes are expected to have a longer lifetime, then the contexts can easily
be scoped inside the runOnMLFunction call and storage lifetime reduced.
Lastly, whatever the scope of threading (module, function, pass), this is
expected to also be future-proof wrt concurrency (but this is a detail atm).
PiperOrigin-RevId: 217622889
Updates ComposeAffineMaps test pass to use this method.
Updates affine map composition test cases to handle the new pass, which can be reused when this method is used in a future instruction combine pass.
PiperOrigin-RevId: 217163351
Associate BasicBlocks with the function being parsed to avoid leaks in the case of parse failures. Associating with the function means that we can no longer determine if defined/fwd declared simply by considering if a BasicBlock has an associated function, so track forward declared block references explicitly (this should also allow flagging multiple undeclared fwd references). Split out getting the named block from defining it, in the case of definition move the block to the end of the function.
Also destroy all forward reference placeholders in FunctionParser.
Return parse failure in parseAttributeDict if there is no left brace instead of
asserting.
PiperOrigin-RevId: 217049507
- add util to create a private / exclusive / single use affine
computation slice for an op stmt (see method doc comment); a single
multi-result affine_apply op is prepended to the op stmt to provide all
results needed for its operands as a function of loop iterators and symbols.
- use it for DMA pipelining (to create private slices for DMA start stmt's);
resolve TODOs/feature request (b/117159533)
- move createComposedAffineApplyOp to Transforms/Utils; free it from taking a
memref as input / generalize it.
PiperOrigin-RevId: 216926818
out canonicalization pass to drive it, and a simple (x-x) === 0 pattern match
as a test case.
There is a tremendous number of improvements that need to land, and the
matcher/rewriter and patterns will be split out of this file, but this is a
starting point.
PiperOrigin-RevId: 216788604
This attribute represents a reference to a splat vector or tensor, where all
the elements have the same value. The syntax of the attribute is:
`splat<` (tensor-type | vector-type)`,` attribute-value `>`
PiperOrigin-RevId: 216537997
Add target independent standard DMA ops: dma.start, dma.wait. Update pipeline
data transfer to use these to detect DMA ops.
While on this
- return failure from mlir-opt::performActions if a pass generates invalid output
- improve error message for verify 'n' operand traits
PiperOrigin-RevId: 216429885
1) affineint (as it is named) is not a type suitable for general computation (e.g. the multiply/adds in an integer matmul). It has undefined width and is undefined on overflow. They are used as the indices for forstmt because they are intended to be used as indexes inside the loop.
2) It can be used in both cfg and ml functions, and in cfg functions. As you mention, “symbols” are not affine, and we use affineint values for symbols.
3) Integers aren’t affine, the algorithms applied to them can be. :)
4) The only suitable use for affineint in MLIR is for indexes and dimension sizes (i.e. the bounds of those indexes).
PiperOrigin-RevId: 216057974
- Fold the lower/upper bound of a loop to a constant whenever the result of the
application of the bound's affine map on the operand list yields a constant.
- Update/complete 'for' stmt's API to set lower/upper bounds with operands.
Resolve TODOs for ForStmt::set{Lower,Upper}Bound.
- Moved AffineExprConstantFolder into AffineMap.cpp and added
AffineMap::constantFold to be used by both AffineApplyOp and
ForStmt::constantFoldBound.
PiperOrigin-RevId: 215997346
with a new one (of a potentially different rank/shape) with an optional index
remapping.
- introduce Utils::replaceAllMemRefUsesWith
- use this for DMA double buffering
(This CL also adds a few temporary utilities / code that will be done away with
once:
1) abstract DMA op's are added
2) memref deferencing side-effect / trait is available on op's
3) b/117159533 is resolved (memref index computation slices).
PiperOrigin-RevId: 215831373
- introduce mlir::{floorDiv, ceilDiv, mod} for constant inputs in
mlir/Support/MathExtras.h
- consistently use these everywhere in IR, Analysis, and Transforms.
PiperOrigin-RevId: 215580677
mode. We even diagnose mistakes nicely (aside from the a/an vowel confusion
which isn't worth worrying about):
test/IR/invalid.mlir split at line tensorflow/mlir#399:8:34: error: 'note' diagnostic emitted when expecting a 'error'
%x = "bar"() : () -> i32 // expected-error {{operand defined here}}
^
PiperOrigin-RevId: 214773208
This CL retricts shorthand notation printing to only the bounds that can
be roundtripped unambiguously; i.e.:
1. ()[]->(%some_cst) ()[]
2. ()[s0]->(s0) ()[%some_symbol]
Upon inspection it turns out that the constant case was lossy so this CL also
updates it.
Note however that fixing this issue exhibits a potential issues in unroll.mlir.
L488 exhibits a map ()[s0] -> (1)()[%arg0] which could be simplified down to
()[]->(1)()[].
This does not seem like a bug but maybe an undesired complexity in the maps
generated by unrolling.
bondhugula@, care to take a look?
PiperOrigin-RevId: 214531410
This CL adds support for `mulf` which is necessary to write/emit a simple scalar
matmul in MLIR. This CL does not consider automation of generation of ops but
mulf is important and useful enough to be added on its own atm.
PiperOrigin-RevId: 214496098
The AsmPrinter wrongly assumes that all single ssa-id AffineMap
are the identity map for the purpose of printing.
This CL adds the missing level of indirection as well as a test.
This bug was originally shaken off by the experimental TC->MLIR path.
Before this CL, the test would print:
```
mlfunc @mlfuncsimplemap(%arg0 : affineint, %arg1 : affineint, %arg2 : affineint) {
for %i0 = 0 to %arg0 {
for %i1 = 0 to %i0 {
~~~ should be %arg1
%c42_i32 = constant 42 : i32
}
}
return
}
```
PiperOrigin-RevId: 214120817
verifier. We get most of this infrastructure directly from LLVM, we just
need to adapt it to our CFG abstraction.
This has a few unrelated changes engangled in it:
- getFunction() in various classes was const incorrect, fix it.
- This moves Verifier.cpp to the analysis library, since Verifier depends on
dominance and these are both really analyses.
- IndexedAccessorIterator::reference was defined wrong, leading to really
exciting template errors that were fun to diagnose.
- This flips the boolean sense of the foldOperation() function in constant
folding pass in response to previous patch feedback.
PiperOrigin-RevId: 214046593
optimization pass:
- Give the ability for operations to implement a constantFold hook (a simple
one for single-result ops as well as general support for multi-result ops).
- Implement folding support for constant and addf.
- Implement support in AbstractOperation and Operation to make this usable by
clients.
- Implement a very simple constant folding pass that does top down folding on
CFG and ML functions, with a testcase that exercises all the above stuff.
Random cleanups:
- Improve the build APIs for ConstantOp.
- Stop passing "-o -" to mlir-opt in the testsuite, since that is the default.
PiperOrigin-RevId: 213749809
- extend loop unroll-jam similar to loop unroll for affine bounds
- extend both loop unroll/unroll-jam to deal with cleanup loop for non multiple
of unroll factor.
- extend promotion of single iteration loops to work with affine bounds
- fix typo bugs in loop unroll
- refactor common code b/w loop unroll and loop unroll-jam
- move prototypes of non-pass transforms to LoopUtils.h
- add additional builder methods.
- introduce loopUnrollUpTo(factor) to unroll by either factor or trip count,
whichever is less.
- remove Statement::isInnermost (not used for now - will come back at the right
place/in right form later)
PiperOrigin-RevId: 213471227
mlir-translate is a tool to translate from/to MLIR. The translations are registered at link time and intended for use in tests. An identity transformation (mlir-to-mlir) is registered by default as example and used in the parser test where simply parsing & printing required.
The TranslateFunctions take filenames (instead of MemoryBuffer) to allow translations special write behavior (e.g., writing to uncommon filesystems).
PiperOrigin-RevId: 213370448
unroll/unroll-and-jam more powerful; add additional affine expr builder methods
- use previously added analysis/simplification to infer multiple of unroll
factor trip counts, making loop unroll/unroll-and-jam more general.
- for loop unroll, support bounds that are single result affine map's with the
same set of operands. For unknown loop bounds, loop unroll will now work as
long as trip count can be determined to be a multiple of unroll factor.
- extend getConstantTripCount to deal with single result affine map's with the
same operands. move it to mlir/Analysis/LoopAnalysis.cpp
- add additional builder utility methods for affine expr arithmetic
(difference, mod/floordiv/ceildiv w.r.t postitive constant). simplify code to
use the utility methods.
- move affine analysis routines to AffineAnalysis.cpp/.h from
AffineStructures.cpp/.h.
- Rename LoopUnrollJam to LoopUnrollAndJam to match class name.
- add an additional simplification for simplifyFloorDiv, simplifyCeilDiv
- Rename AffineMap::getNumOperands() getNumInputs: an affine map by itself does
not have operands. Operands are passed to it through affine_apply, from loop
bounds/if condition's, etc., operands are stored in the latter.
This should be sufficiently powerful for now as far as unroll/unroll-and-jam go for TPU
code generation, and can move to other analyses/transformations.
Loop nests like these are now unrolled without any cleanup loop being generated.
for %i = 1 to 100 {
// unroll factor 4: no cleanup loop will be generated.
for %j = (d0) -> (d0) (%i) to (d0) -> (5*d0 + 3) (%i) {
%x = "foo"(%j) : (affineint) -> i32
}
}
for %i = 1 to 100 {
// unroll factor 4: no cleanup loop will be generated.
for %j = (d0) -> (d0) (%i) to (d0) -> (d0 - d mod 4 - 1) (%i) {
%y = "foo"(%j) : (affineint) -> i32
}
}
for %i = 1 to 100 {
for %j = (d0) -> (d0) (%i) to (d0) -> (d0 + 128) (%i) {
%x = "foo"() : () -> i32
}
}
TODO(bondhugula): extend this to LoopUnrollAndJam as well in the next CL (with minor
changes).
PiperOrigin-RevId: 212661212
Previously the error could mislead into thinking it was a parser bug instead of the input being erroneous. Update to make it clearer.
PiperOrigin-RevId: 212271145
Ensure delimiters are absent where not expected. This is only checked in the case where operand count is known. This allows for the currently accepted case where there is a operand list with no delimiter and variable number of operands (which could be empty), followed by a delimited operand list.
PiperOrigin-RevId: 212202064
loop counts. Improve / refactor loop unroll / loop unroll and jam.
- add utility to remove single iteration loops.
- use this utility to promote single iteration loops after unroll/unroll-and-jam
- use loopUnrollByFactor for loopUnrollFull and remove most of the latter.
- add methods for getting constant loop trip count
PiperOrigin-RevId: 212039569
- Compress the identifier/kind of a Function into a single word.
- Eliminate otherFailure from verifier now that we always have a location
- Eliminate the error string from the verifier now that we always have
locations.
- Simplify the parser's handling of fn forward references, using the location
tracked by the function.
PiperOrigin-RevId: 211985101
terminators. Improve mlir-opt to print better location info in the split-files
case.
Before:
error: unexpected error: branch has 2 operands, but target block has 1
br bb1(%0tensorflow/mlir#1, %0tensorflow/mlir#0 : i17, i1)
^
after:
invalid.mlir split at line tensorflow/mlir#305:6:3: error: unexpected error: branch has 2 operands, but target block has 1
br bb1(%0tensorflow/mlir#1, %0tensorflow/mlir#0 : i17, i1)
^
It still isn't optimal (it would be better to have just the original file and
line number but is a step forward, and doing the optimal thing would be a lot
more complicated.
PiperOrigin-RevId: 211917067
- handle floordiv/ceildiv in AffineExprFlattener; update the simplification to
work even if mod/floordiv/ceildiv expressions appearing in the tree can't be eliminated.
- refactor the flattening / analysis to move it out of lib/Transforms/
- fix MutableAffineMap::isMultipleOf
- add AffineBinaryOpExpr:getAdd/getMul/... utility methods
PiperOrigin-RevId: 211540536
- Add a new -verify mode to the mlir-opt tool that allows writing test cases
for optimization and other passes that produce diagnostics.
- Refactor existing the -check-parser-errors flag to mlir-opt into a new
-split-input-file option which is orthogonal to -verify.
- Eliminate the special error hook the parser maintained and use the standard
MLIRContext's one instead.
- Enhance the default MLIRContext error reporter to print file/line/col of
errors when it is available.
- Add new createChecked() methods to the builder that create ops and invoke
the verify hook on them, use this to detected unhandled code in the
RaiseControlFlow pass.
- Teach mlir-opt about expected-error @+, it previously only worked with @-
PiperOrigin-RevId: 211305770
Outside of IR/
- simplify a MutableAffineMap by flattening the affine expressions
- add a simplify affine expression pass that uses this analysis
- update the FlatAffineConstraints API (to be used in the next CL)
In IR:
- add isMultipleOf and getKnownGCD for AffineExpr, and make the in-IR
simplication of simplifyMod simpler and more powerful.
- rename the AffineExpr visitor methods to distinguish b/w visiting and
walking, and to simplify API names based on context.
The next CL will use some of these for the loop unrolling/unroll-jam to make
the detection for the need of cleanup loop powerful/non-trivial.
A future CL will finally move this simplification to FlatAffineConstraints to
make it more powerful. For eg., currently, even if a mod expr appearing in a
part of the expression tree can't be simplified, the whole thing won't be
simplified.
PiperOrigin-RevId: 211012256
- for test purposes, the unroll-jam pass unroll jams the first outermost loop.
While on this:
- fix StmtVisitor to allow overriding of function to iterate walk over children
of a stmt.
PiperOrigin-RevId: 210644813
This CL also includes two other minor changes:
- change the implemented syntax from 'if (cond)' to 'if cond', as specified by MLIR spec.
- a minor fix to the implementation of the ForStmt.
PiperOrigin-RevId: 210618122
This commit creates a static constexpr limit for the IntegerType
bitwidth and uses it. The check had to be moved because Token is
not aware of IR/Type and it was a sign the abstraction leaked:
bitwidth limit is not a property of the Token but of the IntegerType.
Added a positive and a negative test at the limit.
PiperOrigin-RevId: 210388192
This commit adds 2 tests:
1. a negative test in which the simplification of expression does not seem satisfactory.
This test should be updated once expression simplification works reasonably.
2. a positive test in which floordiv and ceildiv return the same result, properly enforced with CHECK-NOT
PiperOrigin-RevId: 210286267
This commit replaces // CHECK-EMPTY because it is an extremely confusing way of
allowing (but not checking for) empty lines. The problem is that // CHECK-EMPTY
is **only a comment** and does not do anything.
I originally tried to use // CHECK-EMPTY: but errors occured due to missing
newlines.
The intended behavior of the test is to enforce nothing (not even a newline)
is printed and the proper way to check for this is to use CHECK-NOT.
Thanks to @rxwei for helping me figure out to use CHECK-NOT properly.
PiperOrigin-RevId: 210286262
This revamps implementation of the loop bounds in the ForStmt, using general representation that supports operands. The frequent case of constant bounds is supported
via special access methods.
This also includes:
- Operand iterators for the Statement class.
- OpPointer::is() method to query the class of the Operation.
- Support for the bound shorthand notation parsing and printing.
- Validity checks for the bound operands used as dim ids and symbols
I didn't mean this CL to be so large. It just happened this way, as one thing led to another.
PiperOrigin-RevId: 210204858
new VectorOrTensorType class that provides a common interface between vector
and tensor since a number of operations will be uniform across them (including
extract_element). Improve the LoadOp verifier.
I also updated the MLIR spec doc as well.
PiperOrigin-RevId: 209953189
FlatAffineConstraints, and MutableAffineMap.
All four classes introduced reside in lib/Analysis and are not meant to be
used in the IR (from lib/IR or lib/Parser/). They are all mutable, alloc'ed,
dealloc'ed - although with their fields pointing to immutable affine
expressions (AffineExpr *).
While on this, update simplifyMod to fold mod to a zero when possible.
PiperOrigin-RevId: 209618437
- Have the parser rewrite forward references to their resolved values at the
end of parsing.
- Implement verifier support for detecting malformed function attrs.
- Add efficient query for (in general, recursive) attributes to tell if they
contain a function.
As part of this, improve other general infrastructure:
- Implement support for verifying OperationStmt's in ml functions, refactoring
and generalizing support for operations in the verifier.
- Refactor location handling code in mlir-opt to have the non-error expecting
form of mlir-opt invocations to report error locations precisely.
- Fix parser to detect verifier failures and report them through errorReporter
instead of printing the error and crashing.
This regresses the location info for verifier errors in the parser that were
previously ascribed to the function. This will get resolved in future patches
by adding support for function attributes, which we can use to manage location
information.
PiperOrigin-RevId: 209600980
resolver support.
Still TODO are verifier support (to make sure you don't use an attribute for a
function in another module) and the TODO in ModuleParser::finalizeModule that I
will handle in the next patch.
PiperOrigin-RevId: 209361648
Collect loops through a post order walk instead of a pre-order so that loops
are collected from inner loops are collected before outer surrounding ones.
Add a complex test case.
PiperOrigin-RevId: 209041057
print floating point in a structured form that we know can round trip,
enumerate attributes in the visitor so we print affine mapping attributes
symbolically (the majority of the testcase updates).
We still have an issue where the hexadecimal floating point syntax is reparsed
as an integer, but that can evolve in subsequent patches.
PiperOrigin-RevId: 208828876
This patch passes the raw, unescaped value through to the rest of the stack. Partial escaping is a total pain to deal with, so we either need to implement escaping properly (ideally using a third party library like absl, I don't think LLVM has one that can handle the proper gamut of escape codes) or don't escape. I chose the latter for this patch.
PiperOrigin-RevId: 208608945
Prior to this CL, return statement had no explicit representation in MLIR. Now, it is represented as ReturnOp standard operation and is pretty printed according to the return statement syntax. This way statement walkers can process ML function return operands without making special case for them.
PiperOrigin-RevId: 208092424
- introduce affine integer sets into the IR
- parse and print affine integer sets (both inline or outlined) similar to
affine maps
- use integer set for IfStmt's conditional, and implement parsing of IfStmt's
conditional
- fixed an affine expr paren omission bug while one this.
TODO: parse/represent/print MLValue operands to affine integer set references.
PiperOrigin-RevId: 207779408
encapsulates an operation that is yet to be created. This is a patch towards
custom ops providing create methods that don't need to be templated, allowing
them to move out of line in the future.
PiperOrigin-RevId: 207725557
- fix/complete forStmt cloning for unrolling to work for outer loops
- create IV const's only when needed
- test outer loop unrolling by creating a short trip count unroll pass for
loops with trip counts <= <parameter>
- add unrolling test cases for multiple op results, outer loop unrolling
- fix/clean up StmtWalker class while on this
- switch unroll loop iterator values from i32 to affineint
PiperOrigin-RevId: 207645967
Unrelated minor change - remove OperationStmt::dropReferences(). Since MLFunction does not have cyclic operand references (it's an AST) destruction can be safely done w/o a special pass to drop references.
PiperOrigin-RevId: 207583024
- Implement a diagnostic hook in one of the paths in mlir-opt which
captures and reports the diagnostics nicely.
- Have the parser capture simple location information from the parser
indicating where each op came from in the source .mlir file.
- Add a verifyDominance() method to MLFuncVerifier to demo this, resolving b/112086163
- Add some PrettyStackTrace handlers to make crashes in the testsuite easier
to track down.
PiperOrigin-RevId: 207488548
- deal with non-operation stmt's (if/for stmt's) in loops being unrolled
(unrolling of non-innermost loops works).
- update uses in unrolled bodies to use results of new operations that may be
introduced in the unrolled bodies.
Unrolling now works for all kinds of loop nests - perfect nests, imperfect
nests, loops at any depth, and with any kind of operation in the body. (IfStmt
support not done, hence untested there).
Added missing dump/print method for StmtBlock.
TODO: add test case for outer loop unrolling.
PiperOrigin-RevId: 207314286
MLFunctions.
- MLStmt cloning and IV replacement
- While at this, fix the innermostLoopGatherer to actually gather all the
innermost loops (it was stopping its walk at the first innermost loop it
found)
- Improve comments for MLFunction statement classes, fix inheritance order.
- Fixed StmtBlock destructor.
PiperOrigin-RevId: 207049173
- simplify operations with identity elements (multiply by 1, add with 0).
- simplify successive add/mul: fold constants, propagate constants to the
right.
- simplify floordiv and ceildiv when divisors are constants, and the LHS is a
multiply expression with RHS constant.
- fix an affine expression printing bug on paren emission.
- while on this, fix affine-map test cases file (memref's using layout maps
that were duplicates of existing ones should be emitted pointing to the
unique'd one).
PiperOrigin-RevId: 207046738
generalize the asmprinters handling of pretty names to allow arbitrary sugar to
be dumped on various constructs. Give CFG function arguments nice "arg0" names
like MLFunctions get, and give constant integers pretty names like %c37 for a
constant 377
PiperOrigin-RevId: 206953080
Fix b/112039912 - we were recording 'i' instead of '%i' for loop induction variables causing "use of undefined SSA value" error.
PiperOrigin-RevId: 206884644
Two problems: 1) we didn't visit the types in ops correctly, and 2) the
general "T" version of the OpAsmPrinter inserter would match things like
MemRefType& and print it directly.
PiperOrigin-RevId: 206863642
This is doing it in a suboptimal manner by recombining [integer period literal] into a string literal and parsing that via to_float.
PiperOrigin-RevId: 206855106
This is still (intentionally) generating redundant parens for nested tightly
binding expressions, but I think that is reasonable for readability sake.
This also print x-y instead of x-(y*1)
PiperOrigin-RevId: 206847212
Induction variables are implemented by inheriting ForStmt from MLValue. ForStmt provides APIs that make this design decision invisible to the ForStmt users.
This CL in combination with cl/206253643 resolves http://b/111769060.
PiperOrigin-RevId: 206655937
and OtherType. Other type is now the thing that holds AffineInt, Control,
eventually Resource, Variant, String, etc. FloatType holds the floating point
types, and allows convenient query of isa<FloatType>().
This fixes issues where we allowed control to be the element type of tensor,
memref, vector. At the same time, ban AffineInt from being an element of a
vector/memref/tensor as well since we don't need it.
I updated the spec to match this as well.
PiperOrigin-RevId: 206361942
- Enhance memref type to allow omission of mappings and address
spaces (implying a default mapping).
- Fix printing of function types to properly recurse with printType
so mappings are printed by name.
- Simplify parsing of AffineMaps a bit now that we have
isSymbolicOrConstant()
PiperOrigin-RevId: 206039755
This regresses parser error recovery in some cases (in invalid.mlir) which I'll
consider in a follow-up patch. The important thing in this patch is that the
parse methods in StandardOps.cpp are nice and simple.
PiperOrigin-RevId: 206023308
- Implement a full loop unroll for innermost loops.
- Use it to implement a pass that unroll all the innermost loops of all
mlfunction's in a module. ForStmt's parsed currently have constant trip
counts (and constant loop bounds).
- Implement StmtVisitor based (Visitor pattern)
Loop IVs aren't currently parsed and represented as SSA values. Replacing uses
of loop IVs in unrolled bodies is thus a TODO. Class comments are sparse at some places - will add them after one round of comments.
A cmd-line flag triggers this for now.
Original:
mlfunc @loops() {
for x = 1 to 100 step 2 {
for x = 1 to 4 {
"Const"(){value: 1} : () -> ()
}
}
return
}
After unrolling:
mlfunc @loops() {
for x = 1 to 100 step 2 {
"Const"(){value: 1} : () -> ()
"Const"(){value: 1} : () -> ()
"Const"(){value: 1} : () -> ()
"Const"(){value: 1} : () -> ()
}
return
}
PiperOrigin-RevId: 205933235
This looks heavyweight but most of the code is in the massive number of operand accessors!
We need to be able to iterate over all operands to the condbr (all live-outs) but also just
the true/just the false operands too.
PiperOrigin-RevId: 205897704
While fixing this the parser-affine-map.mlir test started failing due to ordering of the printed affine maps. Even the existing CHECK-DAGs weren't enough to disambiguate; a partial match on one line precluded a total match on a following line.
The fix for this was easy - print the affine maps in reference order rather than in DenseMap iteration order.
PiperOrigin-RevId: 205843770
- Op classes can now provide customized matchers, allowing specializations
beyond just a name match.
- We now provide default implementations of verify/print hooks, so Op classes
only need to implement them if they're doing custom stuff, and only have to
implement the ones they're interested in.
- "Base" now takes a variadic list of template template arguments, allowing
concrete Op types to avoid passing the Concrete type multiple times.
- Add new ZeroOperands trait.
- Add verification hooks to Zero/One/Two operands and OneResult to check that
ops using them are correctly formed.
- Implement getOperand hooks to zero/one/two operand traits, and
getResult/getType hook to OneResult trait.
- Add a new "constant" op to show some of this off, with a specialization for
the constant case.
This patch also splits op validity checks out to a new test/IR/invalid-ops.mlir
file.
This stubs out support for default asmprinter support. My next planned patch
building on top of this will make asmprinter hooks real and will revise this.
PiperOrigin-RevId: 205833214
This patch adds support for basic block arguments including parsing and printing.
In doing so noticed that `ssa-id-and-type` is undefined in the MLIR spec; suggested an implementation in the spec doc.
PiperOrigin-RevId: 205593369
is still limited in several ways, which i'll build out in subsequent patches.
Rename the accessor for inst operands/results to make the Operand/Result
versions of these more obscure, allowing getOperand/getResult to traffic
in values (which is what - by far - most clients actually care about).
PiperOrigin-RevId: 205408439
- Drop sub-classing of affine binary op expressions.
- Drop affine expr op kind sub. Represent it as multiply by -1 and add. This
will also be in line with the math form when we'll need to represent a system of
linear equalities/inequalities: the negative number goes into the coefficient
of an affine form. (For eg. x_1 + (-1)*x_2 + 3*x_3 + (-2) >= 0). The folding
simplification will transparently deal with multiplying the -1 with any other
constants. This also means we won't need to simplify a multiply expression
like in x_1 + (-2)*x_2 to a subtract expression (x_1 - 2*x_2) for
canonicalization/uniquing.
- When we print the IR, we will still pretty print to a subtract when possible.
PiperOrigin-RevId: 205298958
Loop bounds and presumed to be constants for now and are stored in ForStmt as affine constant expressions. ML function arguments, return statement operands and loop variable name are dropped for now.
PiperOrigin-RevId: 205256208
- This introduces a new FunctionParser base class to handle logic common
between the kinds of functions we have, e.g. ssa operand/def parsing.
- This introduces a basic symbol table (without support for forward
references!) and links defs and uses.
- CFG functions now parse and build operand lists for operations. The printer
isn't set up for them yet tho.
PiperOrigin-RevId: 205246110
the instruction side of the house.
This has a number of limitations, including that we are still dropping
operands on the floor in the parser. Also, most of the convenience methods
aren't wired up yet. This is enough to get result type lists round tripping
through.
PiperOrigin-RevId: 205148223
Refactors operation parsing to share functionality between CFG and ML functions. ML function construction now goes through a builder, similar to the way it is done for
CFG functions.
PiperOrigin-RevId: 204779279
is no strong reason to prefer one or the other, but // is nice for consistency
given the rest of the compiler is written in C++.
PiperOrigin-RevId: 204628476
- fold constants when possible.
- for a mul expression, canonicalize to always keep the LHS as the
constant/symbolic term, and similarly, the RHS for an add expression to keep
it closer to the mathematical form. (Eg: f(x) = 3*x + 5)); other similar simplifications;
- verify binary op expressions at creation time.
TODO: we can completely drop AffineSubExpr, and instead use add and mul by -1.
This way something like x - 4 and -4 + x get canonicalized to x + -1 * 4
instead of being x - 4 and x + -4. (The other alternative if wanted to retain
AffineSubExpr would be to simplify x + -1*y to x - y and x + <neg number> to x
- <pos number>).
PiperOrigin-RevId: 204240258
- check for non-affine expressions
- handle negative numbers and negation of id's, expressions
- functions to check if a map is pure affine or semi-affine
- simplify/clean up affine map parsing code
- report more errors messages, more accurate error messages
PiperOrigin-RevId: 203773633
reducing the memory impact on Operation to one word instead of 3 from an
std::vector.
Implement Jacques' suggestion to merge OpImpl::Storage into OpImpl::Base.
PiperOrigin-RevId: 203426518
properties:
- They allow type checked dynamic casting from their base Operation.
- They allow nice accessors for C++ clients, e.g. a "getIndex()" method on
'dim' that returns an unsigned.
- They work with both OperationInst/OperationStmt (once OperationStmt is
implemented).
- They get custom printing logic. They will eventually get custom parsing,
verifier, and builder logic as well.
- Out of tree clients can register their own operation set without having to
change MLIR core, e.g. for TensorFlow or custom target instructions.
This registers addf and dim as examples.
PiperOrigin-RevId: 203382993
A recursive descent parser for affine maps/expressions with operator precedence and
associativity. (While on this, sketch out uniqui'ing functionality for affine maps
and affine binary op expressions (partly).)
PiperOrigin-RevId: 203222063
important for low-bitwidth inference cases and hardware synthesis targets.
Rename 'int' to 'affineint' to avoid confusion between "the integers" and "the int
type".
PiperOrigin-RevId: 202751508
Run test case:
$ mlir-opt test/IR/parser-affine-map.mlir
test/IR/parser-affine-map.mlir:3:30: error: expect '(' at start of map range
#hello_world2 (i, j) [s0] -> i+s0, j)
^
PiperOrigin-RevId: 202736856
class.
Introduce an Identifier class to MLIRContext to represent uniqued identifiers,
introduce string literal support to the lexer, introducing parser and printer
support etc.
PiperOrigin-RevId: 202592007
Add parsing tests with errors. Follows direct path of splitting file into test groups (using a marker) and parsing each section individually. The expected errors are checked using FileCheck and parser error does not result in terminating parsing the rest of the file if check-parser-error.
This is an interim approach until refactoring lexer/parser.
PiperOrigin-RevId: 201867941
This is pretty much minimal scaffolding for this step. Basic block arguments,
instructions, other terminators, a proper IR representation for
blocks/instructions, etc are all coming.
PiperOrigin-RevId: 201826439
Semi-affine maps and address spaces are not yet supported (someone want to take
this on?). We also don't generate IR objects for types yet, which I plan to
tackle next.
PiperOrigin-RevId: 201754283