Two canonicalizations for select %x, 1, 0
If the return type is i1, return simply the condition %x, otherwise extui %x to the return type.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D116517
Replace and(ext(a),ext(b)) with ext(and(a,b)). This both reduces one instruction, and results in the computation (and/or) being done on a smaller type.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D116519
This reduce an unnecessary amount of copy of non-trivial objects, like
APFloat.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D116505
This patch creates folds for cmpi( ext(%x : i1, iN) != 0) -> %x
In essence this matches patterns matching an extension of a boolean, that != 0, which is equivalent to the original condition.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D116504
MLIR already exposes landingpads, the invokeop and the personality function on LLVM functions. With this intrinsic it should be possible to implement exception handling via the exception handling mechanisms provided by the Itanium ABI.
Differential Revision: https://reviews.llvm.org/D116436
https://reviews.llvm.org/D109555 added support to APInt for this, so the special case to disable it is no longer valid. It is in fact legal to construct these programmatically today, and they print properly but do not parse.
Justification: zero bit integers arise naturally in various bit reduction optimization problems, and having them defined for MLIR reduces special casing.
I think there is a solid case for i0 and ui0 being supported. I'm less convinced about si0 and opted to just allow the parser to round-trip values that already verify. The counter argument is that the proper singular value for an si0 is -1. But the counter to this counter is that the sign bit is N-1, which does not exist for si0 and it is not unreasonable to consider this non-existent bit to be 0. Various sources consider it having the singular value "0" to be the least surprising.
Reviewed By: lattner
Differential Revision: https://reviews.llvm.org/D116413
Per the discussion in https://reviews.llvm.org/D116345 it makes sense
to move AtomicRMWOp out of the standard dialect. This was accentuated by the
need to add a fold op with a memref::cast. The only dialect
that would permit this is the memref dialect (keeping it in the standard dialect
or moving it to the arithmetic dialect would require those dialects to have a
dependency on the memref dialect, which breaks linking).
As the AtomicRMWKind enum is used throughout, this has been moved to Arith.
Reviewed By: Mogball
Differential Revision: https://reviews.llvm.org/D116392
vector.transfer operations do not have rank-reducing semantics.
Bail on illegal rank-reduction: we need to check that the rank-reduced
dims are exactly the leading dims. I.e. the following is illegal:
```
%0 = vector.transfer_write %v, %t[0,0], %cst :
vector<2x4xf32>, tensor<2x4xf32>
%1 = tensor.insert_slice %0 into %tt[0,0,0][2,1,4][1,1,1] :
tensor<2x4xf32> into tensor<2x1x4xf32>
```
Cannot fold into:
```
%0 = vector.transfer_write %v, %t[0,0,0], %cst :
vector<2x4xf32>, tensor<2x1x4xf32>
```
For this, check the trailing `vectorRank` dims of the insert_slice result
tensor match the trailing dims of the inferred result tensor.
Differential Revision: https://reviews.llvm.org/D116409
The semantics of the ops that implement the
`OffsetSizeAndStrideOpInterface` is that if the number of offsets,
sizes or strides are less than the rank of the source, then some
default values are filled along the trailing dimensions (0 for offset,
source dimension of sizes, and 1 for strides). This is confusing,
especially with rank-reducing semantics. Immediate issue here is that
the methods of `OffsetSizeAndStridesOpInterface` assumes that the
number of values is same as the source rank. This cause out-of-bounds
errors.
So simplifying the specification of `OffsetSizeAndStridesOpInterface`
to make it invalid to specify number of offsets/sizes/strides not
equal to the source rank.
Differential Revision: https://reviews.llvm.org/D115677
LLVM (dialect and IR) have atomics for and/or. This patch enables atomic_rmw ops in the standard dialect for and/or that lower to these (in addition to the existing atomics such as addi, etc).
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D116345
Includes dependency fix that resulted in canonicalizer pass not linking in.
Linalg named ops lowering are moved to a separate pass. This allows TOSA
canonicalizers to run between named-ops lowerings and the general TOSA
lowerings. This allows the TOSA canonicalizers to run between lowerings.
Differential Revision: https://reviews.llvm.org/D116057
Querying threads directly from the thread pool fails if there is no thread pool or if multithreading is not enabled. Returns 1 by default.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D116259
This reverts commit 313de31fbb.
There is a missing CMake dependency, building with shared libraries is
broken:
55.509 [45/4/3061] Linking CXX shared library lib/libMLIRTosaToLinalg.so.14git
FAILED: lib/libMLIRTosaToLinalg.so.14git
...
TosaToLinalgPass.cpp: undefined reference to `mlir::createCanonicalizerPass()'
Linalg named ops lowering are moved to a separate pass. This allows TOSA
canonicalizers to run between named-ops lowerings and the general TOSA
lowerings. This allows the TOSA canonicalizers to run between lowerings.
Reviewed By: NatashaKnk
Differential Revision: https://reviews.llvm.org/D116057
* There is no reason to forbid that case
* Also, user will get very unfriendly error like `expected result type with offset = -9223372036854775808 instead of 1`
Differential Revision: https://reviews.llvm.org/D114678
These conversions are better suited to be applied at whole tensor
level. Applying these as canonicalizations end up triggering such
canonicalizations at all levels of the stack which might be
undesirable. For example some of the resulting code patterns wont
bufferize in-place and need additional stack buffers. Best is to be
more deliberate in when these canonicalizations apply.
Differential Revision: https://reviews.llvm.org/D115912
This method is more suitable as an opinterface: it seems intrinsic to
individual instances of the operation instead of the dialect.
Also remove the restriction on the interface being applicable to the entry block only.
Differential Revision: https://reviews.llvm.org/D116018
TOSA's canonicalizers that change dense operations should be moved to a
seperate optimization pass to avoid canonicalizing to operations not supported
for relevant backends.
Reviewed By: rsuderman
Differential Revision: https://reviews.llvm.org/D115890
`EnumAttr` is a pure TableGen implementation of enum attributes using `AttrDef`. This is meant as a drop-in replacement for `StrEnumAttr`, which is soon to be deprecated. `StrEnumAttr` is often used over `IntEnumAttr` because its more readable in MLIR assembly formats. However, storing and manipulating strings is not efficient. Defining `StrEnumAttr` can also be awkward and relies on a lot of special logic in `EnumsGen`, and has some hidden sharp edges.
Also, `EnumAttr` stores the enum directly, removing the need to convert to/from integers when calling attribute getters on ops.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D115181
It is possible for the shift value to exceed the number of bits. In these
cases we can just multiply by zero. This is relatively rare occurence but
should be handled.
Reviewed By: not-jenni
Differential Revision: https://reviews.llvm.org/D115779
When the input and output of a pool2d op are both 1x1, it can be canonicalized to a no-op
Reviewed By: rsuderman
Differential Revision: https://reviews.llvm.org/D115908
Slight rename and better variable type usage in tosa.conv2d to
tosa.fully_connected lowering. Included disabling pass for padded
convolutions.
Reviewed By: not-jenni
Differential Revision: https://reviews.llvm.org/D115776
The generated parser for ops with type inference calls `inferReturnTypes` before region resolution and segment attribute resolution, i.e. regions and the segment attributes are not passed to the `inferReturnTypes` even though it may need that information.
In particular, an op that has sized operand segments which queries those operands in its `inferReturnTypes` function will crash because the segment attributes hadn't been added yet.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D115782
This allows the pass to participate in progressive lowering
and it also allows us to write tests better.
Along the way, cleaned up the tests.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D115756
This patch extends the GPU kernel outlining pass so that it can take in
an optional data layout specification that will be attached to the GPU
module operation generated. If the data layout specification is not provided
the default data layout is used instead.
Reviewed By: herhut, mehdi_amini
Differential Revision: https://reviews.llvm.org/D115722
The `rewrite` statement allows for rewriting a given root
operation with a block of nested rewriters. The root operation is
not implicitly erased or replaced, and any transformations to it
must be expressed within the nested rewrite block. The inner body
may contain any number of other rewrite statements, variables, or
expressions.
Differential Revision: https://reviews.llvm.org/D115299
This statement acts as a companion to the existing `erase`
statement, and is the corresponding PDLL construct for the
`PatternRewriter::replaceOp` C++ API. This statement replaces a
given operation with a set of values.
Differential Revision: https://reviews.llvm.org/D115298
Tuples are used to group multiple elements into a single
compound value. The values in a tuple can be of any type, and
do not need to be of the same type. There is also no limit to
the number of elements held by a tuple.
Tuples will be used to support multiple results from
Constraints and Rewrites (added in a followup), and will also
make it easier to support more complex primitives (such as
range based maps that can operate on multiple values).
Differential Revision: https://reviews.llvm.org/D115297
An operation expression in PDLL represents an MLIR operation. In
the match section of a pattern, this expression models one of
the input operations to the pattern. In the rewrite section of
a pattern, this expression models one of the operations to
create. The general structure of the operation expression is very
similar to that of the "generic form" of textual MLIR assembly:
```
let root = op<my_dialect.foo>(operands: ValueRange) {attr = attr: Attr} -> (resultTypes: TypeRange);
```
For now we only model the components that are within PDL, as PDL
gains support for blocks and regions so will this expression.
Differential Revision: https://reviews.llvm.org/D115296
This allows for using literal attributes and types within PDLL,
which simplifies building both constraints and rewriters. For
example, checking if an attribute is true is as simple as
`attr<"true">`.
Differential Revision: https://reviews.llvm.org/D115295
This allows for overriding the metadata of a pattern and
providing information such as the benefit, bounded recursion,
and more in the future.
Differential Revision: https://reviews.llvm.org/D115294
This is a new pattern rewrite frontend designed from the ground
up to support MLIR constructs, and to target PDL. This frontend
language was proposed in https://llvm.discourse.group/t/rfc-pdll-a-new-declarative-rewrite-frontend-for-mlir/4798
This commit starts sketching out the base structure of the
frontend, and is intended to be a minimal starting point for
building up the language. It essentially contains support for
defining a pattern, variables, and erasing an operation. The
features mentioned in the proposal RFC (including IDE support)
will be added incrementally in followup commits.
I intend to upstream the documentation for the language in a
followup when a bit more of the pieces have been landed.
Differential Revision: https://reviews.llvm.org/D115093
If all the dims are reduction dims, it is already in inner-most/outer-most
reduction form.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D115820
* Call `replaceOp` instead of `mapBuffer`.
* Remove bvm and all helper functions around bvm.
* Simplify FuncOp bufferization and rely on existing functionality to generate ToMemrefOps for function BlockArguments.
Differential Revision: https://reviews.llvm.org/D115515
Ops for the signed counterparts "llvm.smin" and "llvm.smax" already exist. This patch adds the unsigned versions as well.
Differential Revision: https://reviews.llvm.org/D115796
After removing the range type, Linalg does not define any type. The revision thus consolidates the LinalgOps.h and LinalgTypes.h into a single Linalg.h header. Additionally, LinalgTypes.cpp is renamed to LinalgDialect.cpp to follow the convention adopted by other dialects such as the tensor dialect.
Depends On D115727
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D115728
This patch adds lowering from omp.sections and omp.section (simple lowering along with the nowait clause) to LLVM IR.
Tests for the same are also added.
Reviewed By: ftynse, kiranchandramohan
Differential Revision: https://reviews.llvm.org/D115030
Instead of modifying the existing scf.if op, create a new op with memref OpOperands/OpResults and delete the old op.
New allocations / other memrefs can now be yielded from the op. This functionality is deactivated by default and guarded against by AssertDestinationPassingStyle.
Differential Revision: https://reviews.llvm.org/D115491
With VectorType supporting scalable dimensions, we don't need many of
the operations currently present in ArmSVE, like mask generation and
basic arithmetic instructions. Therefore, this patch also gets
rid of those.
Having built-in scalable vector support also simplifies the lowering of
scalable vector dialects down to LLVMIR.
Scalable dimensions are indicated with the scalable dimensions
between square brackets:
vector<[4]xf32>
Is a scalable vector of 4 single precission floating point elements.
More generally, a VectorType can have a set of fixed-length dimensions
followed by a set of scalable dimensions:
vector<2x[4x4]xf32>
Is a vector with 2 scalable 4x4 vectors of single precission floating
point elements.
The scale of the scalable dimensions can be obtained with the Vector
operation:
%vs = vector.vscale
This change is being discussed in the discourse RFC:
https://llvm.discourse.group/t/rfc-add-built-in-support-for-scalable-vector-types/4484
Differential Revision: https://reviews.llvm.org/D111819
Instead of modifying the existing scf.for op, create a new op with memref OpOperands/OpResults and delete the old op.
New allocations / other memrefs can now be yielded from the loop. This functionality is deactivated by default and guarded against by AssertDestinationPassingStyle.
This change also introduces `replaceOp`, which will be utilized by all other `bufferize` implementations in future commits. Bufferization will then no longer rely on old (pre-bufferize) ops to DCE away. Instead old ops are deleted on the spot. This improves debuggability because there won't be any duplicate ops anymore (bufferized + not-yet-bufferized) when dumping IR during bufferization. It is also less fragile because unbufferized IR can no longer silently "hang around" due to an implementation bug.
Differential Revision: https://reviews.llvm.org/D114926
Remove the RangeOp and the RangeType that are not actively used anymore. After removing RangeType, the LinalgTypes header only includes the generated dialect header.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D115727
While the default value for the amdgpu-flat-work-group-size attribute,
"1, 256", matches the defaults from Clang, some users of the ROCDL dialect,
namely Tensorflow, use larger workgroups, such as 1024. Therefore,
instead of hardcoding this value, we add a rocdl.max_flat_work_group_size
attribute that can be set on GPU kernels to override the default value.
Reviewed By: whchung
Differential Revision: https://reviews.llvm.org/D115741
Implementation of the interface allows querying the size and alignments of an LLVMArrayType as well as query the size and alignment of a struct containing an LLVMArrayType.
The implementation should yield the same results as llvm::DataLayout, including support for over aligned element types.
There is no customization point for adjusting an arrays alignment; it is simply taken from the element type.
Differential Revision: https://reviews.llvm.org/D115704
This is the second part of https://reviews.llvm.org/D114993 after slicing
into 2 independent commits.
This is needed at the moment to get good codegen from 2d vector.transfer
ops that aim to compile to SIMD load/store instructions but that can
only do so if the whole 2d transfer shape is handled in one piece, in
particular taking advantage of the memref being contiguous rowmajor.
For instance, if the target architecture has 128bit SIMD then we would
expect that contiguous row-major transfers of <4x4xi8> map to one SIMD
load/store instruction each.
The current generic lowering of multi-dimensional vector.transfer ops
can't achieve that because it peels dimensions one by one, so a transfer
of <4x4xi8> becomes 4 transfers of <4xi8>.
The new patterns here are only enabled for now by
-test-vector-transfer-flatten-patterns.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D114993
This is the first part of https://reviews.llvm.org/D114993 which has been
split into small independent commits.
This is needed at the moment to get good codegen from 2d vector.transfer
ops that aim to compile to SIMD load/store instructions but that can
only do so if the whole 2d transfer shape is handled in one piece, in
particular taking advantage of the memref being contiguous rowmajor.
For instance, if the target architecture has 128bit SIMD then we would
expect that contiguous row-major transfers of <4x4xi8> map to one SIMD
load/store instruction each.
The current generic lowering of multi-dimensional vector.transfer ops
can't achieve that because it peels dimensions one by one, so a transfer
of <4x4xi8> becomes 4 transfers of <4xi8>.
The new patterns here are only enabled for now by
-test-vector-transfer-flatten-patterns.
Reviewed By: nicolasvasilache
* Generalizes passes linalg-detensorize, linalg-fold-unit-extent-dims, convert-elementwise-to-linalg.
* I feel that more work could be done in the future (i.e. make FunctionLike into a proper OpInterface and extend actions in dialect conversion to be trait based), and this patch would be a good record of why that is useful.
* Note for downstreams:
* Since these passes are now generic, they do not automatically nest with pass managers set up for implicit nesting.
* The Detensorize pass must run on a FunctionLike, and this requires explicit nesting.
* Addressed missed comments from the original and per-suggestion removed the assert on FunctionLike in ElementwiseToLinalg and DropUnitDims.cpp, which also is what was causing the integration test to fail.
This reverts commit aa8815e42e.
Differential Revision: https://reviews.llvm.org/D115671
explores various sparsity combinations of
the SDMM kernel and verifies that the computed
result is the same for all cases
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D115476
Add convertFromMLIRSparseTensor to the supporting C shared library to convert
SparseTensorStorage to COO-flavor format.
Add Python routine sparse_tensor_to_coo_tensor to convert sparse tensor storage
pointer to numpy values for COO-flavor format tensor.
Add a Python test for sparse tensor output.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D115557
* Generalizes passes linalg-detensorize, linalg-fold-unit-extent-dims, convert-elementwise-to-linalg.
* I feel that more work could be done in the future (i.e. make FunctionLike into a proper OpInterface and extend actions in dialect conversion to be trait based), and this patch would be a good record of why that is useful.
* Note for downstreams:
* Since these passes are now generic, they do not automatically nest with pass managers set up for that.
* If running them over nested functions, you must nest explicitly. Upstream has adopted this style but *-opt still has some uses of implicit pipelines via args. See tests for argument changes needed.
Differential Revision: https://reviews.llvm.org/D115645
Adapt the LinalgStrategyVectorizationPattern pass to apply the vectorization patterns in two stages. The change ensures the generic pad tensor op vectorization pattern does not run too early. Additionally, the revision adds the transfer op canonicalization patterns to the set of applied patterns, since they are needed to enable efficient vectorization for rank-reduced convolutions.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D115627
The previous "optimization" that tries to reuse existing block for
selection header block can be problematic for deserialization
because it effectively pulls in previous ops in the selection op's
enclosing block into the selection op's header. When deserializing,
those ops will be placed in the selection op's region. If any of
the previous ops has usage after the section op, it will break. That
is, the following IR cannot round trip:
```mlir
^bb:
%def = ...
spv.mlir.selection { ... }
%use = spv.SomeOp %def
```
This commit removes the "optimization" to always create new blocks
for the selection header.
Along the way, also made error reporting better in deserialization
by turning asserts into proper errors and add check of uses outside
of sinked structured control flow region blocks.
Reviewed By: Hardcode84
Differential Revision: https://reviews.llvm.org/D115582
Despite handling regions and inferred return types, the builder was never generated for ops with both InferReturnTypeOpInterface and regions.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D115525
Use the current instead of the new source type to compute the rank-reduction map in getCanonicalSubViewResultType. Otherwise, the computation of the rank-reduction map fails when folding a cast into a subview since the strides of the new source type cannot be related to the strides of the current result type.
Depends On D115428
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D115446
Using this implementation of the interface it is possible to query the size, ABI alignment as well as the preferred alignment of a struct. It should yield the same results as LLVMs `llvm::DataLayout` on an equivalent `llvm::StructType`, including for packed structs.
Additionally it is also possible to increase the ABI and preferred alignment using a data layout entry with the type `llvm.struct<()>, which serves the same functionality as the `a:` component in LLVMs data layout string.
Differential Revision: https://reviews.llvm.org/D115600
Do not compose pad tensor operations if the extract slice of the outer pad tensor operation is rank reducing. The inner extract slice op cannot be rank-reducing since it source type must match the desired type of the padding.
Depends On D115359
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D115428
Tighten the matcher of the PadTensorOpVectorizationWithInsertSlicePattern pattern. Only match if the PadOp result is used by the InsertSliceOp source. Fail if the result is used by the InsertSliceOp dest.
Depends On D115336
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D115359
Adapt the computation of a static bounding box to take rank-reducing slice operations into account by filtering out reduced size one dimensions. The revision is needed to make padding work for decomposed convolution operations. The decomposition introduces rank reducing extract slice operations that previously let padding fail.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D115336
We currently restrict parsing of location to not allow nameloc being
nested inside nameloc. This restriction may be historical as there
doesn't seem to be a reason for it anymore (locations like this can be
constructed in C++ and they print fine). Relax this restriction in the
parser to allow this nesting.
Differential Revision: https://reviews.llvm.org/D115581
Flags some potential cases where splitting isn't happening and so could result
in confusing results. Also update some test files where there were near misses
in splitting that seemed unintentional.
Differential Revision: https://reviews.llvm.org/D109636
The 0-D case gets lowered in almost the same way that the 1-D case does
in VectorCreateMaskOpConversion. I also had to slightly update the
verifier for the op to always require exactly 1 operand in the 0-D case.
Depends On D115220
Reviewed by: ftynse
Differential revision: https://reviews.llvm.org/D115221
Following the example of `VectorOfAnyRankOf`, I've done a few changes in the
`.td` files to help with adding the support for the 0-D case gradually.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D115220
If we have a `spv.mlir.selection` op nested in a `spv.mlir.loop`
op, when serializing the loop's block, we might need to jump
from the selection op's merge block, which might be different
than the immediate MLIR IR predecessor block. But we still need
to get the block argument from the MLIR IR predecessor block.
Also, if the `spv.mlir.selection` is in the `spv.mlir.loop`'s
header block, we need to make sure `OpLoopMerge` is emitted
in the current block before start processing the nested selection
op. Otherwise we'll see the LoopMerge in the wrong SPIR-V
basic block.
Reviewed By: Hardcode84
Differential Revision: https://reviews.llvm.org/D115560
InsertSliceOp may have subprefix semantics where missing trailing dimensions
are automatically inferred directly from the operand shape.
This revision fixes an overflow that occurs in such cases when the impl is based on the op rank.
Differential Revision: https://reviews.llvm.org/D115549
* Constraints/Rewrites registered before a pattern was added were dropped
* Constraints/Rewrites may be registered multiple times (if different pattern sets depend on them)
* ModuleOp no longer has a terminator, so we shouldn't be removing the terminator from it
Differential Revision: https://reviews.llvm.org/D114816
Switch the attribute creation operations to use attr-dict-with-
keyword to avoid conflicts (in the case of pdl.attribute) and
confusion(in the case of pdl_interp.create_attribute) with
having a DictionaryAttr as a value and specifying the
attributes of the operation itself (as a dictionary).
Differential Revision: https://reviews.llvm.org/D114815
The results of a rewrite are optional, but we currently require
them to be present in the assembly format. This commit
makes the results component in the format optional.
Differential Revision: https://reviews.llvm.org/D114814
Custom ops that have no parser or printer should fall back to the dialect's parser and/or printer hooks. This avoids the need to define parsers and printers that simply dispatch to the dialect hook.
Reviewed By: mehdi_amini, rriddle
Differential Revision: https://reviews.llvm.org/D115481
Wrong type was used for the result type in the tosa.conv_2d canonicalization.
The type should match the result element type should match the result type
not the input element type.
Differential Revision: https://reviews.llvm.org/D115463
This patterns tries to convert an inner (outer) dim reduction to an
outer (inner) dim reduction. Doing this on a 1D or 0D vector results
in an infinite loop since the converted op is same as the original
operation. Just returning failure when source rank <= 1 fixes the
issue.
Differential Revision: https://reviews.llvm.org/D115426
The sparse tensor code generator allocates memory for the output tensor. As
such, we only need to allocate a MemRefDescriptor to receive the output tensor
and do not need to allocate and initialize the storage for the tensor.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D115292
- Define a gpu.printf op, which can be lowered to any GPU printf() support (which is present in CUDA, HIP, and OpenCL). This op only supports constant format strings and scalar arguments
- Define the lowering of gpu.pirntf to a call to printf() (which is what is required for AMD GPUs when using OpenCL) as well as to the hostcall interface present in the AMD Open Compute device library, which is the interface present when kernels are running under HIP.
- Add a "runtime" enum that allows specifying which of the possible runtimes a ROCDL kernel will be executed under or that the runtime is unknown. This enum controls how gpu.printf is lowered
This change does not enable lowering for Nvidia GPUs, but such a lowering should be possible in principle.
And:
[MLIR][AMDGPU] Always set amdgpu-implicitarg-num-bytes=56 on kernels
This is something that Clang always sets on both OpenCL and HIP kernels, and failing to include it causes mysterious crashes with printf() support.
In addition, revert the max-flat-work-group-size to (1, 256) to avoid triggering bugs in the AMDGPU backend.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D110448
Depends On D115263
By aligning block size to inner loop iterations parallel_compute_fn LLVM can later unroll and vectorize some of the inner loops with small number of trip counts. Up to 2x speedup in multiple benchmarks.
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D115436
With complex recursive structure of async dispatch function LLVM can't always propagate constants to the parallel_compute_fn and it often prevents optimizations like loop unrolling and vectorization. We help LLVM by pushing known constants into the parallel_compute_fn explicitly.
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D115263
LinalgOp results usually bufferize inplace with output args. With this change, they may buffer inplace with input args if the value of the output arg is not used in the computation.
Differential Revision: https://reviews.llvm.org/D115022
This patch supports the atomic construct (update) following section 2.17.7 of OpenMP 5.0 standard. Also added tests and verifier for the same.
Reviewed By: kiranchandramohan, peixin
Differential Revision: https://reviews.llvm.org/D112982
The region of `linalg.generic` might contain `tensor` operations. For
example, current lowering of `gather` uses a `tensor.extract` in the
body of the `LinalgOp`. Bufferize the ops within a `LinalgOp` region
as well to catch such cases.
Differential Revision: https://reviews.llvm.org/D115322
Count leading/trailing zeros are an existing LLVM intrinsic. Added LLVM
support for the intrinsics with lowerings from the math dialect to LLVM
dialect.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D115206
This adds a new option `dialectFilter` to BufferizationOptions. Only ops from dialects that are allow-listed in the filter are bufferized. Other ops are left unbufferized. Note: This option requires `allowUnknownOps = true`.
To make use of `dialectFilter`, BufferizationOptions or BufferizationState must be passed to various helper functions.
The purpose of this change is to provide a better infrastructure for partial bufferization, which will be fully activated in a subsequent change.
Differential Revision: https://reviews.llvm.org/D114691
The new form of printing attribute in the declarative assembly is eliding the `#dialect.mnemonic` prefix to only keep the `<....>` part.
Differential Revision: https://reviews.llvm.org/D113873
This revision implements sparse outputs (from scratch) in all cases where
the loops can be reordered with all but one parallel loops outer. If the
inner parallel loop appears inside one or more reductions loops, then an
access pattern expansion is required (aka. workspaces in TACO speak).
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D115091
Quantized case needs to include zero-point corrections before the tosa.mul.
Disabled for the quantized use-case.
Reviewed By: NatashaKnk
Differential Revision: https://reviews.llvm.org/D115264
This patch adds lowering from omp.atomic.read to LLVM IR along with the
memory ordering clause. Tests for the same are also added.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D115134
For a 1x1 weight and stride of 1, the input/weight can be reshaped and
multiplied elementwise then reshaped back
Reviewed By: rsuderman, KoolJBlack
Differential Revision: https://reviews.llvm.org/D115207
Fixed the tosa.conv2d to tosa.fully_connected canonicalization for incorrect
output channels. Included uptes to tests to include checks for the result
shapes during canonicalization.
This allows conv2d to transform to the simpler fully_connected operation.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D115170
Do load and store to verify that we process each element of the iteration space once.
Reviewed By: cota
Differential Revision: https://reviews.llvm.org/D115152
Conversion of LLVM named structs leads to them being renamed since we cannot
modify the body of the struct type once it is set. Previously, this applied to
all named struct types, even if their element types were not affected by the
conversion. Make this behvaior only applicable when element types are changed.
This requires making the LLVM dialect type-compatibility check recursively look
at the element types (arguably, it should have been doing than since the moment
the LLVM dialect type system stopped being closed). In addition, have a more
lax check for outer types only to avoid repeated check when necessary (e.g.,
parser, verifiers that are going to also look at the inner type).
Reviewed By: wsmoses
Differential Revision: https://reviews.llvm.org/D115037
Remove all function calls related to buffer equivalence from bufferize implementations.
Add a new PostAnalysisStep for scf.for that ensures that yielded values are equivalent to the corresponding BBArgs. (This was previously checked in `bufferize`.) This will be relaxed in a subsequent commit.
Note: This commit changes two test cases. These were broken by design
and should not have passed. With the new scf.for PostAnalysisStep, this
bug was fixed.
Differential Revision: https://reviews.llvm.org/D114927
Collect equivalent BBArgs right after the equivalence analysis of the FuncOp and before bufferizing. This is in preparation of decoupling bufferization from aliasInfo.
Also gather equivalence info for CallOps, which was missing in the
previous commit.
Differential Revision: https://reviews.llvm.org/D114847
To support creating both a mask with just a single `true` and `false` values,
I had to relax the restriction in the verifier that the rank is always equal to
the length of the attribute array, in other words, we now allow:
- `vector.constant_mask [0] : vector<i1>` which gets lowered to
`arith.constant dense<false> : vector<i1>`
- `vector.constant_mask [1] : vector<i1>` which gets lowered to
`arith.constant dense<true> : vector<i1>`
(the attribute list for the 0-D case must be a singleton containing
either `0` or `1`)
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D115023
When using -test-loop-permutation="permutation-map=...", applies the
permutation map on each affine nest in the function (and not only the
first one). If the size of the permutation map and the size of a nest
are not consistent, do nothing on this particular nest (instead of
making MLIR crash).
Differential Revision: https://reviews.llvm.org/D112947
Fix affine.for unroll for multi-result upper bound maps: these can't be
unrolled/unroll-and-jammed in cases where the trip count isn't known to
be a multiple of the unroll factor.
Fix and clean up repeated/unnecessary checks/comments at helper callees.
Also, fix clang-tidy variable naming warnings and redundant includes.
Differential Revision: https://reviews.llvm.org/D114662
Internally we use int64_t to hold shapes, but for some
reason the parser was limiting shapes to unsigned. This
change updates the parser to properly handle int64_t shape
dimensions.
Differential Revision: https://reviews.llvm.org/D115086
Test case files at most places in MLIR uses hyphens and not underscores.
A counter-pattern was somehow started to use underscores in some places.
Rename test cases in test/mlir-cpu-runner to use hyphens so that it's
consistent at least within its directory.
Differential Revision: https://reviews.llvm.org/D114672
This reverts commit 13bdb7ab4a. The commit introduced/uncovered an unintended bug in models containing Conv2D.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D115079
A previous commit added support for converting elemental types contained in
LLVM dialect types in case they were not compatible with the LLVM dialect. It
was missing support for named structs as they could be recursive, which was not
supported by the conversion infra. Now that it is, add support for converting
such named structs.
Depends On D113579
Reviewed By: wsmoses
Differential Revision: https://reviews.llvm.org/D113580
Allow ops that are not bufferizable in the input IR. (Deactivated by default.)
bufferization::ToMemrefOp and bufferization::ToTensorOp are generated at the bufferization boundaries.
Differential Revision: https://reviews.llvm.org/D114669
The implementation only allows to bit-cast between two 0-D vectors. We could
probably support casting from/to vectors like `vector<1xf32>`, but I wasn't
convinced that this would be important and it would require breaking the
invariant that `BitCastOp` works only on vectors with equal rank.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D114854
This change provides `BufferizableOpInterface` implementations for ops from the Bufferization dialects. These ops are needed at the bufferization boundaries for partial bufferization.
Differential Revision: https://reviews.llvm.org/D114618
This is a lightweight operation, useful for writing unit tests. It will be utilized for testing in subsequent commits.
Differential Revision: https://reviews.llvm.org/D114693
This revision adds 0-d vector support to vector.transfer ops.
In the process, numerous cleanups are applied, in particular around normalizing
and reducing the number of builders.
Reviewed By: ThomasRaoux, springerm
Differential Revision: https://reviews.llvm.org/D114803
However, since CallOps have no aliasing OpResults, their OpOperands always bufferize out-of-place.
This change removes `bufferizesToMemoryWrite` from `CallOpInterface`. This method was called, but its return value did not matter.
Differential Revision: https://reviews.llvm.org/D114616
The new affine map generated by linearizeCollapsedDims should not drop
dimensions. We need to make sure we create a map with at least as many
dimensions as the source map. This prevents
FoldProducerReshapeOpByLinearization from generating invalid IR.
This solves regression in IREE due to e4e4da86af
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D114838
This reverts commit 9a844c2a9b.
The new affine map generated by linearizeCollapsedDims should not drop
dimensions. We need to make sure we create a map with at least as many
dimensions as the source map. This prevents
FoldProducerReshapeOpByLinearization from generating invalid IR.
This solves regression in IREE due to e4e4da86af
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D114838