Commit Graph

5 Commits

Author SHA1 Message Date
River Riddle 3c75228991 [mlir:PDLInterp] Refactor the implementation of result type inferrence
The current implementation uses a discrete "pdl_interp.inferred_types"
operation, which acts as a "fake" handle to a type range. This op is
used as a signal to pdl_interp.create_operation that types should be
inferred. This is terribly awkward and clunky though:

* This op doesn't have a byte code representation, and its conversion
  to bytecode kind of assumes that it is only used in a certain way. The
  current lowering is also broken and seemingly untested.

* Given that this is a different operation, it gives off the assumption
  that it can be used multiple times, or that after the first use
  the value contains the inferred types. This isn't the case though,
  the resultant type range can never actually be used as a type range.

This commit refactors the representation by removing the discrete
InferredTypesOp, and instead adds a UnitAttr to
pdl_interp.CreateOperation that signals when the created operations
should infer their types. This leads to a much much cleaner abstraction,
a more optimal bytecode lowering, and also allows for better error
handling and diagnostics when a created operation doesn't actually
support type inferrence.

Differential Revision: https://reviews.llvm.org/D124587
2022-05-01 12:25:05 -07:00
River Riddle 0254b0bcf0 [mlir][NFC] Update textual references of `func` to `func.func` in LLVM/Math/MemRef/NVGPU/OpenACC/OpenMP/Quant/SCF/Shape tests
The special case parsing of `func` operations is being removed.
2022-04-20 22:17:28 -07:00
Stanislav Funiak 842b6861c0 Defines new PDLInterp operations needed for multi-root matching in PDL.
This is commit 1 of 4 for the multi-root matching in PDL, discussed in https://llvm.discourse.group/t/rfc-multi-root-pdl-patterns-for-kernel-matching/4148 (topic flagged for review).

These operations are:
* pdl.get_accepting_ops: Returns a list of operations accepting the given value or a range of values at the specified position. Thus if there are two operations `%op1 = "foo"(%val)` and `%op2 = "bar"(%val)` accepting a value at position 0, `%ops = pdl_interp.get_accepting_ops of %val : !pdl.value at 0` will return both of them. This allows us to traverse upwards from a value to operations accepting the value.
* pdl.choose_op: Iteratively chooses one operation from a range of operations. Therefore, writing `%op = pdl_interp.choose_op from %ops` in the example above will select either `%op1`or `%op2`.

Testing: Added the corresponding test cases to mlir/test/Dialect/PDLInterp/ops.mlir.

Reviewed By: rriddle

Differential Revision: https://reviews.llvm.org/D108543
2021-11-26 17:59:22 +05:30
River Riddle 3a833a0e0e [mlir][PDL] Add support for variadic operands and results in the PDL Interpreter
This revision extends the PDL Interpreter dialect to add support for variadic operands and results, with ranges of these values represented via the recently added !pdl.range type. To support this extension, three new operations have been added that closely match the single variant:
* pdl_interp.check_types : Compare a range of types with a known range.
* pdl_interp.create_types : Create a constant range of types.
* pdl_interp.get_operands : Get a range of operands from an operation.
* pdl_interp.get_results : Get a range of results from an operation.
* pdl_interp.switch_types : Switch on a range of types.

This revision handles adding support in the interpreter dialect and the conversion from PDL to PDLInterp. Support for variadic operands and results in the bytecode will be added in a followup revision.

Differential Revision: https://reviews.llvm.org/D95722
2021-03-16 13:20:19 -07:00
River Riddle d289a97f91 [mlir][PDL] Add a PDL Interpreter Dialect
The PDL Interpreter dialect provides a lower level abstraction compared to the PDL dialect, and is targeted towards low level optimization and interpreter code generation. The dialect operations encapsulates low-level pattern match and rewrite "primitives", such as navigating the IR (Operation::getOperand), creating new operations (OpBuilder::create), etc. Many of the operations within this dialect also fuse branching control flow with some form of a predicate comparison operation. This type of fusion reduces the amount of work that an interpreter must do when executing.

An example of this representation is shown below:

```mlir
// The following high level PDL pattern:
pdl.pattern : benefit(1) {
  %resultType = pdl.type
  %inputOperand = pdl.input
  %root, %results = pdl.operation "foo.op"(%inputOperand) -> %resultType
  pdl.rewrite %root {
    pdl.replace %root with (%inputOperand)
  }
}

// May be represented in the interpreter dialect as follows:
module {
  func @matcher(%arg0: !pdl.operation) {
    pdl_interp.check_operation_name of %arg0 is "foo.op" -> ^bb2, ^bb1
  ^bb1:
    pdl_interp.return
  ^bb2:
    pdl_interp.check_operand_count of %arg0 is 1 -> ^bb3, ^bb1
  ^bb3:
    pdl_interp.check_result_count of %arg0 is 1 -> ^bb4, ^bb1
  ^bb4:
    %0 = pdl_interp.get_operand 0 of %arg0
    pdl_interp.is_not_null %0 : !pdl.value -> ^bb5, ^bb1
  ^bb5:
    %1 = pdl_interp.get_result 0 of %arg0
    pdl_interp.is_not_null %1 : !pdl.value -> ^bb6, ^bb1
  ^bb6:
    pdl_interp.record_match @rewriters::@rewriter(%0, %arg0 : !pdl.value, !pdl.operation) : benefit(1), loc([%arg0]), root("foo.op") -> ^bb1
  }
  module @rewriters {
    func @rewriter(%arg0: !pdl.value, %arg1: !pdl.operation) {
      pdl_interp.replace %arg1 with(%arg0)
      pdl_interp.return
    }
  }
}
```

Differential Revision: https://reviews.llvm.org/D84579
2020-08-26 05:22:27 -07:00