Commit Graph

185 Commits

Author SHA1 Message Date
Adrian Prantl bf82ff61a6 Teach SROA to handle allocas with more than one dbg.declare.
It is technically legal for optimizations to create an alloca that is
used by more than one dbg.declare, if one or both of them are inlined
instances of aliasing variables.

Differential Revision: https://reviews.llvm.org/D85172
2020-08-04 15:54:51 -07:00
Arthur Eubanks b36c39260e [NewPM] Don't print 'Invalidating all non-preserved analyses'
If an analysis is actually invalidated, there's already a log statement
for that: 'Invalidating analysis: FooAnalysis'.
Otherwise the statement is not very useful.

Reviewed By: asbirlea, ychen

Differential Revision: https://reviews.llvm.org/D84981
2020-07-30 19:40:29 -07:00
Johannes Doerfert aa09db495a [SROA] Teach promote to register about droppable instructions
This is the second of two patches to address PR46753. We basically allow
SROA to promote allocas that are used in doppable instructions, for
now that means `llvm.assume`. The (transitive) uses are replaced by
`undef` in the droppable instructions.

See also D83976.

Reviewed By: Tyker

Differential Revision: https://reviews.llvm.org/D83978
2020-07-24 15:15:39 -05:00
Johannes Doerfert ce2d69b557 [SROA][Mem2Reg] Do not crash on alloca + addrspacecast
SROA knows that it can look through addrspacecast but
PromoteMemoryToRegister did not handle them. This caused an assertion
error for the test case, exposed while running
`Transforms/PhaseOrdering/inlining-alignment-assumptions.ll` with D83978
applied.

Reviewed By: arsenm

Differential Revision: https://reviews.llvm.org/D84085
2020-07-24 15:15:38 -05:00
Roman Lebedev 8911a35180
[SROA] convertValue(): we can have <N x iK*> to <M x iQ> cast
Provided test case crashes otherwise.
Much like to the opposite case.
2020-06-25 00:58:54 +03:00
Roman Lebedev 07a23c06dd
[SROA] convertValue(): we can have <N x iK> to <M x iQ*> cast
Provided test case crashes otherwise.

If NewTy is already DL.getIntPtrType(NewTy),
CreateBitCast() won't actually create any bitcast,
so we are better off just doing the general thing.
2020-06-25 00:58:53 +03:00
Michael Liao f95850ce9c [SROA] Teach SROA to perform no-op pointer conversion.
Summary:
- When promoting a pointer from memory to register, SROA skips pointers
  from different address spaces. However, as `ptrtoint` and `inttoptr`
  are defined as no-op casts if that integer type has the same as the
  pointer value, generate the pair of `ptrtoint`/`inttoptr` (no-op cast)
  sequence to convert pointers from different address spaces if they
  have the same size.

Reviewers: arsenm, chandlerc, lebedev.ri

Subscribers:

Differential Revision: https://reviews.llvm.org/D81943
2020-06-23 01:49:27 -04:00
Stanislav Mekhanoshin a98d618f6e Fixed assertion in SROA if block has ho successors
BasicBlock::isLegalToHoistInto() asserts if block does not
have successors. The case is degenarate but assertion still
needs to be avoided.

https://bugs.llvm.org/show_bug.cgi?id=46280

Differential Revision: https://reviews.llvm.org/D81674
2020-06-11 15:15:19 -07:00
Stanislav Mekhanoshin 59491b208f Regenerated SROA phi-gep.ll test. NFC. 2020-06-11 10:51:06 -07:00
Stanislav Mekhanoshin 87ff3401eb Stabilize alloca slices sort in SROA
Slice::operator<() has a non-deterministic behavior. If we have
identical slices comparison will depend on the order or operands.
Normally that does not result in unstable compilation results
because the order in which slices are inserted into the vector
is deterministic and llvm::sort() normally behaves as a stable
sort, although that is not guaranteed.

However, there is test option -sroa-random-shuffle-slices which
is used to check exactly this aspect. The vector is first randomly
shuffled and then sorted. The same shuffling happens without this
option under expensive llvm checks.

I have managed to write a test which has hit this problem.

There are no fields in the Slice class to resolve the instability.
We only have offsets, IsSplittable and Use, but neither Use nor
User have anything suitable for predictable comparison.

I have switched to stable_sort which has to be sufficient and
removed that randon shuffle option.

Differential Revision: https://reviews.llvm.org/D81310
2020-06-08 14:25:27 -07:00
Stanislav Mekhanoshin 4e963299ee Temporarily removed unstable test. NFC. 2020-06-01 10:18:54 -07:00
Stanislav Mekhanoshin e132a9c012 Update some names in test. NFC.
There seems to be some instability with IR nameing between
platforms. Attempted to fix it with replacing dot-numbered
names.
2020-06-01 09:11:18 -07:00
Stanislav Mekhanoshin 745c6c8458 Process gep (phi ptr1, ptr2) in SROA
Differential Revision: https://reviews.llvm.org/D79218
2020-06-01 08:41:05 -07:00
Stanislav Mekhanoshin af852d6f36 Revert "Process gep (phi ptr1, ptr2) in SROA"
This reverts commit f66a43c11a.
2020-05-29 13:51:03 -07:00
Stanislav Mekhanoshin f66a43c11a Process gep (phi ptr1, ptr2) in SROA
Differential Revision: https://reviews.llvm.org/D79218
2020-05-29 13:05:51 -07:00
Stanislav Mekhanoshin 42725aeed8 Process gep (select ptr1, ptr2) in SROA
Differential Revision: https://reviews.llvm.org/D79217
2020-05-26 12:56:02 -07:00
Eli Friedman 4f04db4b54 AllocaInst should store Align instead of MaybeAlign.
Along the lines of D77454 and D79968.  Unlike loads and stores, the
default alignment is getPrefTypeAlign, to match the existing handling in
various places, including SelectionDAG and InstCombine.

Differential Revision: https://reviews.llvm.org/D80044
2020-05-16 14:53:16 -07:00
Eli Friedman 4532a50899 Infer alignment of unmarked loads in IR/bitcode parsing.
For IR generated by a compiler, this is really simple: you just take the
datalayout from the beginning of the file, and apply it to all the IR
later in the file. For optimization testcases that don't care about the
datalayout, this is also really simple: we just use the default
datalayout.

The complexity here comes from the fact that some LLVM tools allow
overriding the datalayout: some tools have an explicit flag for this,
some tools will infer a datalayout based on the code generation target.
Supporting this properly required plumbing through a bunch of new
machinery: we want to allow overriding the datalayout after the
datalayout is parsed from the file, but before we use any information
from it. Therefore, IR/bitcode parsing now has a callback to allow tools
to compute the datalayout at the appropriate time.

Not sure if I covered all the LLVM tools that want to use the callback.
(clang? lli? Misc IR manipulation tools like llvm-link?). But this is at
least enough for all the LLVM regression tests, and IR without a
datalayout is not something frontends should generate.

This change had some sort of weird effects for certain CodeGen
regression tests: if the datalayout is overridden with a datalayout with
a different program or stack address space, we now parse IR based on the
overridden datalayout, instead of the one written in the file (or the
default one, if none is specified). This broke a few AVR tests, and one
AMDGPU test.

Outside the CodeGen tests I mentioned, the test changes are all just
fixing CHECK lines and moving around datalayout lines in weird places.

Differential Revision: https://reviews.llvm.org/D78403
2020-05-14 13:03:50 -07:00
Eli Friedman 89e0662dee Make IRBuilder automatically set alignment on load/store/alloca.
This is equivalent in terms of LLVM IR semantics, but we want to
transition away from using MaybeAlign to represent the alignment of
these instructions.

Differential Revision: https://reviews.llvm.org/D77984
2020-04-13 13:43:14 -07:00
Cullen Rhodes 84aa6cf1a9 [Transforms][SROA] Promote allocas with mem2reg for scalable types
Summary:
Aggregate types containing scalable vectors aren't supported and as far
as I can tell this pass is mostly concerned with optimisations on
aggregate types, so the majority of this pass isn't very useful for
scalable vectors.

This patch modifies SROA such that mem2reg is run on allocas with
scalable types that are promotable, but nothing else such as slicing is
done.

The use of TypeSize in this pass has also been updated to be explicitly
fixed size. When invoking the following methods in DataLayout:

    * getTypeSizeInBits
    * getTypeStoreSize
    * getTypeStoreSizeInBits
    * getTypeAllocSize

we now called getFixedSize on the resultant TypeSize. This is quite an
extensive change with around 50 calls to these functions, and also the
first change of this kind (being explicit about fixed vs scalable
size) as far as I'm aware, so feedback welcome.

A test is included containing IR with scalable vectors that this pass is
able to optimise.

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D76720
2020-04-01 10:34:11 +00:00
Hans Wennborg d48c981697 SROA: Don't drop atomic load/store alignments (PR45010)
SROA will drop the explicit alignment on allocas when the ABI guarantees
enough alignment. Because the alignment on new load/store instructions
are set based on the alloca's alignment, that means SROA would end up
dropping the alignment from atomic loads and stores, which is not
allowed (see bug). For those, make sure to always carry over the
alignment from the previous instruction.

Differential revision: https://reviews.llvm.org/D75266
2020-02-28 10:38:40 +01:00
Anton Afanasyev a792953330 [Metadata] Add TBAA struct metadata to `AAMDNode`
Summary:
Make `AAMDNodes`' `getAAMetadata()` and `setAAMetadata()` to take `!tbaa.struct`
into account as well as `!tbaa`. This impacts llvm.org/pr42022.
This is a temprorary fix needed to keep `!tbaa.struct` tag by SROA pass.
New field `TBAAStruct` should be deleted when `!tbaa` tag replaces `!tbaa.struct`.
Merging two `!tbaa.struct`'s to one is conservatively considered to be `nullptr`
(giving `MayAlias`) -- this could be enhanced, but relying on the said future
replacement.

Reviewers: RKSimon, spatel, vporpo

Subscribers: hiraditya, kosarev, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D70924
2020-01-06 11:05:15 +03:00
Fangrui Song 502a77f125 Migrate function attribute "no-frame-pointer-elim" to "frame-pointer"="all" as cleanups after D56351 2019-12-24 15:57:33 -08:00
Anton Afanasyev bd23859f39 [NFC] Precommit test showing SROA loses `!tbaa.struct` metadata
This issue impacts llvm.org/pr42022
2019-12-02 11:48:01 +03:00
David L. Jones 6bfdebb412 Revert [SROA] Reuse existing lifetime markers if possible
This reverts r374692 (git commit 92694eba93)

Reproducer sent to commit thread on llvm-commits.

llvm-svn: 374859
2019-10-15 04:32:07 +00:00
Johannes Doerfert 92694eba93 [SROA] Reuse existing lifetime markers if possible
Summary:
If the underlying alloca did not change, we do not necessarily need new
lifetime markers. This patch adds a check and reuses the old ones if
possible.

Reviewers: reames, ssarda, t.p.northover, hfinkel

Subscribers: hiraditya, bollu, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D68900

llvm-svn: 374692
2019-10-13 02:21:23 +00:00
Suyog Sarda cd629ea0a8 SROA: Check Total Bits of vector type
While Promoting alloca instruction of Vector Type, 
Check total size in bits of its slices too.
If they don't match, don't promote the alloca instruction.

Bug : https://bugs.llvm.org/show_bug.cgi?id=42585

llvm-svn: 372480
2019-09-21 18:16:37 +00:00
Philip Reames 2694522f13 [Loads/SROA] Remove blatantly incorrect code and fix a bug revealed in the process
The code we had isSafeToLoadUnconditionally was blatantly wrong. This function takes a "Size" argument which is supposed to describe the span loaded from. Instead, the code use the size of the pointer passed (which may be unrelated!) and only checks that span. For any Size > LoadSize, this can and does lead to miscompiles.

Worse, the generic code just a few lines above correctly handles the cases which *are* valid. So, let's delete said code.

Removing this code revealed two issues:
1) As noted by jdoerfert the removed code incorrectly handled external globals.  The test update in SROA is to stop testing incorrect behavior.
2) SROA was confusing bytes and bits, but this wasn't obvious as the Size parameter was being essentially ignored anyway.  Fixed.

Differential Revision: https://reviews.llvm.org/D66778

llvm-svn: 370102
2019-08-27 19:34:43 +00:00
Michael Liao 4f7f70e262 Recommit [SROA] Enhance SROA to handle `addrspacecast`ed allocas
[SROA] Enhance SROA to handle `addrspacecast`ed allocas

- Fix typo in original change
- Add additional handling to ensure all return pointers are properly
  casted.

Summary:
- After `addrspacecast` is allowed to be eliminated in SROA, the
  adjusting of storage pointer (from `alloca) needs to handle the
  potential different address spaces between the storage pointer (from
  alloca) and the pointer being used.

Reviewers: arsenm

Subscribers: wdng, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D63501

llvm-svn: 363743
2019-06-18 21:41:13 +00:00
Jordan Rupprecht 33e85ad956 Revert [SROA] Enhance SROA to handle `addrspacecast`ed allocas
This reverts r363711 (git commit 76a149ef81)

This causes stage2 build failures, e.g.:
http://lab.llvm.org:8011/builders/clang-x64-windows-msvc/builds/132/steps/stage%202%20build/logs/stdio
http://lab.llvm.org:8011/builders/ppc64le-lld-multistage-test/builds/87/steps/build-stage2-unified-tree/logs/stdio

llvm-svn: 363718
2019-06-18 18:40:04 +00:00
Michael Liao 76a149ef81 [SROA] Enhance SROA to handle `addrspacecast`ed allocas
Summary:
- After `addrspacecast` is allowed to be eliminated in SROA, the
  adjusting of storage pointer (from `alloca) needs to handle the
  potential different address spaces between the storage pointer (from
  alloca) and the pointer being used.

Reviewers: arsenm

Subscribers: wdng, hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D63501

llvm-svn: 363711
2019-06-18 17:58:49 +00:00
Matt Arsenault 282dac717e SROA: Allow eliminating addrspacecasted allocas
There is a circular dependency between SROA and InferAddressSpaces
today that requires running both multiple times in order to be able to
eliminate all simple allocas and addrspacecasts. InferAddressSpaces
can't remove addrspacecasts when written to memory, and SROA helps
move pointers out of memory.

This should avoid inserting new commuting addrspacecasts with GEPs,
since there are unresolved questions about pointer wrapping between
different address spaces.

For now, don't replace volatile operations that don't match the alloca
addrspace, as it would change the address space of the access. It may
be still OK to insert an addrspacecast from the new alloca, but be
more conservative for now.

llvm-svn: 363462
2019-06-14 21:38:31 +00:00
Matt Arsenault e6efb6433f SROA: Add baseline test for addrspacecast changes
llvm-svn: 363460
2019-06-14 21:22:26 +00:00
Eric Christopher cee313d288 Revert "Temporarily Revert "Add basic loop fusion pass.""
The reversion apparently deleted the test/Transforms directory.

Will be re-reverting again.

llvm-svn: 358552
2019-04-17 04:52:47 +00:00
Eric Christopher a863435128 Temporarily Revert "Add basic loop fusion pass."
As it's causing some bot failures (and per request from kbarton).

This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.

llvm-svn: 358546
2019-04-17 02:12:23 +00:00
Paul Robinson 96c1f2cd6c Tighten up tests that use -debugify as a shortcut. NFC
These now verify that a given instruction has a specific source
location, rather than any old location. We want to make sure we
propagate the correct locations from one instruction to another.

llvm-svn: 356217
2019-03-14 23:09:17 +00:00
Philip Reames 9b6b4fac83 [SROA] Fix a crash when trying to convert a memset to an non-integral pointer type
The included test case currently crashes on tip of tree. Rather than adding a bailout, I chose to restructure the code so that the existing helper function could be used. Given that, the majority of the diff is NFC-ish, but the key difference is that canConvertValue returns false when only one side is a non-integral pointer.

Thanks to Cherry Zhang for the test case.

Differential Revision: https://reviews.llvm.org/D59000

llvm-svn: 355962
2019-03-12 20:15:05 +00:00
Eli Friedman 525ef0159d [Analysis] Fix isSafeToLoadUnconditionally handling of volatile.
A volatile operation cannot be used to prove an address points to normal
memory.  (LangRef was recently updated to state it explicitly.)

Differential Revision: https://reviews.llvm.org/D57040

llvm-svn: 352109
2019-01-24 21:31:13 +00:00
Gabor Buella 3ec170c85a Assertion in isAllocaPromotable due to extra bitcast goes into lifetime marker
For the given test SROA detects possible replacement and creates a correct alloca. After that SROA is adding lifetime markers for this new alloca. The function getNewAllocaSlicePtr is trying to deduce the pointer type based on the original alloca, which is split, to use it later in lifetime intrinsic.

For the test we ended up with such code (rA is initial alloca [10 x float], which is split, and rA.sroa.0.0 is a new split allocation)

```
%rA.sroa.0.0.rA.sroa_cast = bitcast i32* %rA.sroa.0 to [10 x float]*    <----- this one causing the assertion and is an extra bitcast
%5 = bitcast [10 x float]* %rA.sroa.0.0.rA.sroa_cast to i8*
call void @llvm.lifetime.start.p0i8(i64 4, i8* %5)
```

isAllocaPromotable code assumes that a user of alloca may go into lifetime marker through bitcast but it must be the only one bitcast to i8* type. In the test it's not a i8* type, return false and throw the assertion.

As we are creating a pointer, which will be used in lifetime markers only, the proposed fix is to create a bitcast to i8* immediately to avoid extra bitcast creation.

The test is a greatly simplified to just reproduce the assertion.

Author: Igor Tsimbalist <igor.v.tsimbalist@intel.com>

Reviewers: chandlerc, craig.topper

Reviewed By: chandlerc

Differential Revision: https://reviews.llvm.org/D55934

llvm-svn: 351325
2019-01-16 12:06:17 +00:00
Michael Kruse 978ba61536 Introduce llvm.loop.parallel_accesses and llvm.access.group metadata.
The current llvm.mem.parallel_loop_access metadata has a problem in that
it uses LoopIDs. LoopID unfortunately is not loop identifier. It is
neither unique (there's even a regression test assigning the some LoopID
to multiple loops; can otherwise happen if passes such as LoopVersioning
make copies of entire loops) nor persistent (every time a property is
removed/added from a LoopID's MDNode, it will also receive a new LoopID;
this happens e.g. when calling Loop::setLoopAlreadyUnrolled()).
Since most loop transformation passes change the loop attributes (even
if it just to mark that a loop should not be processed again as
llvm.loop.isvectorized does, for the versioned and unversioned loop),
the parallel access information is lost for any subsequent pass.

This patch unlinks LoopIDs and parallel accesses.
llvm.mem.parallel_loop_access metadata on instruction is replaced by
llvm.access.group metadata. llvm.access.group points to a distinct
MDNode with no operands (avoiding the problem to ever need to add/remove
operands), called "access group". Alternatively, it can point to a list
of access groups. The LoopID then has an attribute
llvm.loop.parallel_accesses with all the access groups that are parallel
(no dependencies carries by this loop).

This intentionally avoid any kind of "ID". Loops that are clones/have
their attributes modifies retain the llvm.loop.parallel_accesses
attribute. Access instructions that a cloned point to the same access
group. It is not necessary for each access to have it's own "ID" MDNode,
but those memory access instructions with the same behavior can be
grouped together.

The behavior of llvm.mem.parallel_loop_access is not changed by this
patch, but should be considered deprecated.

Differential Revision: https://reviews.llvm.org/D52116

llvm-svn: 349725
2018-12-20 04:58:07 +00:00
Tim Northover 856628f707 SROA: preserve alignment tags on loads and stores.
When splitting up an alloca's uses we were dropping any explicit
alignment tags, which means they default to the ABI-required default
alignment and this can cause miscompiles if the real value was smaller.

Also refactor the TBAA metadata into a parent class since it's shared by
both children anyway.

llvm-svn: 349465
2018-12-18 09:29:39 +00:00
Nicola Zaghen f96383c99e [SROA] Use offset sizes from the DataLayout instead of the pointer siezes.
This fixes an assertion when constant folding a GEP when the part of the offset
was in i32 (IndexSize, as per DataLayout) and part in the i64 (PointerSize) in
the newly created test case.

Differential Revision: https://reviews.llvm.org/D52609

llvm-svn: 345585
2018-10-30 11:15:04 +00:00
Eli Friedman 94d3e4dd77 [SROA] Fix alignment for uses of PHI nodes.
Splitting an alloca can decrease the alignment of GEPs into the
partition.  Normally, rewriting accounts for this, but the code was
missing for uses of PHI nodes and select instructions.

Fixes https://bugs.llvm.org/show_bug.cgi?id=38707 .

Differential Revision: https://reviews.llvm.org/D51335

llvm-svn: 341094
2018-08-30 18:59:24 +00:00
Anastasis Grammenos 425df22ee3 [SROA] Preserve DebugLoc when rewriting alloca partitions
When rewriting an alloca partition copy the DL from the
old alloca over the the new one.

Differential Revision: https://reviews.llvm.org/D48640

llvm-svn: 335904
2018-06-28 18:58:30 +00:00
Bjorn Pettersson 81a76a388a [SROA] Handle PHI with multiple duplicate predecessors
Summary:
The verifier accepts PHI nodes with multiple entries for the
same basic block, as long as the value is the same.

As seen in PR37203, SROA did not handle such PHI nodes properly
when speculating loads over the PHI, since it inserted multiple
loads in the predecessor block and changed the PHI into having
multiple entries for the same basic block, but with different
values.

This patch teaches SROA to reuse the same speculated load for
each PHI duplicate entry in such situations.

Resolves: https://bugs.llvm.org/show_bug.cgi?id=37203

Reviewers: uabelho, chandlerc, hfinkel, bkramer, efriedma

Reviewed By: efriedma

Subscribers: dberlin, efriedma, llvm-commits

Differential Revision: https://reviews.llvm.org/D46426

llvm-svn: 332577
2018-05-17 07:21:41 +00:00
Hiroshi Inoue f5c0e6c285 [SROA] pr37267: fix assertion failure in integer widening
The current integer widening does not support rewriting partial split slices in rewriteIntegerStore (and rewriteIntegerLoad).
This patch adds explicit checks for this case in isIntegerWideningViableForSlice.
Before r322533, splitting is allowed only for the whole-alloca slice and hence the above case is implicitly rejected by another check `if (DL.getTypeStoreSize(ValueTy) > Size)` because whole-alloca slice is larger than the partition.

Differential Revision: https://reviews.llvm.org/D46750

llvm-svn: 332575
2018-05-17 06:32:17 +00:00
Shiva Chen 2c864551df [DebugInfo] Add DILabel metadata and intrinsic llvm.dbg.label.
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is

!DILabel(scope: , name: "foo", file: , line: 3)

We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is

llvm.dbg.label(metadata )

It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.

We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.

Differential Revision: https://reviews.llvm.org/D45024

Patch by Hsiangkai Wang.

llvm-svn: 331841
2018-05-09 02:40:45 +00:00
Daniel Neilson 41e781d5f1 [SROA] Take advantage of separate alignments for memcpy source and destination
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
SROA pass to cease using the old getAlignment() & setAlignment() APIs of MemoryIntrinsic in
favour of getting source & dest specific alignments through the new API. This allows us
to enhance visitMemTransferInst to be more aggressive setting the alignment in memcpy
calls that it creates, as well as to only change the alignment of a memcpy/memmove
argument that it replaces.

Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402, rL324626, rL324642, rL324653, rL324654, rL324773, rL324774,
rL324781, rL324784, rL324955, rL324960, rL325816 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.

Reference
   http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html
   http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html

Reviewers: chandlerc, bollu, efriedma

Reviewed By: efriedma

Subscribers: efriedma, eraman, llvm-commits

Differential Revision: https://reviews.llvm.org/D42974

llvm-svn: 327398
2018-03-13 14:25:33 +00:00
Ivan A. Kosarev 53270d0fa6 [Transforms] Propagate TBAA info in SROA
Now that we have the new TBAA metadata format that is capable of
representing accesses to aggregates, we can propagate TBAA access
tags from memory setting and transferring intrinsics to load and
store instructions and vice versa.

Since SROA produces lots of new loads and stores on optimized
builds, this change significantly decreases the share of
undecorated memory accesses on such builds.

Differential Revision: https://reviews.llvm.org/D41563

llvm-svn: 325329
2018-02-16 10:10:29 +00:00
Daniel Neilson 1e68724d24 Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1)
Summary:
 This is a resurrection of work first proposed and discussed in Aug 2015:
   http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html
and initially landed (but then backed out) in Nov 2015:
   http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html

 The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument
which is required to be a constant integer. It represents the alignment of the
dest (and source), and so must be the minimum of the actual alignment of the
two.

 This change is the first in a series that allows source and dest to each
have their own alignments by using the alignment attribute on their arguments.

 In this change we:
1) Remove the alignment argument.
2) Add alignment attributes to the source & dest arguments. We, temporarily,
   require that the alignments for source & dest be equal.

 For example, code which used to read:
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false)
will now read
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false)

 Downstream users may have to update their lit tests that check for
@llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script
may help with updating the majority of your tests, but it does not catch all possible
patterns so some manual checking and updating will be required.

s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g
s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g
s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g
s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g
s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g

 The remaining changes in the series will:
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
   source and dest alignments.
Step 3) Update Clang to use the new IRBuilder API.
Step 4) Update Polly to use the new IRBuilder API.
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
        and those that use use MemIntrinsicInst::[get|set]Alignment() to use
        getDestAlignment() and getSourceAlignment() instead.
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
        MemIntrinsicInst::[get|set]Alignment() methods.

Reviewers: pete, hfinkel, lhames, reames, bollu

Reviewed By: reames

Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits

Differential Revision: https://reviews.llvm.org/D41675

llvm-svn: 322965
2018-01-19 17:13:12 +00:00