Extend the ConstantRange implementation to compute the range of possible values resulting from an arithmetic right shift operation.
There will be a follow up patch to leverage this constant range infrastructure in LazyValueInfo.
Patch by Surya Kumari Jangala!
Differential Revision: https://reviews.llvm.org/D40881
llvm-svn: 320976
Previously ConstantRange::makeGuaranteedNoWrapRegion only handled addition. This adds support for subtraction.
Differential Revision: https://reviews.llvm.org/D40036
llvm-svn: 319806
In Rust, a trait can be implemented for any type, and if a trait
object pointer is used for the type, then a virtual table will be
emitted for that trait/type combination.
We would like debuggers to be able to inspect trait objects, which
requires finding the concrete type associated with a given vtable.
This patch changes LLVM so that any type can be passed to
replaceVTableHolder. This allows the Rust compiler to emit the needed
debug info -- associating a vtable with the concrete type for which it
was emitted.
This is a DWARF extension: DWARF only specifies the meaning of
DW_AT_containing_type in one specific situation. This style of DWARF
extension is routine, though, and LLVM already has one such case for
DW_AT_containing_type.
Patch by Tom Tromey!
Differential Revision: https://reviews.llvm.org/D39503
llvm-svn: 317730
As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107104.html
and again more recently:
http://lists.llvm.org/pipermail/llvm-dev/2017-October/118118.html
...this is a step in cleaning up our fast-math-flags implementation in IR to better match
the capabilities of both clang's user-visible flags and the backend's flags for SDNode.
As proposed in the above threads, we're replacing the 'UnsafeAlgebra' bit (which had the
'umbrella' meaning that all flags are set) with a new bit that only applies to algebraic
reassociation - 'AllowReassoc'.
We're also adding a bit to allow approximations for library functions called 'ApproxFunc'
(this was initially proposed as 'libm' or similar).
...and we're out of bits. 7 bits ought to be enough for anyone, right? :) FWIW, I did
look at getting this out of SubclassOptionalData via SubclassData (spacious 16-bits),
but that's apparently already used for other purposes. Also, I don't think we can just
add a field to FPMathOperator because Operator is not intended to be instantiated.
We'll defer movement of FMF to another day.
We keep the 'fast' keyword. I thought about removing that, but seeing IR like this:
%f.fast = fadd reassoc nnan ninf nsz arcp contract afn float %op1, %op2
...made me think we want to keep the shortcut synonym.
Finally, this change is binary incompatible with existing IR as seen in the
compatibility tests. This statement:
"Newer releases can ignore features from older releases, but they cannot miscompile
them. For example, if nsw is ever replaced with something else, dropping it would be
a valid way to upgrade the IR."
( http://llvm.org/docs/DeveloperPolicy.html#ir-backwards-compatibility )
...provides the flexibility we want to make this change without requiring a new IR
version. Ie, we're not loosening the FP strictness of existing IR. At worst, we will
fail to optimize some previously 'fast' code because it's no longer recognized as
'fast'. This should get fixed as we audit/squash all of the uses of 'isFast()'.
Note: an inter-dependent clang commit to use the new API name should closely follow
commit.
Differential Revision: https://reviews.llvm.org/D39304
llvm-svn: 317488
This came out of a recent discussion on llvm-dev
(https://reviews.llvm.org/D38042). Currently the Verifier will strip
the debug info metadata from a module if it finds the dbeug info to be
malformed. This feature is very valuable since it allows us to improve
the Verifier by making it stricter without breaking bcompatibility,
but arguable the Verifier pass should not be modifying the IR. This
patch moves the stripping of broken debug info into AutoUpgrade
(UpgradeDebugInfo to be precise), which is a much better location for
this since the stripping of malformed (i.e., produced by older, buggy
versions of Clang) is a (harsh) form of AutoUpgrade.
This change is mostly NFC in nature, the one big difference is the
behavior when LLVM module passes are introducing malformed debug
info. Prior to this patch, a NoAsserts build would have printed a
warning and stripped the debug info, after this patch the Verifier
will report a fatal error. I believe this behavior is actually more
desirable anyway.
Differential Revision: https://reviews.llvm.org/D38184
llvm-svn: 314699
This reverts commit 6389e7aa724ea7671d096f4770f016c3d86b0d54.
There is a bug in this implementation where the string value of the
checksum is outputted, instead of the actual hex bytes. Therefore the
checksum is incorrect, and this prevent pdbs from being loaded by visual
studio. Revert this until the checksum is emitted correctly.
llvm-svn: 313431
Summary:
The checksums had already been placed in the IR, this patch allows
MCCodeView to actually write it out to an MCStreamer.
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D37157
llvm-svn: 313374
Now that we print DIExpressions inline everywhere, we don't need to
print them once as an operand and again as a value. This is only really
visible when calling dump() or print() directly on a DIExpression during
debugging.
llvm-svn: 312168
Summary:
This patch introduces a way of informing the (Post)DominatorTree about multiple CFG updates that happened since the last tree update. This makes performing tree updates much easier, as it internally takes care of applying the updates in lockstep with the (virtual) updates to the CFG, which is done by reverse-applying future CFG updates.
The batch updater is able to remove redundant updates that cancel each other out. In the future, it should be also possible to reorder updates to reduce the amount of work needed to perform the updates.
Reviewers: dberlin, sanjoy, grosser, davide, brzycki
Reviewed By: brzycki
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D36167
llvm-svn: 311015
Summary:
This patch teaches PostDominatorTree about infinite loops. It is built on top of D29705 by @dberlin which includes a very detailed motivation for this change.
What's new is that the patch also teaches the incremental updater how to deal with reverse-unreachable regions and how to properly maintain and verify tree roots. Before that, the incremental algorithm sometimes ended up preserving reverse-unreachable regions after updates that wouldn't appear in the tree if it was constructed from scratch on the same CFG.
This patch makes the following assumptions:
- A sequence of updates should produce the same tree as a recalculating it.
- Any sequence of the same updates should lead to the same tree.
- Siblings and roots are unordered.
The last two properties are essential to efficiently perform batch updates in the future.
When it comes to the first one, we can decide later that the consistency between freshly built tree and an updated one doesn't matter match, as there are many correct ways to pick roots in infinite loops, and to relax this assumption. That should enable us to recalculate postdominators less frequently.
This patch is pretty conservative when it comes to incremental updates on reverse-unreachable regions and ends up recalculating the whole tree in many cases. It should be possible to improve the performance in many cases, if we decide that it's important enough.
That being said, my experiments showed that reverse-unreachable are very rare in the IR emitted by clang when bootstrapping clang. Here are the statistics I collected by analyzing IR between passes and after each removePredecessor call:
```
# functions: 52283
# samples: 337609
# reverse unreachable BBs: 216022
# BBs: 247840796
Percent reverse-unreachable: 0.08716159869015269 %
Max(PercRevUnreachable) in a function: 87.58620689655172 %
# > 25 % samples: 471 ( 0.1395104988314885 % samples )
... in 145 ( 0.27733680163724345 % functions )
```
Most of the reverse-unreachable regions come from invalid IR where it wouldn't be possible to construct a PostDomTree anyway.
I would like to commit this patch in the next week in order to be able to complete the work that depends on it before the end of my internship, so please don't wait long to voice your concerns :).
Reviewers: dberlin, sanjoy, grosser, brzycki, davide, chandlerc, hfinkel
Reviewed By: dberlin
Subscribers: nhaehnle, javed.absar, kparzysz, uabelho, jlebar, hiraditya, llvm-commits, dberlin, david2050
Differential Revision: https://reviews.llvm.org/D35851
llvm-svn: 310940
They hang for me locally. I suspect that there is a use-after-free when
attempting to destroy an LLVMContext after asserting from the middle of
metadata tracking. It doesn't seem worth debugging it further.
llvm-svn: 310660
Remove the second part of the TODO comment that highlighted an issue with
possibly connecting all nodes to the exit of the CFG. This caused concerns
with Jakub Kuderski regarding its feasability, hence we remove it. Such
points are better discussed outside of CFG. If connecting all nodes makes
sense and what the impact is is currently part of an active review discussion.
llvm-svn: 309919
Summary:
This patch makes LoopDeletion use the incremental DominatorTree API.
We modify LoopDeletion to perform the deletion in 5 steps:
1. Create a new dummy edge from the preheader to the exit, by adding a conditional branch.
2. Inform the DomTree about the new edge.
3. Remove the conditional branch and replace it with an unconditional edge to the exit. This removes the edge to the loop header, making it unreachable.
4. Inform the DomTree about the deleted edge.
5. Remove the unreachable block from the function.
Creating the dummy conditional branch is necessary to perform incremental DomTree update.
We should consider using the batch updater when it's ready.
Reviewers: dberlin, davide, grosser, sanjoy
Reviewed By: dberlin, grosser
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D35391
llvm-svn: 309850
Summary:
As we are in the process of changing the behavior of how the post-dominator tree
is computed, make sure we have some more test coverage in this area.
Current inconsistencies:
- Newly unreachable nodes are not added as new roots, in case the PDT is updated
but not rebuilt.
- Newly unreachable loops are not added to the CFG at all (neither when
building from scratch nor when updating the CFG). This is inconsistent with
the fact that unreachables are added to the PDT, but unreachable loops not.
On the other side, PDT relationships are not loosened at the moment in
cases where new unreachable loops are built.
This commit is providing additional test coverage for
https://reviews.llvm.org/D35851
Reviewers: dberlin, kuhar
Reviewed By: kuhar
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D36107
llvm-svn: 309684
DIImportedEntity has a line number, but not a file field. To determine
the decl_line/decl_file we combine the line number from the
DIImportedEntity with the file from the DIImportedEntity's scope. This
does not work correctly when the parent scope is a DINamespace or a
DIModule, both of which do not have a source file.
This patch adds a file field to DIImportedEntity to unambiguously
identify the source location of the using/import declaration. Most
testcase updates are mechanical, the interesting one is the removal of
the FIXME in test/DebugInfo/Generic/namespace.ll.
This fixes PR33822. See https://bugs.llvm.org/show_bug.cgi?id=33822
for more context.
<rdar://problem/33357889>
https://bugs.llvm.org/show_bug.cgi?id=33822
Differential Revision: https://reviews.llvm.org/D35583
llvm-svn: 308398
This fixes a minor bug in insertion to a reachable node that caused
DominatorTree.InsertDeleteExhaustive flakiness. The patch also adds
a new testcase for this exact failure.
llvm-svn: 308074
The DominatorTree.InsertDeleteExhaustive uses a RNG with a
constant seed to generate different sequences of updates. The test
fails on some buildbots and this patch disables it for now.
llvm-svn: 308070
Summary:
This patch implements incremental edge deletions.
It also makes DominatorTreeBase store a pointer to the parent function. The parent function is needed to perform full rebuilts during some deletions, but it is also used to verify that inserted and deleted edges come from the same function.
Reviewers: dberlin, davide, grosser, sanjoy, brzycki
Reviewed By: dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D35342
llvm-svn: 308062
Summary:
This patch introduces incremental edge insertions based on the Depth Based Search algorithm.
Insertions should work for both dominators and postdominators.
Reviewers: dberlin, grosser, davide, sanjoy, brzycki
Reviewed By: dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D35341
llvm-svn: 308054
Summary:
DominatorTreeBase used to have IsPostDominators (bool) member to indicate if the tree is a dominator or a postdominator tree. This made it possible to switch between the two 'modes' at runtime, but it isn't used in practice anywhere.
This patch makes IsPostDominator a template argument. This way, it is easier to switch between different algorithms at compile-time based on this argument and design external utilities around it. It also makes it impossible to incidentally assign a postdominator tree to a dominator tree (and vice versa), and to further simplify template code in GenericDominatorTreeConstruction.
Reviewers: dberlin, sanjoy, davide, grosser
Reviewed By: dberlin
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D35315
llvm-svn: 308040
Summary:
This patch introduces a new testing utility for building and modifying CFG -- CFGBuilder. The primary use case for the utility is testing the upcoming incremental dominator tree update API.
The current design provides a simple mechanism of constructing arbitrary graphs and then applying series of updates to them. CFGBuilder takes care of creating empty functions, connecting and disconnecting basic blocks. Under the hood it uses SwitchInst and UnreachableInst.
It will be also possible to create a thin wrapper over CFGBuilder for parsing string input and to hook it up to other textual tools (e.g. opt used with FileCheck).
Reviewers: dberlin, sanjoy, grosser, dblaikie
Reviewed By: dblaikie
Subscribers: davide, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D34798
llvm-svn: 307960
Summary:
This patch adds a callback registration API to the PassBuilder,
enabling registering out-of-tree passes with it.
Through the Callback API, callers may register callbacks with the
various stages at which passes are added into pass managers, including
parsing of a pass pipeline as well as at extension points within the
default -O pipelines.
Registering utilities like `require<>` and `invalidate<>` needs to be
handled manually by the caller, but a helper is provided.
Additionally, adding passes at pipeline extension points is exposed
through the opt tool. This patch adds a `-passes-ep-X` commandline
option for every extension point X, which opt parses into pipelines
inserted into that extension point.
Reviewers: chandlerc
Reviewed By: chandlerc
Subscribers: lksbhm, grosser, davide, mehdi_amini, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D33464
llvm-svn: 307532
This reverts commit r306907 and reapplies the patches in the title.
The patches used to make one of the
CodeGen/ARM/2011-02-07-AntidepClobber.ll test to fail because of a
missing null check.
llvm-svn: 306919
This reverts commit r306894.
Revert "[Dominators] Add NearestCommonDominator verification"
This reverts commit r306893.
Revert "[Dominators] Keep tree level in DomTreeNode and use it to find NCD and answer dominance queries"
This reverts commit r306892.
llvm-svn: 306907
Summary:
This patch makes DomTreeNodes keep their level (depth) in the DomTree. By having this information always available, it is possible to speedup and simplify findNearestCommonDominator and certain dominance queries.
In the future, level information will be also needed to perform incremental updates.
My testing doesn't show any noticeable performance differences after applying this patch. There may be some improvements when other passes are thought to use the level information.
Reviewers: dberlin, sanjoy, chandlerc, grosser
Reviewed By: dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34548
llvm-svn: 306892
Summary:
DFS InOut numbers currently get eagerly computer upon DomTree construction. They are only needed to answer dome dominance queries and they get invalidated by updates and recalculations. Because of that, it is faster in practice to compute them lazily when they are actually needed.
Clang built without this patch takes 6m 45s to boostrap on my machine, and with the patch applied 6m 38s.
Reviewers: sanjoy, dberlin, chandlerc
Reviewed By: dberlin
Subscribers: davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D34296
llvm-svn: 306778
Summary:
This patch is part of 3 patches that together form a single patch, but must be introduced in stages in order not to break things.
The way that LLVM interprets DW_OP_plus in DIExpression nodes is basically that of the DW_OP_plus_uconst operator since LLVM expects an unsigned constant operand. This unnecessarily restricts the DW_OP_plus operator, preventing it from being used to describe the evaluation of runtime values on the expression stack. These patches try to align the semantics of DW_OP_plus and DW_OP_minus with that of the DWARF definition, which pops two elements off the expression stack, performs the operation and pushes the result back on the stack.
This is done in three stages:
• The first patch (LLVM) adds support for DW_OP_plus_uconst.
• The second patch (Clang) contains changes all its uses from DW_OP_plus to DW_OP_plus_uconst.
• The third patch (LLVM) changes the semantics of DW_OP_plus and DW_OP_minus to be in line with its DWARF meaning. This patch includes the bitcode upgrade from legacy DIExpressions.
Patch by Sander de Smalen.
Reviewers: echristo, pcc, aprantl
Reviewed By: aprantl
Subscribers: fhahn, javed.absar, aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D33894
llvm-svn: 305386
Previously, the matching was done incorrectly for the case where
operands for FCmpInst and SelectInst were in opposite order.
Patch by Andrei Elovikov.
Differential Revision: https://reviews.llvm.org/D33185
llvm-svn: 305308
Summary:
This patch is part of 3 patches that together form a single patch, but must be introduced in stages in order not to break things.
The way that LLVM interprets DW_OP_plus in DIExpression nodes is basically that of the DW_OP_plus_uconst operator since LLVM expects an unsigned constant operand. This unnecessarily restricts the DW_OP_plus operator, preventing it from being used to describe the evaluation of runtime values on the expression stack. These patches try to align the semantics of DW_OP_plus and DW_OP_minus with that of the DWARF definition, which pops two elements off the expression stack, performs the operation and pushes the result back on the stack.
This is done in three stages:
• The first patch (LLVM) adds support for DW_OP_plus_uconst.
• The second patch (Clang) contains changes all its uses from DW_OP_plus to DW_OP_plus_uconst.
• The third patch (LLVM) changes the semantics of DW_OP_plus and DW_OP_minus to be in line with its DWARF meaning. This patch includes the bitcode upgrade from legacy DIExpressions.
Patch by Sander de Smalen.
Reviewers: pcc, echristo, aprantl
Reviewed By: aprantl
Subscribers: fhahn, aprantl, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33892
llvm-svn: 305304
clang-format (https://reviews.llvm.org/D33932) to keep primary headers
at the top and handle new utility headers like 'gmock' consistently with
other utility headers.
No other change was made. I did no manual edits, all of this is
clang-format.
This should allow other changes to have more clear and focused diffs,
and is especially motivated by moving some headers into more focused
libraries.
llvm-svn: 304786
This removes a quadratic behavior in assert-enabled builds.
GVN propagates the equivalence from a condition into the blocks guarded by the
condition. E.g. for 'if (a == 7) { ... }', 'a' will be replaced in the block
with 7. It does this by replacing all the uses of 'a' that are dominated by
the true edge.
For a switch with N cases and U uses of the value, this will mean N * U calls
to 'dominates'. Asserting isSingleEdge in 'dominates' make this N^2 * U
because this function checks for the uniqueness of the edge. I.e. traverses
each edge between the SwitchInst's block and the cases.
The change removes the assert and makes 'dominates' works correctly in the
presence of non-unique edges.
This brings build time down by an order of magnitude for an input that has
~10k cases in a switch statement.
Differential Revision: https://reviews.llvm.org/D33584
llvm-svn: 304721
I've taken the approach from the LoopInfo test:
* Rather than running in the pass manager just build the analyses manually
* Split out the common parts (makeLLVMModule, runWithDomTree) into helpers
Differential Revision: https://reviews.llvm.org/D33617
llvm-svn: 304061
block.
This allows writing much more natural and readable range based for loops
directly over the PHI nodes. It also takes advantage of the same tricks
for terminating the sequence as the hand coded versions.
I've replaced one example of this mostly to showcase the difference and
I've added a unit test to make sure the facilities really work the way
they're intended. I want to use this inside of SimpleLoopUnswitch but it
seems generally nice.
Differential Revision: https://reviews.llvm.org/D33533
llvm-svn: 303964
getParamAlignment expects an argument number, not an AttributeList
index.
Johan Englan, who works on LDC, found this bug and told me about it off
list.
llvm-svn: 303458