Commit Graph

1190 Commits

Author SHA1 Message Date
Nicolas Vasilache 069c818f40 Fix lower/upper bound mismatch in stripmineSink
Also beef up the corresponding test case.

PiperOrigin-RevId: 236878818
2019-03-29 16:57:21 -07:00
River Riddle 2dfefdafea Fix dialect attribute hooks so that they accept a NamedAttribute instead of an Attribute.
PiperOrigin-RevId: 236869321
2019-03-29 16:57:05 -07:00
Alex Zinenko dd75675080 TableGen: fix builder generation for optional attributes
The recently introduced support for generating MLIR Operations with optional
attributes did not handle the formatted string emission properly, in particular
it did not escape `{` and `}` in calls to `formatv` leading to assertions
during TableGen op definition generation.  Fix this by splitting out the
unncessary braces from the format string.  Additionally, fix the emission of
the builder argument comment to correctly indicate which attributes are indeed
optional and which are not.

PiperOrigin-RevId: 236832230
2019-03-29 16:56:50 -07:00
Uday Bondhugula a77734e185 Make sure that fusion test cases don't have out of bounds accesses
- fix out of bounds test case
- -memref-bound-check on the test/Transforms/loop-fusion.mlir no longer reports any
  errors, before or after -loop-fusion is run

PiperOrigin-RevId: 236757658
2019-03-29 16:56:35 -07:00
MLIR Team 39a1ddeb1c Adds loop attribute as a temporary work around to prevent slice fusion of loop nests containing instructions with side effects (the proper solution will be do use memref read/write regions in the future).
PiperOrigin-RevId: 236733739
2019-03-29 16:56:20 -07:00
Uday Bondhugula 12b9dece8d Bug fix for getConstantBoundOnDimSize
- this was detected when memref-bound-check was run on the output of the
  loop-fusion pass
- the addition (to represent ceildiv as a floordiv) had to be performed only
  for the constant term of the constraint
- update test cases
- memref-bound-check no longer returns an error on the output of this test case

PiperOrigin-RevId: 236731137
2019-03-29 16:56:06 -07:00
Dimitrios Vytiniotis a60ba7d908 Supporting conversion of argument attributes along their types.
This fixes a bug: previously, during conversion function argument
attributes were neither beings passed through nor converted. This fix
extends DialectConversion to allow for simultaneous conversion of the
function type and the argument attributes.

This was important when lowering MLIR to LLVM where attribute
information (e.g. noalias) needs to be preserved in MLIR(LLVMDialect).

Longer run it seems reasonable that we want to convert both the
function attribute and its type and the argument attributes, but that
requires a small refactoring in Function.h to aggregate these three
fields in an inner struct, which will require some discussion.

PiperOrigin-RevId: 236709409
2019-03-29 16:55:51 -07:00
River Riddle 50efe0fc85 Add a 'verifyPasses' flag to the PassManager that specifies if the IR should be verified after each pass. This also adds a "verify-each" flag to mlir-opt to optionally disable running the verifier after each pass.
PiperOrigin-RevId: 236703760
2019-03-29 16:55:35 -07:00
MLIR Team d42ef78a75 Handle MemRefRegion::compute return value in loop fusion pass (NFC).
PiperOrigin-RevId: 236685849
2019-03-29 16:55:20 -07:00
River Riddle a495f960e0 Introduce the notion of dialect attributes and dependent attributes. A dialect attribute derives its context from a specific dialect, whereas a dependent attribute derives context from what it is attached to. Following this, we now enforce that functions and function arguments may only contain dialect specific attributes. These are generic entities and cannot provide any specific context for a dependent attribute.
Dialect attributes are defined as:

        dialect-namespace `.` attr-name `:` attribute-value

Dialects can override any of the following hooks to verify the validity of a given attribute:
  * verifyFunctionAttribute
  * verifyFunctionArgAttribute
  * verifyInstructionAttribute

PiperOrigin-RevId: 236507970
2019-03-29 16:55:05 -07:00
River Riddle 485746f524 Implement the initial AnalysisManagement infrastructure, with the introduction of the FunctionAnalysisManager and ModuleAnalysisManager classes. These classes provide analysis computation, caching, and invalidation for a specific IR unit. The invalidation is currently limited to either all or none, i.e. you cannot yet preserve specific analyses.
An analysis can be any class, but it must provide the following:
* A constructor for a given IR unit.

struct MyAnalysis {
  // Compute this analysis with the provided module.
  MyAnalysis(Module *module);
};

Analyses can be accessed from a Pass by calling either the 'getAnalysisResult<AnalysisT>' or 'getCachedAnalysisResult<AnalysisT>' methods. A FunctionPass may query for a cached analysis on the parent module with 'getCachedModuleAnalysisResult'. Similary, a ModulePass may query an analysis, it doesn't need to be cached, on a child function with 'getFunctionAnalysisResult'.

By default, when running a pass all cached analyses are set to be invalidated. If no transformation was performed, a pass can use the method 'markAllAnalysesPreserved' to preserve all analysis results. As noted above, preserving specific analyses is not yet supported.

PiperOrigin-RevId: 236505642
2019-03-29 16:54:50 -07:00
Mehdi Amini c1b02a17be Add an assertion on the builder to ensure that a block is set before creating an operation
This is more friendly for the user than a raw segfault

PiperOrigin-RevId: 236504102
2019-03-29 16:54:35 -07:00
River Riddle eeeef090ef Set the namespace of the StandardOps dialect to "std", but add a special case to the parser to allow parsing standard operations without the "std" prefix. This will now allow for the standard dialect to be looked up dynamically by name.
PiperOrigin-RevId: 236493865
2019-03-29 16:54:20 -07:00
Uday Bondhugula eee85361bb Remove hidden flag from fusion CL options
PiperOrigin-RevId: 236409185
2019-03-29 16:54:05 -07:00
Uday Bondhugula 62e3e2c57c Update addSliceBounds to deal with loops with floor's/mod's.
- This change only impacts the cost model for fusion, given the way
  addSliceBounds was being used. It so happens that the output in spite of this
  CL's fix is the same; however, the assertions added no longer fail. (an
  invalid/inconsistent memref region was being used earlier).

PiperOrigin-RevId: 236405030
2019-03-29 16:53:50 -07:00
River Riddle f37651c708 NFC. Move all of the remaining operations left in BuiltinOps to StandardOps. The only thing left in BuiltinOps are the core MLIR types. The standard types can't be moved because they are referenced within the IR directory, e.g. in things like Builder.
PiperOrigin-RevId: 236403665
2019-03-29 16:53:35 -07:00
Lei Zhang 85d9b6c8f7 Use consistent names for dialect op source files
This CL changes dialect op source files (.h, .cpp, .td) to follow the following
convention:

  <full-dialect-name>/<dialect-namespace>Ops.{h|cpp|td}

Builtin and standard dialects are specially treated, though. Both of them do
not have dialect namespace; the former is still named as BuiltinOps.* and the
latter is named as Ops.*.

Purely mechanical. NFC.

PiperOrigin-RevId: 236371358
2019-03-29 16:53:19 -07:00
Uday Bondhugula 8254aabd4a A simple pass to detect and mark all parallel loops
- detect all parallel loops based on dep information and mark them with a
  "parallel" attribute
- add mlir::isLoopParallel(OpPointer<AffineForOp> ...), and refactor an existing method
  to use that (reuse some code from @andydavis (cl/236007073) for this)
- a simple/meaningful way to test memref dep test as well

Ex:

$ mlir-opt -detect-parallel test/Transforms/parallelism-detection.mlir
#map1 = ()[s0] -> (s0)
func @foo(%arg0: index) {
  %0 = alloc() : memref<1024x1024xvector<64xf32>>
  %1 = alloc() : memref<1024x1024xvector<64xf32>>
  %2 = alloc() : memref<1024x1024xvector<64xf32>>
  for %i0 = 0 to %arg0 {
    for %i1 = 0 to %arg0 {
      for %i2 = 0 to %arg0 {
        %3 = load %0[%i0, %i2] : memref<1024x1024xvector<64xf32>>
        %4 = load %1[%i2, %i1] : memref<1024x1024xvector<64xf32>>
        %5 = load %2[%i0, %i1] : memref<1024x1024xvector<64xf32>>
        %6 = mulf %3, %4 : vector<64xf32>
        %7 = addf %5, %6 : vector<64xf32>
        store %7, %2[%i0, %i1] : memref<1024x1024xvector<64xf32>>
      } {parallel: false}
    } {parallel: true}
  } {parallel: true}
  return
}

PiperOrigin-RevId: 236367368
2019-03-29 16:53:03 -07:00
MLIR Team d038e34735 Loop fusion for input reuse.
*) Breaks fusion pass into multiple sub passes over nodes in data dependence graph:
- first pass fuses single-use producers into their unique consumer.
- second pass enables fusing for input-reuse by fusing sibling nodes which read from the same memref, but which do not share dependence edges.
- third pass fuses remaining producers into their consumers (Note that the sibling fusion pass may have transformed a producer with multiple uses into a single-use producer).
*) Fusion for input reuse is enabled by computing a sibling node slice using the load/load accesses to the same memref, and fusion safety is guaranteed by checking that the sibling node memref write region (to a different memref) is preserved.
*) Enables output vector and output matrix computations from KFAC patches-second-moment operation to fuse into a single loop nest and reuse input from the image patches operation.
*) Adds a generic loop utilitiy for finding all sequential loops in a loop nest.
*) Adds and updates unit tests.

PiperOrigin-RevId: 236350987
2019-03-29 16:52:35 -07:00
River Riddle 269c872ee8 Add support for parsing and printing affine.if and affine.for attributes. The attribute dictionaries are printed after the final block list for both operations:
for %i = 0 to 10 {
     ...
  } {some_attr: true}

  if () : () () {
    ...
  } {some_attr: true}

  if () : () () {
    ...
  } else {
    ...
  } {some_attr: true}

PiperOrigin-RevId: 236346983
2019-03-29 16:52:19 -07:00
Uday Bondhugula 932e4fb29f Analysis support for floordiv/mod's in loop bounds/
- handle floordiv/mod's in loop bounds for all analysis purposes
- allows fusion slicing to be more powerful
- add simple test cases based on -memref-bound-check
- fusion based test cases in follow up CLs

PiperOrigin-RevId: 236328551
2019-03-29 16:52:04 -07:00
Uday Bondhugula 6ef5fc582e Method to align/merge dimensional/symbolic identifiers between two FlatAffineConstraints
- add a method to merge and align the spaces (identifiers) of two
  FlatAffineConstraints (both get dimension-wise and symbol-wise unique
  columns)
- this completes several TODOs, gets rid of previous assumptions/restrictions
  in composeMap, unionBoundingBox, and reuses common code
- remove previous workarounds / duplicated funcitonality in
  FlatAffineConstraints::composeMap and unionBoundingBox, use mergeAlignIds
  from both

PiperOrigin-RevId: 236320581
2019-03-29 16:51:47 -07:00
Alex Zinenko 4bd5d28391 EDSC bindings: expose generic Op construction interface
EDSC Expressions can now be used to build arbitrary MLIR operations identified
by their canonical name, i.e. the name obtained from
`OpClass::getOperationName()` for registered operations.  Expose this
functionality to the C API and Python bindings.  This exposes builder-level
interface to Python and avoids the need for experimental Python code to
implement EDSC free function calls for constructing each op type.

This modification required exposing mlir::Attribute to the C API and Python
bindings, which only supports integer attributes for now.

This is step 4/n to making EDSCs more generalizable.

PiperOrigin-RevId: 236306776
2019-03-29 16:51:32 -07:00
Uday Bondhugula 229bd9ba21 Use Instruction::isBeforeInBlock instead of a linear scan
- use Instruction::isBeforeInBlock instead of a linear scan in
  AffineAnalysis.cpp

PiperOrigin-RevId: 236235824
2019-03-29 16:51:16 -07:00
River Riddle ddc6788cc7 Provide a Builder::getNamedAttr and (Instruction|Function)::setAttr(StringRef, Attribute) to simplify attribute manipulation.
PiperOrigin-RevId: 236222504
2019-03-29 16:50:59 -07:00
River Riddle ed5fe2098b Remove PassResult and have the runOnFunction/runOnModule functions return void instead. To signal a pass failure, passes should now invoke the 'signalPassFailure' method. This provides the equivalent functionality when needed, but isn't an intrusive part of the API like PassResult.
PiperOrigin-RevId: 236202029
2019-03-29 16:50:44 -07:00
Uday Bondhugula 58889884a2 Change some of the debug messages to use emitError / emitWarning / emitNote - NFC
PiperOrigin-RevId: 236169676
2019-03-29 16:50:29 -07:00
River Riddle db1757f858 Add support for named function argument attributes. The attribute dictionary is printed after the argument type:
func @arg_attrs(i32 {arg_attr: 10})

func @arg_attrs(%arg0: i32 {arg_attr: 10})

PiperOrigin-RevId: 236136830
2019-03-29 16:50:15 -07:00
Alex Zinenko 8cc50208a6 LLVM IR Dialect: unify call and call0 operations
When the LLVM IR dialect was implemented, TableGen operation definition scheme
did not support operations with variadic results.  Therefore, the `call`
instruction was split into `call` and `call0` for the single- and zero-result
calls (LLVM does not support multi-result operations).  Unify `call` and
`call0` using the recently added TableGen support for operations with Variadic
results.  Explicitly verify that the new operation has 0 or 1 results.  As a
side effect, this change enables clean-ups in the conversion to the LLVM IR
dialect that no longer needs to rely on wrapped LLVM IR void types when
constructing zero-result calls.

PiperOrigin-RevId: 236119197
2019-03-29 16:49:59 -07:00
Alex Zinenko d9cc3c31cc ExecutionEngine OptUtils: support -On flags in string-based initialization
Original implementation of OutUtils provided two different LLVM IR module
transformers to be used with the MLIR ExecutionEngine: OptimizingTransformer
parameterized by the optimization levels (similar to -O3 flags) and
LLVMPassesTransformer parameterized by the string formatted similarly to
command line options of LLVM's "opt" tool without support for -O* flags.
Introduce such support by declaring the flags inside the parser and by
populating the pass managers similarly to what "opt" does.  Remove the
additional flags from mlir-cpu-runner as they can now be wrapped into
`-llvm-opts` together with other LLVM-related flags.

PiperOrigin-RevId: 236107292
2019-03-29 16:49:44 -07:00
River Riddle 0f8c3f4071 When parsing, check that a region operation is not referencing any of the entry arguments to its block lists.
PiperOrigin-RevId: 236030438
2019-03-29 16:49:29 -07:00
River Riddle 300e4126c5 Move the PassExecutor and ModuleToFunctionPassAdaptor classes from PassManager.h to Pass.cpp. This allows for us to remove a dependency on Pass.h from PassManager.h.
PiperOrigin-RevId: 236029339
2019-03-29 16:49:15 -07:00
River Riddle 303b768579 Add a generic getValue to ElementsAttr for accessing a value at a given index.
PiperOrigin-RevId: 236013669
2019-03-29 16:48:59 -07:00
River Riddle 1c1767621c Remove the stubs for getValue from DenseIntElementsAttr and DenseFPElementsAttr as they aren't implemented. The type for the index is also wrong.
PiperOrigin-RevId: 236010720
2019-03-29 16:48:44 -07:00
River Riddle 091ff3dc3f Add support for registering pass pipelines to the PassRegistry. This is done by providing a static registration facility PassPipelineRegistration that works similarly to PassRegistration except for it also takes a function that will add necessary passes to a provided PassManager.
void pipelineBuilder(PassManager &pm) {
      pm.addPass(new MyPass());
      pm.addPass(new MyOtherPass());
  }

  static PassPipelineRegistration Unused("unused", "Unused pass", pipelineBuilder);

This is also useful for registering specializations of existing passes:

  Pass *createFooPass10() { return new FooPass(10); }

  static PassPipelineRegistration Unused("unused", "Unused pass", createFooPass10);

PiperOrigin-RevId: 235996282
2019-03-29 16:48:29 -07:00
Jacques Pienaar e31c23853b Fix incorrect line split in header guard.
PiperOrigin-RevId: 235994785
2019-03-29 16:48:14 -07:00
Uday Bondhugula a003179367 Detect more trivially redundant constraints better
- detect more trivially redundant constraints in
  FlatAffineConstraints::removeTrivialRedundantConstraints. Redundancy due to
  constraints that only differ in the constant part (eg., 32i + 64j - 3 >= 0, 32 +
  64j - 8 >= 0) is now detected.  The method is still linear-time and does
  a single scan over the FlatAffineConstraints buffer. This detection is useful
  and needed to eliminate redundant constraints generated after FM elimination.

- update GCDTightenInequalities so that we also normalize by the GCD while at
  it. This way more constraints will show up as redundant (232i - 203 >= 0
  becomes i - 1 >= 0 instead of 232i - 232 >= 0) without having to call
  normalizeConstraintsByGCD.

- In FourierMotzkinEliminate, call GCDTightenInequalities and
  normalizeConstraintsByGCD before calling removeTrivialRedundantConstraints()
  - so that more redundant constraints are detected. As a result, redundancy
    due to constraints like i - 5 >= 0, i - 7 >= 0, 2i - 5 >= 0, 232i - 203 >=
    0 is now detected (here only i >= 7 is non-redundant).

As a result of these, a -memref-bound-check on the added test case runs in 16ms
instead of 1.35s (opt build) and no longer returns a conservative result.

PiperOrigin-RevId: 235983550
2019-03-29 16:47:59 -07:00
MLIR Team c2766f3760 Fix bug in memref region computation with slice loop bounds. Adds loop IV values to ComputationSliceState which are used in FlatAffineConstraints::addSliceBounds, to ensure that constraints are only added for loop IV values which are present in the constraint system.
PiperOrigin-RevId: 235952912
2019-03-29 16:47:29 -07:00
River Riddle c6c534493d Port all of the existing passes over to the new pass manager infrastructure. This is largely NFC.
PiperOrigin-RevId: 235952357
2019-03-29 16:47:14 -07:00
River Riddle 6067cdebaa Implement the initial pass management functionality.
The definitions of derived passes have now changed and passes must adhere to the following:

* Inherit from a CRTP base class FunctionPass/ModulePass.
   - This class provides several necessary utilities for the transformation:
       . Access to the IR unit being transformed (getFunction/getModule)
       . Various utilities for pass identification and registration.

* Provide a 'PassResult runOn(Function|Module)()' method to transform the IR.
   - This replaces the runOn* functions from before.

This patch also introduces the notion of the PassManager. This allows for simplified construction of pass pipelines and acts as the sole interface for executing passes. This is important as FunctionPass will no longer have a 'runOnModule' method.

PiperOrigin-RevId: 235952008
2019-03-29 16:46:59 -07:00
Lei Zhang 493d46067b [TableGen] Use result names in build() methods if possible
This will make it clear which result's type we are expecting in the build() signature.

PiperOrigin-RevId: 235925706
2019-03-29 16:46:41 -07:00
Lei Zhang 9e18783e41 [TableGen] Add more scalar integer and floating-point types
PiperOrigin-RevId: 235918286
2019-03-29 16:46:26 -07:00
Alex Zinenko 486dde42c0 EDSC: move FileCheck tests into the source file
EDSC provide APIs for constructing and modifying the IR.  These APIs are
currently tested by a "test" module pass that reads the dummy IR (empty
functions), recognizes certain function names and injects the IR into those
functions based on their name.  This situation is unsatisfactory because the
expected outcome of the test lives in a different file than the input to the
test, i.e. the API calls.

Create a new binary for tests that constructs the IR from scratch using EDSC
APIs and prints it.  Put FileCheck comments next to the printing.  This removes
the need to have a file with dummy inputs and assert on its contents in the
test driver.  The test source includes a simplistic test harness that runs all
functions marked as TEST_FUNC but intentionally does not include any
value-testing functionality.

PiperOrigin-RevId: 235886629
2019-03-29 16:46:10 -07:00
Ben Vanik d3918fc8cd Adding an IREE type kind range definition.
PiperOrigin-RevId: 235849609
2019-03-29 16:45:55 -07:00
River Riddle 302fb03961 Add a new class NamedAttributeList to deduplicate named attribute handling between Function and Instruction.
PiperOrigin-RevId: 235830304
2019-03-29 16:45:40 -07:00
Uday Bondhugula 7aa60a383f Temp change in FlatAffineConstraints::getSliceBounds() to deal with TODO in
LoopFusion

- getConstDifference in LoopFusion is pending a refactoring to handle bounds
  with min's and max's; it currently asserts on some useful test cases that we
  want to experiment with. This CL changes getSliceBounds to be more
  conservative so as to not trigger the assertion. Filed b/126426796 to track this.

PiperOrigin-RevId: 235826538
2019-03-29 16:45:23 -07:00
River Riddle 03913698a8 Allow function names to have a leading underscore. This matches what is already defined in the spec, but not supported in the implementation.
PiperOrigin-RevId: 235823663
2019-03-29 16:45:08 -07:00
River Riddle 3b3e11da93 Validate the names of attribute, dialect, and functions during verification. This essentially enforces the parsing rules upon their names.
PiperOrigin-RevId: 235818842
2019-03-29 16:44:53 -07:00
Uday Bondhugula d4b3ff1096 Loop fusion comand line options cleanup
- clean up loop fusion CL options for promoting local buffers to fast memory
  space
- add parameters to loop fusion pass instantiation

PiperOrigin-RevId: 235813419
2019-03-29 16:44:38 -07:00
River Riddle 2d4b0e2c00 Add parser support for internal named attributes. These are attributes with names starting with ':'.
PiperOrigin-RevId: 235774810
2019-03-29 16:44:22 -07:00
Lei Zhang bac3eece66 [TableGen] Fix using rewrite()'s qualified name for a bound argument in match()
PiperOrigin-RevId: 235767304
2019-03-29 16:44:05 -07:00
River Riddle 79944e5eef Add a Function::isExternal utility to simplify checks for external functions.
PiperOrigin-RevId: 235746553
2019-03-29 16:43:50 -07:00
River Riddle cdbfd48471 Rewrite the dominance info classes to allow for operating on arbitrary control flow within operation regions. The CSE pass is also updated to properly handle nested dominance.
PiperOrigin-RevId: 235742627
2019-03-29 16:43:35 -07:00
Dimitrios Vytiniotis 41c37c6246 Unboxing for static memrefs.
When lowering to MLIR(LLVMDialect) we unbox the structs that result
from converting static memrefs, that is, singleton structs
that just contain a raw pointer. This allows us to get rid of all
"extractvalue" instructions in the common case where shapes are fully
known.

PiperOrigin-RevId: 235706021
2019-03-29 16:43:20 -07:00
Alex Zinenko 1da1b4c321 LLVM IR dialect and translation: support conditional branches with arguments
Since the goal of the LLVM IR dialect is to reflect LLVM IR in MLIR, the
dialect and the conversion procedure must account for the differences betweeen
block arguments and LLVM IR PHI nodes. In particular, LLVM IR disallows PHI
nodes with different values coming from the same source. Therefore, the LLVM IR
dialect now disallows `cond_br` operations that have identical successors
accepting arguments, which would lead to invalid PHI nodes. The conversion
process resolves the potential PHI source ambiguity by injecting dummy blocks
if the same block is used more than once as a successor in an instruction.
These dummy blocks branch unconditionally to the original successors, pass them
the original operands (available in the dummy block because it is dominated by
the original block) and are used instead of them in the original terminator
operation.

PiperOrigin-RevId: 235682798
2019-03-29 16:43:05 -07:00
Alex Zinenko 970715be9c Update LLVM Dialect documentation
Addressing post-submit comments.  The `getelementptr` operation now supports
non-constant indexes, similarly to LLVM, and this functionality is exercised by
the lowering to the dialect.  Update the documentation accordingly.

List the values of integer comparison predicates, which currently correspond to
those of CmpIOp in MLIR.  Ideally, we would use strings instead, but it
requires additional support for argument conversion in both the dialect
lowering pass and the LLVM translator.

PiperOrigin-RevId: 235678877
2019-03-29 16:42:50 -07:00
Smit Hinsu fd3c2d156f Verify IR produced by TranslateToMLIR functions
TESTED with existing unit tests

PiperOrigin-RevId: 235623059
2019-03-29 16:42:35 -07:00
Uday Bondhugula b269481106 Cleanup post cl/235283610 - NFC
- remove stale comments + cleanup
- drop MLIRContext * field from expr flattener

PiperOrigin-RevId: 235621178
2019-03-29 16:42:20 -07:00
River Riddle b4f033f6c6 Convert the dialect type parse/print hooks into virtual functions on the Dialect class.
PiperOrigin-RevId: 235589945
2019-03-29 16:42:05 -07:00
River Riddle f1f86eac60 Add support for constructing DenseIntElementsAttr with an array of APInt and
DenseFPElementsAttr with an array of APFloat.

PiperOrigin-RevId: 235581794
2019-03-29 16:41:50 -07:00
Lei Zhang 3f644705eb [TableGen] Use ArrayRef instead of SmallVectorImpl for suitable method
PiperOrigin-RevId: 235577399
2019-03-29 16:41:35 -07:00
Nicolas Vasilache 62c54a2ec4 Add a stripmineSink and imperfectly nested tiling primitives.
This CL adds a primitive to perform stripmining of a loop by a given factor and
sinking it under multiple target loops.
In turn this is used to implement imperfectly nested loop tiling (with interchange) by repeatedly calling the stripmineSink primitive.

The API returns the point loops and allows repeated invocations of tiling to achieve declarative, multi-level, imperfectly-nested tiling.

Note that this CL is only concerned with the mechanical aspects and does not worry about analysis and legality.

The API is demonstrated in an example which creates an EDSC block, emits the corresponding MLIR and applies imperfectly-nested tiling:

```cpp
    auto block = edsc::block({
      For(ArrayRef<edsc::Expr>{i, j}, {zero, zero}, {M, N}, {one, one}, {
        For(k1, zero, O, one, {
          C({i, j, k1}) = A({i, j, k1}) + B({i, j, k1})
        }),
        For(k2, zero, O, one, {
          C({i, j, k2}) = A({i, j, k2}) + B({i, j, k2})
        }),
      }),
    });
    // clang-format on
    emitter.emitStmts(block.getBody());

    auto l_i = emitter.getAffineForOp(i), l_j = emitter.getAffineForOp(j),
         l_k1 = emitter.getAffineForOp(k1), l_k2 = emitter.getAffineForOp(k2);
    auto indicesL1 = mlir::tile({l_i, l_j}, {512, 1024}, {l_k1, l_k2});
    auto l_ii1 = indicesL1[0][0], l_jj1 = indicesL1[1][0];
    mlir::tile({l_jj1, l_ii1}, {32, 16}, l_jj1);
```

The edsc::Expr for the induction variables (i, j, k_1, k_2) provide the programmatic hooks from which tiling can be applied declaratively.

PiperOrigin-RevId: 235548228
2019-03-29 16:41:20 -07:00
Alex Zinenko e7193a70f8 EDSC: support conditional branch instructions
Leverage the recently introduced support for multiple argument groups and
multiple destination blocks in EDSC Expressions to implement conditional
branches in EDSC.  Conditional branches have two successors and three argument
groups.  The first group contains a single expression of i1 type that
corresponds to the condition of the branch.  The two following groups contain
arguments of the two successors of the conditional branch instruction, in the
same order as the successors.  Expose this instruction to the C API and Python
bindings.

PiperOrigin-RevId: 235542768
2019-03-29 16:41:05 -07:00
Alex Zinenko 83e8db2193 EDSC: support branch instructions
The new implementation of blocks was designed to support blocks with arguments.
More specifically, StmtBlock can be constructed with a list of Bindables that
will be bound to block aguments upon construction.  Leverage this functionality
to implement branch instructions with arguments.

This additionally requires the statement storage to have a list of successors,
similarly to core IR operations.

Becauase successor chains can form loops, we need a possibility to decouple
block declaration, after which it becomes usable by branch instructions, from
block body definition.  This is achieved by creating an empty block and by
resetting its body with a new list of instructions.  Note that assigning a
block from another block will not affect any instructions that may have
designated this block as their successor (this behavior is necessary to make
value-type semantics of EDSC types consistent).  Combined, one can now write
generators like

    EDSCContext context;
    Type indexType = ...;
    Bindable i(indexType), ii(indexType), zero(indexType), one(indexType);
    StmtBlock loopBlock({i}, {});
    loopBlock.set({ii = i + one,
                   Branch(loopBlock, {ii})});
    MLIREmitter(&builder)
        .bindConstant<ConstantIndexOp>(zero, 0)
        .bindConstant<ConstantIndexOp>(one, 1)
	.emitStmt(Branch(loopBlock, {zero}));

where the emitter will emit the statement and its successors, if present.

PiperOrigin-RevId: 235541892
2019-03-29 16:40:50 -07:00
Tatiana Shpeisman 8b99d1bdbf Use dialect hook registration for constant folding hook.
Deletes specialized mechanism for registering constant folding hook and uses dialect hooks registration mechanism instead.

PiperOrigin-RevId: 235535410
2019-03-29 16:40:35 -07:00
River Riddle a51d21538c Add constant folding for ExtractElementOp when the aggregate is an OpaqueElementsAttr.
PiperOrigin-RevId: 235533283
2019-03-29 16:40:20 -07:00
Alex Zinenko ec76f9c8c1 EDSC printing: handle integer attributes with bitwidth > 64
This came up in post-submit review.  Use LLVM's support for outputting APInt
values directly instead of obtaining a 64-bit integer value from APInt, which
will not work for wider integers.

PiperOrigin-RevId: 235531574
2019-03-29 16:40:05 -07:00
Lei Zhang 4887e45546 [TableGen] Fix infinite loop in SubstLeaves substitution
Previously we have `auto pos = std::string::find(...) != std::string::npos` as
if condition to control substring substitution. Instead of the position for the
found substring, `pos` will be a boolean value indicating found nor not. Then
used as the replace start position, we were always replacing starting from 0 or
1. If the replaced substring also has the pattern to be matched, we'll see
an infinite loop.

PiperOrigin-RevId: 235504681
2019-03-29 16:39:47 -07:00
Uday Bondhugula dfe07b7bf6 Refactor AffineExprFlattener and move FlatAffineConstraints out of IR into
Analysis - NFC

- refactor AffineExprFlattener (-> SimpleAffineExprFlattener) so that it
  doesn't depend on FlatAffineConstraints, and so that FlatAffineConstraints
  could be moved out of IR/; the simplification that the IR needs for
  AffineExpr's doesn't depend on FlatAffineConstraints
- have AffineExprFlattener derive from SimpleAffineExprFlattener to use for
  all Analysis/Transforms purposes; override addLocalFloorDivId in the derived
  class

- turn addAffineForOpDomain into a method on FlatAffineConstraints
- turn AffineForOp::getAsValueMap into an AffineValueMap ctor

PiperOrigin-RevId: 235283610
2019-03-29 16:39:32 -07:00
Stella Laurenzo c81b16e279 Spike to define real math ops and lowering of one variant of add to corresponding integer ops.
The only reason in starting with a fixedpoint add is that it is the absolute simplest variant and illustrates the level of abstraction I'm aiming for.

The overall flow would be:
  1. Determine quantization parameters (out of scope of this cl).
  2. Source dialect rules to lower supported math ops to the quantization dialect (out of scope of this cl).
  3. Quantization passes: [-quant-convert-const, -quant-lower-uniform-real-math, -quant-lower-unsupported-to-float] (the last one not implemented yet)
  4. Target specific lowering of the integral arithmetic ops (roughly at the level of gemmlowp) to more fundamental operations (i.e. calls to gemmlowp, simd instructions, DSP instructions, etc).

How I'm doing this should facilitate implementation of just about any kind of backend except TFLite, which has a very course, adhoc surface area for its quantized kernels. Options there include (I'm not taking an opinion on this - just trying to provide options):
  a) Not using any of this: just match q/dbarrier + tf math ops to the supported TFLite quantized op set.
  b) Implement the more fundamental integer math ops on TFLite and convert to those instead of the current op set.

Note that I've hand-waved over the process of choosing appropriate quantization parameters. Getting to that next. As you can see, different implementations will likely have different magic combinations of specific math support, and we will need the target system that has been discussed for some of the esoteric cases (i.e. many DSPs only support POT fixedpoint).

Two unrelated changes to the overall goal of this CL and can be broken out of desired:
  - Adding optional attribute support to TabelGen
  - Allowing TableGen native rewrite hooks to return nullptr, signalling that no rewrite has been done.

PiperOrigin-RevId: 235267229
2019-03-29 16:39:13 -07:00
River Riddle f48716146e NFC: Make DialectConversion not directly inherit from ModulePass. It is now just a utility class that performs dialect conversion on a provided module.
PiperOrigin-RevId: 235194067
2019-03-29 16:38:57 -07:00
River Riddle 5410dff790 Rewrite MLPatternLoweringPass to no longer inherit from FunctionPass and just provide a utility function that applies ML patterns.
PiperOrigin-RevId: 235194034
2019-03-29 16:38:41 -07:00
MLIR Team 8564b274db Internal change
PiperOrigin-RevId: 235191129
2019-03-29 16:38:24 -07:00
Alex Zinenko 51835e73e0 Document the conversion into the LLVM IR dialect
Add a documentation page on the key points of the conversion to LLVM IR.  This
focuses on the aspects of conversion that are relevant for integration of the
LLVM IR dialect (and produced LLVM IR that is mostly a one-to-one translation)
into other projects.  In particular, it describes the type conversion rules and
the memref model supporting dynamic sizes.

PiperOrigin-RevId: 235190772
2019-03-29 16:38:04 -07:00
Brian Patton d52e631359 Add a test example of calling a builtin function.
PiperOrigin-RevId: 235149430
2019-03-29 16:37:46 -07:00
Alex Zinenko f0597cbf9f Add documentation for the LLVM IR dialect
The LLVM IR pass was bootstrapped without user documentation, following LLVM's
language reference and existing conversions between MLIR standard operations
and LLVM IR instructions.  Provide concise documentation of the LLVM IR dialect
operations.  This documentation does not describe the semantics of the
operations, which should match that of LLVM IR, but highlights the structural
differences in operation definitions, in particular using attributes instead of
constant-only values.  It also describes pseudo-operations that exist only to
make the LLVM IR dialect self-contained within MLIR.

While it could have been possible to generate operation description from
TableGen, this opts for a more concise format where groups of related
operations are described together.

PiperOrigin-RevId: 235149136
2019-03-29 16:37:26 -07:00
River Riddle 3e656599f1 Define a PassID class to use when defining a pass. This allows for the type used for the ID field to be self documenting. It also allows for the compiler to know the set alignment of the ID object, which is useful for storing pointer identifiers within llvm data structures.
PiperOrigin-RevId: 235107957
2019-03-29 16:37:12 -07:00
Alex Zinenko c98a87cc06 Lower standard DivF and RemF operations to the LLVM IR dialect
Add support for lowering DivF and RemF to LLVM::FDiv and LLMV::FRem
respectively.  The lowering is a trivial one-to-one transformation.
The corresponding operations already existed in the LLVM IR dialect and can be
lowered to the LLVM IR proper.  Add the necessary tests for scalar and vector
forms.

PiperOrigin-RevId: 234984608
2019-03-29 16:36:56 -07:00
Sergei Lebedev 1cc9305c71 Exposed division and remainder operations in EDSC
This change introduces three new operators in EDSC: Div (also exposed
via Expr.__div__ aka /) -- floating-point division, FloorDiv and CeilDiv
for flooring/ceiling index division.

The lowering to LLVM will be implemented in b/124872679.

PiperOrigin-RevId: 234963217
2019-03-29 16:36:41 -07:00
Alex Zinenko 59a209721e EDSC: support call instructions
Introduce support for binding MLIR functions as constant expressions.  Standard
constant operation supports functions as possible constant values.

Provide C APIs to look up existing named functions in an MLIR module and expose
them to the Python bindings.  Provide Python bindings to declare a function in
an MLIR module without defining it and to add a definition given a function
declaration.  These declarations are useful when attempting to link MLIR
modules with, e.g., the standard library.

Introduce EDSC support for direct and indirect calls to other MLIR functions.
Internally, an indirect call is always emitted to leverage existing support for
delayed construction of MLIR Values using EDSC Exprs.  If the expression is
bound to a constant function (looked up or declared beforehand), MLIR constant
folding will be able to replace an indirect call by a direct call.  Currently,
only zero- and one-result functions are supported since we don't have support
for multi-valued expressions in EDSC.

Expose function calling interface to Python bindings on expressions by defining
a `__call__` function accepting a variable number of arguments.

PiperOrigin-RevId: 234959444
2019-03-29 16:36:26 -07:00
Uday Bondhugula 4056b98e22 Update / cleanup pass documentation + Langref alloc examples
PiperOrigin-RevId: 234866323
2019-03-29 16:36:10 -07:00
Jacques Pienaar 5162c58c78 Fix unused errors in opt build.
PiperOrigin-RevId: 234841678
2019-03-29 16:35:55 -07:00
Uday Bondhugula 4d3af6be82 Print debug message better + switch a dma-generate cl opt to uint64_t
PiperOrigin-RevId: 234840316
2019-03-29 16:35:41 -07:00
Uday Bondhugula 5d22044b5f Fix for getMemRefSizeInBytes: unsigned -> uint64_t
PiperOrigin-RevId: 234829637
2019-03-29 16:35:26 -07:00
Jacques Pienaar 1725b485eb Create OpTrait base class & allow operation predicate OpTraits.
* Introduce a OpTrait class in C++ to wrap the TableGen definition;
* Introduce PredOpTrait and rename previous usage of OpTrait to NativeOpTrait;
* PredOpTrait allows specifying a trait of the operation by way of predicate on the operation. This will be used in future to create reusable set of trait building blocks in the definition of operations. E.g., indicating whether to operands have the same type and allowing locally documenting op requirements by trait composition.
  - Some of these building blocks could later evolve into known fixed set as LLVMs backends do, but that can be considered with more data.
* Use the modelling to address one verify TODO in a very local manner.

This subsumes the current custom verify specification which will be removed in a separate mechanical CL.

PiperOrigin-RevId: 234827169
2019-03-29 16:35:11 -07:00
Ben Vanik 61d848da07 Adding -mlir-print-internal-attributes to print attributes with ':' prefixes.
This enables lit testing of passes that add internal attributes.

PiperOrigin-RevId: 234809949
2019-03-29 16:34:56 -07:00
Alex Zinenko 0a95aac7c7 Allow Builder to create function-type constants
A recent change made ConstantOp::build accept a NumericAttr or assert that a
generic Attribute is in fact a NumericAttr.  The rationale behind the change
was that NumericAttrs have a type that can be used as the result type of the
constant operation.  FunctionAttr also has a type, and it is valid to construct
function-typed constants as exercised by the parser.mlir test.  Relax
ConstantOp::build back to take a generic Attribute.  In the overload that only
takes an attribute, assert that the Attribute is either a NumericAttr or a
FunctionAttr, because it is necessary to extract the type.  In the overload
that takes both type type and the attribute, delegate the attribute type
checking to ConstantOp::verify to prevent non-Builder-based Op construction
mechanisms from creating invalid IR.
PiperOrigin-RevId: 234798569
2019-03-29 16:34:41 -07:00
Alex Zinenko 0cc24bb1af EDSC: emit composed affine maps again
The recent rework of MLIREmitter switched to using the generic call to
`builder.createOperation` from OperationState instead of individual customized
calls to `builder.create<>`.  As a result, regular non-composed affine apply
operations where emitted.  Introduce a special case in Expr::build to always
create composed affine maps instead, as it used to be the case before the
rework.

Such special-casing goes against the idea of EDSC generality and extensibility.
Instead, we should consider declaring the composed form canonical for
affine.apply operations and using the builder support for creating operations
and canonicalizing them immediately (ongoing effort).

PiperOrigin-RevId: 234790129
2019-03-29 16:34:26 -07:00
Alex Zinenko 21bd4540f3 EDSC: introduce min/max only usable inside for upper/lower bounds of a loop
Introduce a type-safe way of building a 'for' loop with max/min bounds in EDSC.
Define new types MaxExpr and MinExpr in C++ EDSC API and expose them to Python
bindings.  Use values of these type to construct 'for' loops with max/min in
newly introduced overloads of the `edsc::For` factory function.  Note that in C
APIs, we still must expose MaxMinFor as a different function because C has no
overloads.  Also note that MaxExpr and MinExpr do _not_ derive from Expr
because they are not allowed to be used in a regular Expr context (which may
produce `affine.apply` instructions not expecting `min` or `max`).

Factory functions `Min` and `Max` in Python can be further overloaded to
produce chains of comparisons and selects on non-index types.  This is not
trivial in C++ since overloaded functions cannot differ by the return type only
(`MaxExpr` or `Expr`) and making `MaxExpr` derive from `Expr` defies the
purpose of type-safe construction.

PiperOrigin-RevId: 234786131
2019-03-29 16:34:11 -07:00
Alex Zinenko d055a4e100 EDSC: support multi-expression loop bounds
MLIR supports 'for' loops with lower(upper) bound defined by taking a
maximum(minimum) of a list of expressions, but does not have first-class affine
constructs for the maximum(minimum).  All these expressions must have affine
provenance, similarly to a single-expression bound.  Add support for
constructing such loops using EDSC.  The expression factory function is called
`edsc::MaxMinFor` to (1) highlight that the maximum(minimum) operation is
applied to the lower(upper) bound expressions and (2) differentiate it from a
`edsc::For` that creates multiple perfectly nested loops (and should arguably
be called `edsc::ForNest`).

PiperOrigin-RevId: 234785996
2019-03-29 16:33:56 -07:00
Alex Zinenko a2a433652d EDSC: create constants as expressions
Introduce a functionality to create EDSC expressions from typed constants.
This complements the current functionality that uses "unbound" expressions and
binds them to a specific constant before emission.  It comes in handy in cases
where we want to check if something is a constant early during construciton
rather than late during emission, for example multiplications and divisions in
affine expressions.  This is also consistent with MLIR vision of constants
being defined by an operation (rather than being special kinds of values in the
IR) by exposing this operation as EDSC expression.

PiperOrigin-RevId: 234758020
2019-03-29 16:33:41 -07:00
Nicolas Vasilache ffdf98d092 [EDSC] Fix Stmt::operator= and allow DimOp in For loops
This CL fixes 2 recent issues with EDSCs:
1. the type of the LHS in Stmt::operator=(Expr rhs) should be the same as the (asserted unique) return type;
2. symbols coming from DimOp should be admissible as lower / upper bounds in For

The relevant tests are added.

PiperOrigin-RevId: 234750249
2019-03-29 16:33:26 -07:00
Uday Bondhugula a1dad3a5d9 Extend/improve getSliceBounds() / complete TODO + update unionBoundingBox
- compute slices precisely where the destination iteration depends on multiple source
  iterations (instead of over-approximating to the whole source loop extent)
- update unionBoundingBox to deal with input with non-matching symbols
- reenable disabled backend test case

PiperOrigin-RevId: 234714069
2019-03-29 16:33:11 -07:00
River Riddle 48ccae2476 NFC: Refactor the files related to passes.
* PassRegistry is split into its own source file.
* Pass related files are moved to a new library 'Pass'.

PiperOrigin-RevId: 234705771
2019-03-29 16:32:56 -07:00
Uday Bondhugula 5021dc4fa0 DMA placement update - hoist loops invariant DMAs
- hoist DMAs past all loops immediately surrounding the region that the latter
  is invariant on - do this at DMA generation time itself

PiperOrigin-RevId: 234628447
2019-03-29 16:32:41 -07:00
Nicolas Vasilache 25016dc4c6 [EDSC] Remove dead code in MLIREmitter.cpp
cl/234609882 made EDSCs typed on construction (instead of typed on emission).
This CL cleans up some leftover dead code.

PiperOrigin-RevId: 234627105
2019-03-29 16:32:26 -07:00
Uday Bondhugula 4ca6219099 Update pass documentation + improve/fix some comments
- add documentation for passes
- improve / fix outdated doc comments

PiperOrigin-RevId: 234627076
2019-03-29 16:32:11 -07:00
River Riddle da0ebe0670 Add a generic pattern matcher for matching constant values produced by an operation with zero operands and a single result.
PiperOrigin-RevId: 234616691
2019-03-29 16:31:56 -07:00
Alex Zinenko 05f37d52d0 EDSC: clean up type casting mechanism
Originally, edsc::Expr had a long enum edsc::ExprKind with all supported types
of operations.  Recent Expr extensibility support removed the need to specify
supported types in advance.  Replace the no-longer-used blocks of enum values
reserved for unary/binary/ternary/variadic expressions with simple values (it
is still useful to know if an expression is, e.g., binary to access it through
a simpler API).

Furthermore, wrap string-comparison now used to identify specific ops into an
`Expr::is_op<>` function template, that acts similarly to `Instruction::isa<>`.
Introduce `{Unary,Binary,Ternary,Variadic}Expr::make<> ` function template that
creates a Expression emitting the MLIR Op specified as template argument.

PiperOrigin-RevId: 234612916
2019-03-29 16:31:41 -07:00
Alex Zinenko b4dba895a6 EDSC: make Expr typed and extensible
Expose the result types of edsc::Expr, which are now stored for all types of
Exprs and not only for the variadic ones.  Require return types when an Expr is
constructed, if it will ever have some.  An empty return type list is
interpreted as an Expr that does not create a value (e.g. `return` or `store`).

Conceptually, all edss::Exprs are now typed, with the type being a (potentially
empty) tuple of return types.  Unbound expressions and Bindables must now be
constructed with a specific type they will take.  This makes EDSC less
evidently type-polymorphic, but we can still write generic code such as

    Expr sumOfSquares(Expr lhs, Expr rhs) { return lhs * lhs + rhs * rhs; }

and use it to construct different typed expressions as

    sumOfSquares(Bindable(IndexType::get(ctx)), Bindable(IndexType::get(ctx)));
    sumOfSquares(Bindable(FloatType::getF32(ctx)),
                 Bindable(FloatType::getF32(ctx)));

On the positive side, we get the following.
1. We can now perform type checking when constructing Exprs rather than during
   MLIR emission.  Nevertheless, this is still duplicates the Op::verify()
   until we can factor out type checking from that.
2. MLIREmitter is significantly simplified.
3. ExprKind enum is only used for actual kinds of expressions.  Data structures
   are converging with AbstractOperation, and the users can now create a
   VariadicExpr("canonical_op_name", {types}, {exprs}) for any operation, even
   an unregistered one without having to extend the enum and make pervasive
   changes to EDSCs.

On the negative side, we get the following.
1. Typed bindables are more verbose, even in Python.
2. We lose the ability to do print debugging for higher-level EDSC abstractions
   that are implemented as multiple MLIR Ops, for example logical disjunction.

This is the step 2/n towards making EDSC extensible.

***

Move MLIR Op construction from MLIREmitter::emitExpr to Expr::build since Expr
now has sufficient information to build itself.

This is the step 3/n towards making EDSC extensible.

Both of these strive to minimize the amount of irrelevant changes.  In
particular, this introduces more complex pretty-printing for affine and binary
expression to make sure tests continue to pass.  It also relies on string
comparison to identify specific operations that an Expr produces.

PiperOrigin-RevId: 234609882
2019-03-29 16:31:26 -07:00
Lei Zhang e0fc503896 [TableGen] Support using Variadic<Type> in results
This CL extended TableGen Operator class to provide accessors for information on op
results.

In OpDefinitionGen, added checks to make sure only the last result can be variadic,
and adjusted traits and builders generation to consider variadic results.

PiperOrigin-RevId: 234596124
2019-03-29 16:31:11 -07:00
Alex Zinenko 0a4c940c1b EDSC: introduce support for blocks
EDSC currently implement a block as a statement that is itself a list of
statements.  This suffers from two modeling problems: (1) these blocks are not
addressable, i.e. one cannot create an instruction where thus constructed block
is a successor; (2) they support block nesting, which is not supported by MLIR
blocks.  Furthermore, emitting such "compound statement" (misleadingly named
`Block` in Python bindings) does not actually produce a new Block in the IR.

Implement support for creating actual IR Blocks in EDSC.  In particular, define
a new StmtBlock EDSC class that is neither an Expr nor a Stmt but contains a
list of Stmts.  Additionally, StmtBlock may have (early-) typed arguments.
These arguments are Bindable expressions that can be used inside the block.
Provide two calls in the MLIREmitter, `emitBlock` that actually emits a new
block and `emitBlockBody` that only emits the instructions contained in the
block without creating a new block.  In the latter case, the instructions must
not use block arguments.

Update Python bindings to make it clear when instruction emission happens
without creating a new block.

PiperOrigin-RevId: 234556474
2019-03-29 16:30:56 -07:00
Lei Zhang 911b9960ba [TableGen] Fix discrepancy between parameter meaning and code logic
The parameter to emitStandaloneParamBuilder() was renamed from hasResultType to
isAllSameType, which is the opposite boolean value. The logic should be changed
to make them consistent.

Also re-ordered some methods in Operator. And few other tiny improvements.

PiperOrigin-RevId: 234478316
2019-03-29 16:30:41 -07:00
Uday Bondhugula f97c1c5b06 Misc. updates/fixes to analysis utils used for DMA generation; update DMA
generation pass to make it drop certain assumptions, complete TODOs.

- multiple fixes for getMemoryFootprintBytes
  - pass loopDepth correctly from getMemoryFootprintBytes()
  - use union while computing memory footprints

- bug fixes for addAffineForOpDomain
  - take into account loop step
  - add domains of other loop IVs in turn that might have been used in the bounds

- dma-generate: drop assumption of "non-unit stride loops being tile space loops
  and skipping those and recursing to inner depths"; DMA generation is now purely
  based on available fast mem capacity and memory footprint's calculated

- handle memory region compute failures/bailouts correctly from dma-generate

- loop tiling cleanup/NFC

- update some debug and error messages to use emitNote/emitError in
  pipeline-data-transfer pass - NFC

PiperOrigin-RevId: 234245969
2019-03-29 16:30:26 -07:00
MLIR Team 58aa383e60 Support fusing producer loop nests which write to a memref which is live out, provided that the write region of the consumer loop nest to the same memref is a super set of the producer's write region.
PiperOrigin-RevId: 234240958
2019-03-29 16:30:11 -07:00
Alex Zinenko ecd403c0e8 EDSC: properly construct FunctionTypes
The existing implementation of makeFunctionType in EDSC contains a bug: the
array of input types is overwritten using output types passed as arguments and
the array of output types is never filled in.  This leads to all sorts of
incorrect memory behavior.  Fill in the array of output types using the proper
argument.

PiperOrigin-RevId: 234177221
2019-03-29 16:29:56 -07:00
Alex Zinenko 4bb31f7377 ExecutionEngine: provide utils for running CLI-configured LLVM passes
A recent change introduced a possibility to run LLVM IR transformation during
JIT-compilation in the ExecutionEngine.  Provide helper functions that
construct IR transformers given either clang-style optimization levels or a
list passes to run.  The latter wraps the LLVM command line option parser to
parse strings rather than actual command line arguments.  As a result, we can
run either of

    mlir-cpu-runner -O3 input.mlir
    mlir-cpu-runner -some-mlir-pass -llvm-opts="-llvm-pass -other-llvm-pass"

to combine different transformations.  The transformer builder functions are
provided as a separate library that depends on LLVM pass libraries unlike the
main execution engine library.  The library can be used for integrating MLIR
execution engine into external frameworks.

PiperOrigin-RevId: 234173493
2019-03-29 16:29:41 -07:00
MLIR Team 8f5f2c765d LoopFusion: perform a series of loop interchanges to increase the loop depth at which slices of producer loop nests can be fused into constumer loop nests.
*) Adds utility to LoopUtils to perform loop interchange of two AffineForOps.
*) Adds utility to LoopUtils to sink a loop to a specified depth within a loop nest, using a series of loop interchanges.
*) Computes dependences between all loads and stores in the loop nest, and classifies each loop as parallel or sequential.
*) Computes loop interchange permutation required to sink sequential loops (and raise parallel loop nests) while preserving relative order among them.
*) Checks each dependence against the permutation to make sure that dependences would not be violated by the loop interchange transformation.
*) Calls loop interchange in LoopFusion pass on consumer loop nests before fusing in producers, sinking loops with loop carried dependences deeper into the consumer loop nest.
*) Adds and updates related unit tests.

PiperOrigin-RevId: 234158370
2019-03-29 16:29:26 -07:00
Lei Zhang 081299333b [TableGen] Rename Operand to Value to prepare sharing between operand and result
We specify op operands and results in TableGen op definition using the same syntax.
They should be modelled similarly in TableGen driver wrapper classes.

PiperOrigin-RevId: 234153332
2019-03-29 16:29:11 -07:00
Alex Zinenko ffc9043604 LLVM dialect conversion and target: support indirect calls
Add support for converting MLIR `call_indirect` instructions to the LLVM IR
dialect.  In LLVM IR, the same instruction is used for direct and indirect
calls.  In the dialect, we have `llvm.call` and `llvm.call0` to work around the
absence of the void type in MLIR.  For direct calls, the callee is stored as
instruction attribute.  Use the same pair of instructions for indirect calls by
omitting the callee attribute.  In the MLIR to LLVM IR translator, check the
presence of attribute to decide whether to construct a direct or an indirect
call using different LLVM IR Builder functions.

Add support for converting constants of function type to the LLVM IR dialect
and for translating them to the LLVM IR proper.  The `llvm.constant` operation
works similarly to other types: its attribute has MLIR function type but the
value it produces has LLVM IR function type wrapped in the dialect type.  While
lowering, look up the pointer to the converted function in the corresponding
mapping.

PiperOrigin-RevId: 234132351
2019-03-29 16:28:56 -07:00
Alex Zinenko d7aa700ccb Dialect conversion: decouple function signature conversion from type conversion
Function types are built-in in MLIR and affect the validity of the IR itself.
However, advanced target dialects such as the LLVM IR dialect may include
custom function types.  Until now, dialect conversion was expecting function
types not to be converted to the custom type: although the signatures was
allowed to change, the outer type must have been an mlir::FunctionType.  This
effectively prevented dialect conversion from creating instructions that
operate on values of the custom function type.

Dissociate function signature conversion from general type conversion.
Function signature conversion must still produce an mlir::FunctionType and is
used in places where built-in types are required to make IR valid.  General
type conversion is used for SSA values, including function and block arguments
and function results.

Exercise this behavior in the LLVM IR dialect conversion by converting function
types to LLVM IR function pointer types.  The pointer to a function is chosen
to provide consistent lowering of higher-order functions: while it is possible
to have a value of function type, it is not possible to create a function type
accepting a returning another function type.

PiperOrigin-RevId: 234124494
2019-03-29 16:28:41 -07:00
MLIR Team affb2193cc Update direction vector computation to use FlatAffineConstraints::getLower/UpperBounds.
Update FlatAffineConstraints::getLower/UpperBounds to project to the identifier for which bounds are being computed. This change enables computing bounds on an identifier which were previously dependent on the bounds of another identifier.

PiperOrigin-RevId: 234017514
2019-03-29 16:28:25 -07:00
Uday Bondhugula 6b7a49dd6a Add -tile-sizes command line option for loop tiling; clean up cl options for
for dma-generate, loop-unroll.

- add -tile-sizes command line option for loop tiling to specify different tile
  sizes for loops in a band

- clean up command line options for loop-unroll, dma-generate (remove
  cl::hidden)

PiperOrigin-RevId: 234006232
2019-03-29 16:28:10 -07:00
Lei Zhang 93d8f14c0f [TFLite] Fuse AddOp into preceding convolution ops
If we see an add op adding a constant value to a convolution op with constant
bias, we can fuse the add into the convolution op by constant folding the
bias and the add op's constant operand.

This CL also removes dangling RewriterGen check that prevents us from using
nested DAG nodes in result patterns, which is already supported.

PiperOrigin-RevId: 233989654
2019-03-29 16:27:55 -07:00
Lei Zhang eb3f8dcb93 [TableGen] Use deduced result types for build() of suitable ops
For ops with the SameOperandsAndResultType trait, we know that all result types
should be the same as the first operand's type. So we can generate a build()
method without requiring result types as parameters and also invoke this method
when constructing such ops during expanding rewrite patterns.

Similarly for ops have broadcast behavior, we can define build() method to use
the deduced type as the result type. So we can also calling into this build()
method when constructing ops in RewriterGen.

PiperOrigin-RevId: 233988307
2019-03-29 16:27:40 -07:00
Alex Zinenko f2c93f0995 EDSC: fix unused-wariable warning when compiling without assertions
In LowerEDSCTestPass, there are two range-for loops that only do assertions on
the loop variable.  With assertions disabled, the variable becomes unused and
triggers a warning promoted to error.  Cast it to void in the loop to supress
the warning.

PiperOrigin-RevId: 233936171
2019-03-29 16:27:25 -07:00
Alex Zinenko 50700b8122 Reimplement LLVM IR translation to use the MLIR LLVM IR dialect
Original implementation of the translation from MLIR to LLVM IR operated on the
Standard+BuiltIn dialect, with a later addition of the SuperVector dialect.
This required the translation to be aware of a potetially large number of other
dialects as the infrastructure extended.  With the recent introduction of the
LLVM IR dialect into MLIR, the translation can be switched to only translate
the LLVM IR dialect, and the translation of the operations becomes largely
mechanical.

The reimplementation of the translator follows the lines of the original
translator in function and basic block conversion.  In particular, block
arguments are converted to LLVM IR PHI nodes, which are connected to their
sources after all blocks of a function had been converted.  Thanks to LLVM IR
types being wrapped in the MLIR LLVM dialect type, type conversion is
simplified to only convert function types, all other types are simply
unwrapped.  Individual instructions are constructed using the LLVM IRBuilder,
which has a great potential for being table-generated from the LLVM IR dialect
operation definitions.

The input of the test/Target/llvmir.mlir is updated to use the MLIR LLVM IR
dialect.  While it is now redundant with the dialect conversion test, the point
of the exercise is to guarantee exactly the same LLVM IR is emitted.  (Only the
name of the allocation function is changed from `__mlir_alloc` to `alloc` in
the CHECK lines.)  It will be simplified in a follow-up commit.

PiperOrigin-RevId: 233842306
2019-03-29 16:27:10 -07:00
Jacques Pienaar 388fb3751e Add pattern constraints.
Enable matching pattern only if constraint is met. Start with type constraints and more general C++ constraints.

PiperOrigin-RevId: 233830768
2019-03-29 16:26:53 -07:00
Alex Zinenko bc184cff3f EDSC: unify Expr storage
EDSC expressions evolved to have different types of underlying storage.
Separate classes are used for unary, binary, ternary and variadic expressions.
The latter covers all the needs of the three special cases.  Remove these
special cases and use a single ExprStorage class everywhere while maintaining
the same APIs at the Expr level (ExprStorage is an internal implementation
class).

This is step 1/n to converging EDSC expressions and Ops and making EDSCs
support custom operations.

PiperOrigin-RevId: 233704912
2019-03-29 16:26:37 -07:00
Alex Zinenko 465746f262 LLVM IR Dialect: port DimOp lowering from the translator
DimOp is converted to a constant LLVM IR dialect operation for static
dimensions and to an access to the dynamic size info stored in the memref
descriptor for the dynamic dimensions.  This behavior is consistent with the
existing mlir-translator.

This completes the porting of MLIR -> LLVM lowering to the dialect conversion
infrastructure.

PiperOrigin-RevId: 233665634
2019-03-29 16:26:23 -07:00
River Riddle 2f11f86846 Add langref descriptions for the attribute values supported in MLIR.
PiperOrigin-RevId: 233661338
2019-03-29 16:26:08 -07:00
Uday Bondhugula 00860662a2 Generate dealloc's for alloc's of pipeline-data-transfer
- for the DMA transfers being pipelined through double buffering, generate
  deallocs for the double buffers being alloc'ed

This change is along the lines of cl/233502632. We initially wanted to experiment with
scoped allocation - so the deallocation's were usually not necessary; however, they are
needed even with scoped allocations in some situations - for eg. when the enclosing loop
gets unrolled. The dealloc serves as an end of lifetime marker.

PiperOrigin-RevId: 233653463
2019-03-29 16:25:53 -07:00
River Riddle 4755774d16 Make IndexType a standard type instead of a builtin. This also cleans up some unnecessary factory methods on the Type class.
PiperOrigin-RevId: 233640730
2019-03-29 16:25:38 -07:00
Alex Zinenko 8de7f6c471 LLVM IR Dialect: add select op and lower standard select to it
This is a similar one-to-one mapping.

PiperOrigin-RevId: 233621006
2019-03-29 16:25:23 -07:00
Alex Zinenko 0e59e5c49b EDSC: move Expr and Stmt construction operators to a namespace
In the current state, edsc::Expr and edsc::Stmt overload operators to construct
other Exprs and Stmts.  This includes some unconventional overloads of the
`operator==` to create a comparison expression and of the `operator!` to create
a negation expression.  This situation could lead to unpleasant surprises where
the code does not behave like expected.  Make all Expr and Stmt construction
operators free functions and move them to the `edsc::op` namespace.  Callers
willing to use these operators must explicitly include them with the `using`
declaration.  This can be done in some local scope.

Additionally, we currently emit signed comparisons for order-comparison
operators.  With namespaces, we can later introduce two sets of operators in
different namespace, e.g. `edsc::op::sign` and `edsc::op::unsign` to clearly
state which kind of comparison is implied.

PiperOrigin-RevId: 233578674
2019-03-29 16:25:08 -07:00
Alex Zinenko ed81ddc865 EDSC: support 'for' loops with dynamic bounds
The existing implementation in EDSC of 'for' loops in MLIREmitter is
unnecessarily restricted to constant bounds.  The underlying AffineForOp can be
constructed from (a list of) Values and AffineMaps instead of constants.  Its
verifier will check that the "affine provenance" conditions, i.e. that the
values used in the loop conditions are defined in such a way that they can be
analyzed by affine passes, are respected.  One can use non-constant values in
affine loop bounds in conjunction with a single-dimensional identity affine
map.  Implement this in MLIREmitter while maintaining the special case for
constant bounds that leads to significantly simpler generated IR when
applicable.

Test this change using the EDSC lowering test pass to inject code emitted from
EDSC into functions with predefined names.

PiperOrigin-RevId: 233578220
2019-03-29 16:24:53 -07:00
Tatiana Shpeisman 2e6cd60d3b Add dialect-specific decoding for opaque constants.
Associates opaque constants with a particular dialect. Adds general mechanism to register dialect-specific hooks defined in external components. Adds hooks to decode opaque tensor constant and extract an element of an opaque tensor constant.

This CL does not change the existing mechanism for registering constant folding hook yet. One thing at a time.

PiperOrigin-RevId: 233544757
2019-03-29 16:24:38 -07:00
Jacques Pienaar 4b88e7a245 Fix incorrect type in iterator.
PiperOrigin-RevId: 233542711
2019-03-29 16:24:23 -07:00
Uday Bondhugula 8b3f841daf Generate dealloc's for the alloc's of dma-generate.
- for the DMA buffers being allocated (and their tags), generate corresponding deallocs
- minor related update to replaceAllMemRefUsesWith and PipelineDataTransfer pass

Code generation for DMA transfers was being done with the initial simplifying
assumption that the alloc's would map to scoped allocations, and so no
deallocations would be necessary. Drop this assumption to generalize. Note that
even with scoped allocations, unrolling loops that have scoped allocations
could create a series of allocations and exhaustion of fast memory. Having a
end of lifetime marker like a dealloc in fact allows creating new scopes if
necessary when lowering to a backend and still utilize scoped allocation.
DMA buffers created by -dma-generate are guaranteed to have either
non-overlapping lifetimes or nested lifetimes.

PiperOrigin-RevId: 233502632
2019-03-29 16:24:08 -07:00
Uday Bondhugula f5eed89df0 Fix + cleanup for getMemRefRegion()
- determine symbols for the memref region correctly

- this wasn't exposed earlier since we didn't have any test cases where the
  portion of the nest being DMAed for was non-hyperrectangular (i.e., bounds of
  one IV  depending on other IVs within that part)

PiperOrigin-RevId: 233493872
2019-03-29 16:23:53 -07:00
Jacques Pienaar 7897257265 Add binary broadcastable builder.
* Add common broadcastable binary adder in TF ops and use for a few ops;
  - Adding Sub, Mul here
* Change the prepare lowering to use TF variants;
* Add some more legalization patterns;

PiperOrigin-RevId: 233310952
2019-03-29 16:23:38 -07:00
Lei Zhang de0fffdb5f [TFLite] Add rewrite pattern to fuse conv ops with Relu6 op
* Fixed tfl.conv_2d and tfl.depthwise_conv_2d to have fused activation
  function attribute
* Fixed RewriterGen crash: trying to get attribute match template when
  the matcher is unspecified (UnsetInit)

PiperOrigin-RevId: 233241755
2019-03-29 16:23:23 -07:00
Lei Zhang a9cee4fc8c [TableGen] Support nested DAG nodes in result result op arguments
This CL allowed developers to write result ops having nested DAG nodes as their
arguments. Now we can write

```
def : Pat<(...), (AOp (BOp, ...), AOperand)>
```
PiperOrigin-RevId: 233207225
2019-03-29 16:23:08 -07:00
Lei Zhang a57b398906 [TableGen] Assign created ops to variables and rewrite with PatternRewriter::replaceOp()
Previously we were using PatternRewrite::replaceOpWithNewOp() to both create the new op
inline and rewrite the matched op. That does not work well if we want to generate multiple
ops in a sequence. To support that, this CL changed to assign each newly created op to a
separate variable.

This CL also refactors how PatternEmitter performs the directive dispatch logic.

PiperOrigin-RevId: 233206819
2019-03-29 16:22:53 -07:00
Alex Zinenko d7e6b33e93 Convert MemRefCastOp to the LLVM IR dialect
Add support for converting `memref_cast` operations into the LLVM IR dialect.
This goes beyond want is currently implemented in the MLIR standard ops to LLVM
IR translation, but follows the general principles of the memref descriptors.
A memref cast creates a new descriptor containing the same buffer pointer but a
potentially different number of dynamic sizes (as many as dynamic dimensions in
the target memref type).  The lowering copies the buffer pointer to the new
descriptor and inserts dynamic sizes to it.  If the size is static in the
source type, a constant value is inserted as the dynamic size, otherwise a
dynamic value is copied from the source descriptor, taking into account the
difference in dynamic size positions in the descriptor.

PiperOrigin-RevId: 233082035
2019-03-29 16:22:38 -07:00
River Riddle 366ebcf6aa Remove the restriction that only registered terminator operations may terminate a block and have block operands. This allows for any operation to hold block operands. It also introduces the notion that unregistered operations may terminate a block. As such, the 'isTerminator' api on Instruction has been split into 'isKnownTerminator' and 'isKnownNonTerminator'.
PiperOrigin-RevId: 233076831
2019-03-29 16:22:23 -07:00
Alex Zinenko f5b99275d2 Cleanups in ExecutionEngine.
Make sure the module is always passed to the optimization layer.
Drop unused default argument for the IR transformation and remove the function
that was only used in this default argument.  The transformation wrapper
constructor already checks for the null function, so the caller can just pass
`{}` if they don't want any transformation (no callers currently need this).

PiperOrigin-RevId: 233068817
2019-03-29 16:22:08 -07:00
Alex Zinenko 4c35bbbb51 Port load/store op translation to LLVM IR dialect lowering
Implement the lowering of memref load and store standard operations into the
LLVM IR dialect.  This largely follows the existing mechanism in
MLIR-to-LLVM-IR translation for the sake of compatibility.  A memref value is
transformed into a memref descriptor value which holds the pointer to the
underlying data buffer and the dynamic memref sizes.  The data buffer is
contiguous.  Accesses to multidimensional memrefs are linearized in row-major
form.  In linear address computation, statically known sizes are used as
constants while dynamic sizes are extracted from the memref descriptor.

PiperOrigin-RevId: 233043846
2019-03-29 16:21:53 -07:00
Uday Bondhugula c419accea3 Automated rollback of changelist 232728977.
PiperOrigin-RevId: 232944889
2019-03-29 16:21:38 -07:00
Smit Hinsu c201e6ef05 Handle dynamic shapes in Broadcastable op trait
That allows TensorFlow Add and Div ops to use Broadcastable op trait instead of
more restrictive SameValueType op trait.

That in turn allows TensorFlow ops to be registered by defining GET_OP_LIST and
including the generated ops file. Currently, tf-raise-control-flow pass tests
are using dynamic shapes in tf.Add op and AddOp can't be registered without
supporting the dynamic shapes.

TESTED with unit tests

PiperOrigin-RevId: 232927998
2019-03-29 16:21:23 -07:00
River Riddle 13a45c7194 Add verification for AffineApply/AffineFor/AffineIf dimension and symbol operands. This also allows a DimOp to be a valid dimension identifier if its operand is a valid dimension identifier.
PiperOrigin-RevId: 232923468
2019-03-29 16:21:08 -07:00
Jacques Pienaar 351eed0dd1 Add tf.LeakyRelu.
* Add tf.LeakyRelu op definition + folders (well one is really canonicalizer)
* Change generated error message to use attribute description instead;
* Change the return type of F32Attr to be APFloat - internally it is already
  stored as APFloat so let the caller decides if they want to convert it or
  not. I could see varying opinions here though :) (did not change i32attr
  similarly)

PiperOrigin-RevId: 232923358
2019-03-29 16:20:53 -07:00
Alex Zinenko 36c0516c78 Disallow zero dimensions in vectors and memrefs
Aggregate types where at least one dimension is zero do not fully make sense as
they cannot contain any values (their total size is zero).  However, TensorFlow
and XLA support tensors with zero sizes, so we must support those too.  This is
relatively safe since, unlike vectors and memrefs, we don't have first-class
element accessors for MLIR tensors.

To support sparse element attributes of vector types that have no non-zero
elements, make sure that index and value element attributes have tensor type so
that we never need to create a zero vector type internally.  Note that this is
already consistent with the inline documentation of the sparse elements
attribute.  Users of the sparse elements attribute should not rely on the
storage schema anyway.

PiperOrigin-RevId: 232896707
2019-03-29 16:20:38 -07:00
Alex Zinenko 99b19c1d20 Disallow hexadecimal literals in type declarations
Existing IR syntax is ambiguous in type declarations in presence of zero sizes.
In particular, `0x1` in the type size can be interpreted as either a
hexadecimal literal corresponding to 1, or as two distinct decimal literals
separated by an `x` for sizes.  Furthermore, the shape `<0xi32>` fails lexing
because it is expected to be an integer literal.

Fix the lexer to treat `0xi32` as an integer literal `0` followed by a bare
identifier `xi32` (look one character ahead and early return instead of
erroring out).

Disallow hexadecimal literals in type declarations and forcibly split the token
into multiple parts while parsing the type.  Note that the splitting trick has
been already present to separate the element type from the preceding `x`
character.

PiperOrigin-RevId: 232880373
2019-03-29 16:20:22 -07:00
River Riddle a886625813 Modify the canonicalizations of select and muli to use the fold hook.
This also extends the greedy pattern rewrite driver to add the operands of folded operations back to the worklist.

PiperOrigin-RevId: 232878959
2019-03-29 16:20:06 -07:00
Alex Zinenko 8093f17a66 ExecutionEngine: provide a hook for LLVM IR passes
The current ExecutionEngine flow generates the LLVM IR from MLIR and
JIT-compiles it as is without any transformation.  It thus misses the
opportunity to perform optimizations supported by LLVM or collect statistics
about the module.  Modify the Orc JITter to perform transformations on the LLVM
IR.  Accept an optional LLVM module transformation function when constructing
the ExecutionEngine and use it while JIT-compiling.  This prevents MLIR
ExecutionEngine from depending on LLVM passes; its clients should depend on the
passes they require.

PiperOrigin-RevId: 232877060
2019-03-29 16:19:49 -07:00
Uday Bondhugula 4ba8c9147d Automated rollback of changelist 232717775.
PiperOrigin-RevId: 232807986
2019-03-29 16:19:33 -07:00
River Riddle 99fee0b181 When canonicalizing only erase the operation after calling the 'fold' hook if replacement results were supplied. This fixes a bug where the operation would always get erased, even if it was modified in place.
PiperOrigin-RevId: 232757964
2019-03-29 16:19:17 -07:00
River Riddle fd2d7c857b Rename the 'if' operation in the AffineOps dialect to 'affine.if' and namespace
the AffineOps dialect with 'affine'.

PiperOrigin-RevId: 232728977
2019-03-29 16:18:59 -07:00
Lei Zhang 888b9fa8a6 Add constant build() method not requiring result type
Instead, we deduce the result type from the given attribute.

This is in preparation for generating constant ops with TableGen.

PiperOrigin-RevId: 232723467
2019-03-29 16:18:44 -07:00
Stella Laurenzo c78d708487 Implement Quantization dialect and minimal UniformQuantizedType.
PiperOrigin-RevId: 232723240
2019-03-29 16:18:29 -07:00
Alex Zinenko e9493cf14d Port alloc/dealloc LLVM IR conversion into the LLVM IR dialect lowering
Implement the lowering of memref allocation and deallocation standard
operations into the LLVM IR dialect.  This largely follows the existing
mechanism in MLIR-to-LLVM-IR translation for the sake of compatibility.
A memref value is transformed into a memref descriptor value which holds the
pointer to the underlying data buffer and the dynamic memref sizes.  The buffer
is allocated using `malloc` and freed using `free`.  The lowering inserts
declarations of these functions if necessary.  Memref descriptors are values of
the LLVM IR structure type wrapped into an MLIR LLVM dialect type.  The pointer
to the buffer and the individual sizes are accessed using `extractvalue` and
`insertvalue` LLVM IR instructions.

PiperOrigin-RevId: 232719419
2019-03-29 16:18:14 -07:00
River Riddle 90d10b4e00 NFC: Rename the 'for' operation in the AffineOps dialect to 'affine.for'. The is the second step to adding a namespace to the AffineOps dialect.
PiperOrigin-RevId: 232717775
2019-03-29 16:17:59 -07:00
River Riddle 905d84851d Address post submit review comments for removing Block::findInstPositionInBlock.
PiperOrigin-RevId: 232713514
2019-03-29 16:17:44 -07:00
River Riddle 3227dee15d NFC: Rename affine_apply to affine.apply. This is the first step to adding a namespace to the affine dialect.
PiperOrigin-RevId: 232707862
2019-03-29 16:17:29 -07:00
MLIR Team b9dde91ea6 Adds the ability to compute the MemRefRegion of a sliced loop nest. Utilizes this feature during loop fusion cost computation, to compute what the write region of a fusion candidate loop nest slice would be (without having to materialize the slice or change the IR).
*) Adds parameter to public API of MemRefRegion::compute for passing in the slice loop bounds to compute the memref region of the loop nest slice.
*) Exposes public method MemRefRegion::getRegionSize for computing the size of the memref region in bytes.

PiperOrigin-RevId: 232706165
2019-03-29 16:17:15 -07:00
Jacques Pienaar 31f2b3ffa1 Address follow on comments for quickstart doc.
PiperOrigin-RevId: 232705423
2019-03-29 16:16:58 -07:00
River Riddle 42a2d7d6e1 Remove findInstPositionInBlock from the Block api.
PiperOrigin-RevId: 232704766
2019-03-29 16:16:43 -07:00
Lei Zhang 1df6ca5053 [TableGen] Model variadic operands using Variadic<Type>
Previously, we were using the trait mechanism to specify that an op has variadic operands.
That led a discrepancy between how we handle ops with deterministic number of operands.
Besides, we have no way to specify the constraints and match against the variadic operands.

This CL introduced Variadic<Type> as a way to solve the above issues.

PiperOrigin-RevId: 232656104
2019-03-29 16:16:28 -07:00
River Riddle 0c65cf283c Move the AffineFor loop bound folding to a canonicalization pattern on the AffineForOp.
PiperOrigin-RevId: 232610715
2019-03-29 16:16:11 -07:00
River Riddle 423715056d Emit a parser error when the min/max prefix is missing from a multi value AffineFor loop bound AffineMap.
PiperOrigin-RevId: 232609693
2019-03-29 16:15:56 -07:00
River Riddle 10237de8eb Refactor the affine analysis by moving some functionality to IR and some to AffineOps. This is important for allowing the affine dialect to define canonicalizations directly on the operations instead of relying on transformation passes, e.g. ComposeAffineMaps. A summary of the refactoring:
* AffineStructures has moved to IR.

* simplifyAffineExpr/simplifyAffineMap/getFlattenedAffineExpr have moved to IR.

* makeComposedAffineApply/fullyComposeAffineMapAndOperands have moved to AffineOps.

* ComposeAffineMaps is replaced by AffineApplyOp::canonicalize and deleted.

PiperOrigin-RevId: 232586468
2019-03-29 16:15:41 -07:00
River Riddle 6f7470a56a Define the initial g3doc for the Affine dialect.
PiperOrigin-RevId: 232581506
2019-03-29 16:15:26 -07:00
Smit Hinsu 2927297a1c Add derived type attributes for TensorFlow ops generated by TableGen
Motivation for this change is to remove redundant TF type attributes for
TensorFlow ops. For example, tf$T: "tfdtype$DT_FLOAT". Type attributes can be derived using the MLIR operand or result MLIR types, attribute names and their mapping. This will also allow constant folding of instructions generated within MLIR (and not imported from TensorFlow) without adding type attributes for the instruction.

Derived attributes are populated while exporting MLIR to TF GraphDef using
auto-generated populators. Populators are only available for the ops that are generated by the TableGen.

Also, fixed Operator::getNumArgs method to exclude derived attributes as they are not
part of the arguments.

TESTED with unit test

PiperOrigin-RevId: 232531561
2019-03-29 16:15:08 -07:00
Alex Zinenko 40d5d09f9d Print parens around the return type of a function if it is also a function type
Existing type syntax contains the following productions:

    function-type ::= type-list-parens `->` type-list
    type-list ::= type | type-list-parens
    type ::= <..> | function-type

Due to these rules, when the parser sees `->` followed by `(`, it cannot
disambiguate if `(` starts a parenthesized list of function result types, or a
parenthesized list of operands of another function type, returned from the
current function.  We would need an unknown amount of lookahead to try to find
the `->` at the right level of function nesting to differentiate between type
lists and singular function types.

Instead, require the result type of the function that is a function type itself
to be always parenthesized, at the syntax level.  Update the spec and the
parser to correspond to the production rule names used in the spec (although it
would have worked without modifications).  Fix the function type parsing bug in
the process, as it used to accept the non-parenthesized list of types for
arguments, disallowed by the spec.

PiperOrigin-RevId: 232528361
2019-03-29 16:14:50 -07:00
Jacques Pienaar 1b1f293a5d MLIR graph rewrite using pattern quickstart doc.
Start quickstart guide of how to define ops + specify patterns for rewrite.

PiperOrigin-RevId: 232490287
2019-03-29 16:14:35 -07:00
Sergei Lebedev d8e5ce0107 Implemented __invert__, __and__ and __or__ in the EDSC Python bindings
This allows to use bitwise operators as logical (accounting for differences
in precedence).

PiperOrigin-RevId: 232489024
2019-03-29 16:14:20 -07:00
Alex Zinenko 3fa22b88de Print non-default attribute types in optional attr dictionary
In optional attribute dictionary used, among others, in the generic form of the
ops, attribute types for integers and floats are omitted.  This could lead to
inconsistencies when round-tripping the IR, in particular the attributes are
created with incorrect types after parsing (integers default to i64, floats
default to f64).  Provide API to emit a trailing type after the attribute for
integers and floats.  Use it while printing the optional attribute dictionary.

Omitting types for i64 and f64 is a pragmatic decision that minimizes changes
in tests.  We may want to reconsider in the future and always print types of
attributes in the generic form.

PiperOrigin-RevId: 232480116
2019-03-29 16:14:05 -07:00
MLIR Team a78edcda5b Loop fusion improvements:
*) After a private memref buffer is created for a fused loop nest, dependences on the old memref are reduced, which can open up fusion opportunities. In these cases, users of the old memref are added back to the worklist to be reconsidered for fusion.
*) Fixed a bug in fusion insertion point dependence check where the memref being privatized was being skipped from the check.

PiperOrigin-RevId: 232477853
2019-03-29 16:13:50 -07:00
Sergei Lebedev 52ec65c85e Implemented __eq__ and __ne__ in EDSC Python bindings
PiperOrigin-RevId: 232473201
2019-03-29 16:13:34 -07:00
Uday Bondhugula ed27b40085 Remove stray debug output - NFC
PiperOrigin-RevId: 232390076
2019-03-29 16:13:17 -07:00
River Riddle bf9c381d1d Remove InstWalker and move all instruction walking to the api facilities on Function/Block/Instruction.
PiperOrigin-RevId: 232388113
2019-03-29 16:12:59 -07:00
River Riddle c9ad4621ce NFC: Move AffineApplyOp to the AffineOps dialect. This also moves the isValidDim/isValidSymbol methods from Value to the AffineOps dialect.
PiperOrigin-RevId: 232386632
2019-03-29 16:12:40 -07:00
Uday Bondhugula 0f50414fa4 Refactor common code getting memref access in getMemRefRegion - NFC
- use getAccessMap() instead of repeating it
- fold getMemRefRegion into MemRefRegion ctor (more natural, avoid heap
  allocation and unique_ptr where possible)

- change extractForInductionVars - MutableArrayRef -> ArrayRef for the
  arguments. Since the method is just returning copies of 'Value *', the client
  can't mutate the pointers themselves; it's fine to mutate the 'Value''s
  themselves, but that doesn't mutate the pointers to those.

- change the way extractForInductionVars returns (see b/123437690)

PiperOrigin-RevId: 232359277
2019-03-29 16:12:25 -07:00
Uday Bondhugula 99d6ee02b9 Update MemRefAccess::getAccessMap to always canonicalize map + operands
- with this we won't see duplicate / unused operands when getting access maps,
  or when constructing FlatAffineConstraints based on such maps

- we can probably change fullyComposeAffineMapAndOperands to ensure this
  TODO(b/123879896).

PiperOrigin-RevId: 232356600
2019-03-29 16:12:08 -07:00
River Riddle 74adaa5b31 Remove the OwnerTy template parameter of IROperandImpl and ValueUseIterator as it is no longer necessary now that all instructions are operations.
PiperOrigin-RevId: 232356323
2019-03-29 16:11:53 -07:00
Jacques Pienaar 2afd655622 Add option print functions with the generic form.
The generic form may be more desirable even when there is a custom form
specified so add option to enable emitting it. This also exposes a current bug
when round tripping constant with function attribute.

PiperOrigin-RevId: 232350712
2019-03-29 16:11:38 -07:00
Jacques Pienaar 5e88422f1d No need to specify default behavior. NFC.
This avoids overriding the class members + setting the printer/parser hooks only to fall back to generic.

PiperOrigin-RevId: 232348307
2019-03-29 16:11:23 -07:00
River Riddle 2d75501691 Remove the forward definition of OperationInst now that no references remain.
PiperOrigin-RevId: 232325321
2019-03-29 16:11:08 -07:00
River Riddle b499277fb6 Remove remaining usages of OperationInst in lib/Transforms.
PiperOrigin-RevId: 232323671
2019-03-29 16:10:53 -07:00
River Riddle 44e040dd63 Remove remaining references to OperationInst in all directories except for lib/Transforms.
PiperOrigin-RevId: 232322771
2019-03-29 16:10:38 -07:00
River Riddle a3d9ccaecb Replace the walkOps/visitOperationInst variants from the InstWalkers with the Instruction variants.
PiperOrigin-RevId: 232322030
2019-03-29 16:10:24 -07:00
Dimitrios Vytiniotis 9ca0691b06 Exposing logical operators in EDSC all the way up to Python.
PiperOrigin-RevId: 232299839
2019-03-29 16:10:08 -07:00
Uday Bondhugula b26900dce5 Update dma-generate pass to (1) work on blocks of instructions (instead of just
loops), (2) take into account fast memory space capacity and lower 'dmaDepth'
to fit, (3) add location information for debug info / errors

- change dma-generate pass to work on blocks of instructions (start/end
  iterators) instead of 'for' loops; complete TODOs - allows DMA generation for
  straightline blocks of operation instructions interspersed b/w loops
- take into account fast memory capacity: check whether memory footprint fits
  in fastMemoryCapacity parameter, and recurse/lower the depth at which DMA
  generation is performed until it does fit in the provided memory
- add location information to MemRefRegion; any insufficient fast memory
  capacity errors or debug info w.r.t dma generation shows location information
- allow DMA generation pass to be instantiated with a fast memory capacity
  option (besides command line flag)

- change getMemRefRegion to return unique_ptr's
- change getMemRefFootprintBytes to work on a 'Block' instead of 'ForInst'
- other helper methods; add postDomInstFilter option for
  replaceAllMemRefUsesWith; drop forInst->walkOps, add Block::walkOps methods

Eg. output

$ mlir-opt  -dma-generate -dma-fast-mem-capacity=1 /tmp/single.mlir
/tmp/single.mlir:9:13: error: Total size of all DMA buffers' for this block exceeds fast memory capacity

        for %i3 = (d0) -> (d0)(%i1) to (d0) -> (d0 + 32)(%i1) {
            ^

$ mlir-opt -debug-only=dma-generate  -dma-generate -dma-fast-mem-capacity=400 /tmp/single.mlir
/tmp/single.mlir:9:13: note: 8 KiB of DMA buffers in fast memory space for this block

        for %i3 = (d0) -> (d0)(%i1) to (d0) -> (d0 + 32)(%i1) {

PiperOrigin-RevId: 232297044
2019-03-29 16:09:52 -07:00
River Riddle 870d778350 Begin the process of fully removing OperationInst. This patch cleans up references to OperationInst in the /include, /AffineOps, and lib/Analysis.
PiperOrigin-RevId: 232199262
2019-03-29 16:09:36 -07:00
River Riddle de2d0dfbca Fold the functionality of OperationInst into Instruction. OperationInst still exists as a forward declaration and will be removed incrementally in a set of followup cleanup patches.
PiperOrigin-RevId: 232198540
2019-03-29 16:09:19 -07:00
Lei Zhang b2dbbdb704 Merge OpProperty and Traits into OpTrait
They are essentially both modelling MLIR OpTrait; the former achieves the
purpose via introducing corresponding symbols in TableGen, while the latter
just uses plain strings.

Unify them to provide a single mechanism to avoid confusion and to better
reflect the definitions on MLIR C++ side.

Ideally we should be able to deduce lots of these traits automatically via
other bits of op definitions instead of manually specifying them; but not
for now though.

PiperOrigin-RevId: 232191401
2019-03-29 16:09:03 -07:00
Lei Zhang 8b75cc5741 Define NumericAttr as the base class for BoolAttr, IntegerAttr, FloatAttr, and ElementsAttr
These attribute kinds are different from the rest in the sense that their types are defined
in MLIR's type hierarchy and we can build constant op out of them.

By defining this middle-level base class, we have a unified way to test and query the type
of these attributes, which will be useful when constructing constant ops of various dialects.

This CL also added asserts to reject non-NumericAttr in constant op's build() method.

PiperOrigin-RevId: 232188178
2019-03-29 16:08:43 -07:00
River Riddle 126ec14e2d Fix the handling of the resizable operands bit of OperationState in a few places.
PiperOrigin-RevId: 232163738
2019-03-29 16:08:28 -07:00
River Riddle dae0263e0b Fold IROperandOwner into Instruction.
PiperOrigin-RevId: 232159334
2019-03-29 16:08:11 -07:00
River Riddle 38f8dc67be When parsing, treat an IntegerSet with no constraints as a degenerate true case. Also update the spec to note that affine constraints are optional.
PiperOrigin-RevId: 232158673
2019-03-29 16:07:56 -07:00
River Riddle d54e3dd358 Emit an error when parsing an affine structure if '->' or ':' is not found
after the dim/symbol id list.

PiperOrigin-RevId: 232094789
2019-03-29 16:07:40 -07:00
Uday Bondhugula 8be2627436 Promote local buffers created post fusion to higher memory space
- fusion already includes the necessary analysis to create small/local buffers
  post fusion; allocate these buffers in a higher memory space if the necessary
  pass parameters are provided (threshold size, memory space id)

- although there will be a separate utility at some point to directly detect
  and promote small local buffers to higher memory spaces, doing it while fusion
  when possible is much less expensive, comes free with fusion analysis, and covers
  a key common case.

PiperOrigin-RevId: 232063894
2019-03-29 16:07:23 -07:00
Stella Laurenzo db04019f3a Minor fix to the lexer whitespace loop.
Nothing in the loop can (legally) cause curPtr -> nullptr. And if it did, we
    would null dereference right below anyway.

    This loop still reads funny to me but doesn't make me stare at it and wonder
    what I am missing anymore.

--

PiperOrigin-RevId: 232062076
2019-03-29 16:07:07 -07:00
River Riddle 5052bd8582 Define the AffineForOp and replace ForInst with it. This patch is largely mechanical, i.e. changing usages of ForInst to OpPointer<AffineForOp>. An important difference is that upon construction an AffineForOp no longer automatically creates the body and induction variable. To generate the body/iv, 'createBody' can be called on an AffineForOp with no body.
PiperOrigin-RevId: 232060516
2019-03-29 16:06:49 -07:00
Lei Zhang e0774c008f [TableGen] Use tblgen::DagLeaf to model DAG arguments
This CL added a tblgen::DagLeaf wrapper class with several helper methods for handling
DAG arguments. It helps to refactor the rewriter generation logic to be more higher
level.

This CL also added a tblgen::ConstantAttr wrapper class for constant attributes.

PiperOrigin-RevId: 232050683
2019-03-29 16:06:31 -07:00
Jacques Pienaar 70e3873e86 Update link
PiperOrigin-RevId: 232049075
2019-03-29 16:06:14 -07:00
Uday Bondhugula f0d4e70f26 Fix Block::getNumSuccessors()
- getTerminator() on a block can return nullptr; moreover, blocks that are improperly
  constructed/transformed by utilities/passes may not have terminators even for the
  top-level blocks

PiperOrigin-RevId: 232025963
2019-03-29 16:05:55 -07:00
River Riddle c46b0feadb Fix use of llvm::Module::getOrInsertFunction after the upstream opaque pointer type changes.
PiperOrigin-RevId: 232002583
2019-03-29 16:05:39 -07:00
Nicolas Vasilache 0353ef99eb Cleanup EDSCs and start a functional auto-generated library of custom Ops
This CL applies the following simplifications to EDSCs:
1. Rename Block to StmtList because an MLIR Block is a different, not yet
supported, notion;
2. Rework Bindable to drop specific storage and just use it as a simple wrapper
around Expr. The only value of Bindable is to force a static cast when used by
the user to bind into the emitter. For all intended purposes, Bindable is just
a lightweight check that an Expr is Unbound. This simplifies usage and reduces
the API footprint. After playing with it for some time, it wasn't worth the API
cognition overhead;
3. Replace makeExprs and makeBindables by makeNewExprs and copyExprs which is
more explicit and less easy to misuse;
4. Add generally useful functionality to MLIREmitter:
  a. expose zero and one for the ubiquitous common lower bounds and step;
  b. add support to create already bound Exprs for all function arguments as
  well as shapes and views for Exprs bound to memrefs.
5. Delete Stmt::operator= and replace by a `Stmt::set` method which is more
explicit.
6. Make Stmt::operator Expr() explicit.
7. Indexed.indices assertions are removed to pave the way for expressing slices
and views as well as to work with 0-D memrefs.

The CL plugs those simplifications with TableGen and allows emitting a full MLIR function for
pointwise add.

This "x.add" op is both type and rank-agnostic (by allowing ArrayRef of Expr
passed to For loops) and opens the door to spinning up a composable library of
existing and custom ops that should automate a lot of the tedious work in
TF/XLA -> MLIR.

Testing needs to be significantly improved but can be done in a separate CL.

PiperOrigin-RevId: 231982325
2019-03-29 16:05:23 -07:00