Commit Graph

965 Commits

Author SHA1 Message Date
Chris Lattner 146ad7cf43 Finish removing multi-result affine maps from the testsuite, and disable them.
PiperOrigin-RevId: 231014261
2019-03-29 15:39:23 -07:00
Feng Liu ebac3528d0 Add an option to improve the readibility of the printed MLIR debuginfo
Use `-mlir-pretty-debuginfo` if the user wants line breaks between different callsite lines.
The print results before and after this CL are shown in the tests.

PiperOrigin-RevId: 231013812
2019-03-29 15:39:08 -07:00
Uday Bondhugula b4a1443508 Update replaceAllMemRefUsesWith to generate single result affine_apply's for
index remapping
- generate a sequence of single result affine_apply's for the index remapping
  (instead of one multi result affine_apply)
- update dma-generate and loop-fusion test cases; while on this, change test cases
  to use single result affine apply ops
- some fusion comment fix/cleanup

PiperOrigin-RevId: 230985830
2019-03-29 15:38:23 -07:00
Nicolas Vasilache 629f5b7fcb Add a simple arity-agnostic invocation of JIT-compiled functions.
This is useful to call generic function with unspecified number of arguments
e.g. when interfacing with ML frameworks.

PiperOrigin-RevId: 230974736
2019-03-29 15:38:08 -07:00
Uday Bondhugula b588d58c5f Update createAffineComputationSlice to generate single result affine maps
- Update createAffineComputationSlice to generate a sequence of single result
  affine apply ops instead of one multi-result affine apply
- update pipeline-data-transfer test case; while on this, also update the test
  case to use only single result affine maps, and make it more robust to
  change.

PiperOrigin-RevId: 230965478
2019-03-29 15:37:53 -07:00
River Riddle c3424c3c75 Allow operations to hold a blocklist and add support for parsing/printing a block list for verbose printing.
PiperOrigin-RevId: 230951462
2019-03-29 15:37:37 -07:00
Alex Zinenko 6d37a255e2 Generic dialect conversion pass exercised by LLVM IR lowering
This commit introduces a generic dialect conversion/lowering/legalization pass
and illustrates it on StandardOps->LLVMIR conversion.

It partially reuses the PatternRewriter infrastructure and adds the following
functionality:
- an actual pass;
- non-default pattern constructors;
- one-to-many rewrites;
- rewriting terminators with successors;
- not applying patterns iteratively (unlike the existing greedy rewrite driver);
- ability to change function signature;
- ability to change basic block argument types.

The latter two things required, given the existing API, to create new functions
in the same module.  Eventually, this should converge with the rest of
PatternRewriter.  However, we may want to keep two pass versions: "heavy" with
function/block argument conversion and "light" that only touches operations.

This pass creates new functions within a module as a means to change function
signature, then creates new blocks with converted argument types in the new
function.  Then, it traverses the CFG in DFS-preorder to make sure defs are
converted before uses in the dominated blocks.  The generic pass has a minimal
interface with two hooks: one to fill in the set of patterns, and another one
to convert types for functions and blocks.  The patterns are defined as
separate classes that can be table-generated in the future.

The LLVM IR lowering pass partially inherits from the existing LLVM IR
translator, in particular for type conversion.  It defines a conversion pattern
template, instantiated for different operations, and is a good candidate for
tablegen.  The lowering does not yet support loads and stores and is not
connected to the translator as it would have broken the existing flows.  Future
patches will add missing support before switching the translator in a single
patch.

PiperOrigin-RevId: 230951202
2019-03-29 15:37:23 -07:00
Mehdi Amini d9ce382fc9 Use a unique_ptr instead of manual deletion for PIMPL idiom (NFC)
PiperOrigin-RevId: 230930254
2019-03-29 15:37:07 -07:00
Lei Zhang ba1715f407 Pull TableGen op argument definitions into their own files
PiperOrigin-RevId: 230923050
2019-03-29 15:36:52 -07:00
Uday Bondhugula 95f19d558c Fix return value logic / error reporting in -dma-generate
PiperOrigin-RevId: 230906158
2019-03-29 15:36:23 -07:00
Alex Zinenko 5a4403787f Simple CPU runner
This implements a simple CPU runner based on LLVM Orc JIT.  The base
functionality is provided by the ExecutionEngine class that compiles and links
the module, and provides an interface for obtaining function pointers to the
JIT-compiled MLIR functions and for invoking those functions directly.  Since
function pointers need to be casted to the correct pointer type, the
ExecutionEngine wraps LLVM IR functions obtained from MLIR into a helper
function with the common signature `void (void **)` where the single argument
is interpreted as a list of pointers to the actual arguments passed to the
function, eventually followed by a pointer to the result of the function.
Additionally, the ExecutionEngine is set up to resolve library functions to
those available in the current process, enabling support for, e.g., simple C
library calls.

For integration purposes, this also provides a simplistic runtime for memref
descriptors as expected by the LLVM IR code produced by MLIR translation.  In
particular, memrefs are transformed into LLVM structs (can be mapped to C
structs) with a pointer to the data, followed by dynamic sizes.  This
implementation only supports statically-shaped memrefs of type float, but can
be extened if necessary.

Provide a binary for the runner and a test that exercises it.

PiperOrigin-RevId: 230876363
2019-03-29 15:36:08 -07:00
MLIR Team 5c5739d42b Change the dependence check in the loop fusion pass to use the MLIR instruction list ordering (instead of the dependence graph node id ordering). This breaks the overloading of dependence graph node ids as both edge endpoints and instruction list position.
PiperOrigin-RevId: 230849232
2019-03-29 15:35:53 -07:00
Uday Bondhugula f94b15c247 Update dma-generate: update for multiple load/store op's per memref
- introduce a way to compute union using symbolic rectangular bounding boxes
- handle multiple load/store op's to the same memref by taking a union of the regions
- command-line argument to provide capacity of the fast memory space
- minor change to replaceAllMemRefUsesWith to not generate affine_apply if the
  supplied index remap was identity

PiperOrigin-RevId: 230848185
2019-03-29 15:35:38 -07:00
River Riddle 4a7dfa7882 Add order bit to instructions to lazily track dominance queries. This improves the performance of dominance queries, which are used quite often within the compiler(especially within the verifier).
This reduced the execution time of a few internal tests from ~2 minutes to ~4 seconds.

PiperOrigin-RevId: 230819723
2019-03-29 15:35:23 -07:00
Uday Bondhugula 06d21d9f64 loop-fusion: debug info cleanup
PiperOrigin-RevId: 230817383
2019-03-29 15:35:08 -07:00
Chris Lattner 934b6d125f Introduce a new operation hook point for implementing simple local
canonicalizations of operations.  The ultimate important user of this is
going to be a funcBuilder->foldOrCreate<YourOp>(...) API, but for now it
is just a more convenient way to write certain classes of canonicalizations
(see the change in StandardOps.cpp).

NFC.

PiperOrigin-RevId: 230770021
2019-03-29 15:34:35 -07:00
River Riddle 451869f394 Add cloning functionality to Block and Function, this also adds support for remapping successor block operands of terminator operations. We define a new BlockAndValueMapping class to simplify mapping between cloned values.
PiperOrigin-RevId: 230768759
2019-03-29 15:34:20 -07:00
Uday Bondhugula 72e5c7f428 Minor updates + cleanup to dma-generate
- switch some debug info to emitError
- use a single constant op for zero index to make it easier to write/update
  test cases; avoid creating new constant op's for common zero index cases
- test case cleanup

This is in preparation for an upcoming major update to this pass.

PiperOrigin-RevId: 230728379
2019-03-29 15:34:06 -07:00
River Riddle f319bbbd28 Add a function pass to strip debug info from functions and instructions.
PiperOrigin-RevId: 230654315
2019-03-29 15:33:50 -07:00
River Riddle 98c729d6f1 Change trailing locations printing to also print unknown locations. This will allow for truly round tripping debug locations given that we assign locations while parsing IR.
PiperOrigin-RevId: 230627191
2019-03-29 15:33:35 -07:00
River Riddle 6859f33292 Migrate VectorOrTensorType/MemRefType shape api to use int64_t instead of int.
PiperOrigin-RevId: 230605756
2019-03-29 15:33:20 -07:00
Feng Liu b64998a6b3 Add a method to construct a CallSiteLoc which represents a stack of locations.
PiperOrigin-RevId: 230592860
2019-03-29 15:33:05 -07:00
River Riddle 1210e92d86 Add asmparser/printer support for locations to make them round-trippable. Location printing is currently behind a command line flag "mlir-print-debuginfo", we can rethink this when we have a pass for stripping debug info or when we have support for printer flags.
Example inline notation:

  trailing-location ::= 'loc' '(' location ')'

  // FileLineCol Location.
  %1 = "foo"() : () -> i1 loc("mysource.cc":10:8)

  // Name Location
  return loc("foo")

  // CallSite Location
  return loc(callsite("foo" at "mysource.cc":19:9))

  // Fused Location
  /// Without metadata
  func @inline_notation() loc(fused["foo", "mysource.cc":10:8])

  /// With metadata
  return loc(fused<"myPass">["foo", "foo2"])

  // Unknown location.
  return loc(unknown)

Locations are currently only printed with inline notation at the line of each instruction. Further work is needed to allow for reference notation, e.g:
     ...
     return loc 1
   }
   ...
   loc 1 = "source.cc":10:1

PiperOrigin-RevId: 230587621
2019-03-29 15:32:49 -07:00
Lei Zhang 5654450853 Unify terms regarding assembly form to use generic vs. custom
This CL just changes various docs and comments to use the term "generic" and
"custom" when mentioning assembly forms. To be consist, several methods are
also renamed:

* FunctionParser::parseVerboseOperation() -> parseGenericOperation()
* ModuleState::hasShorthandForm() -> hasCustomForm()
* OpAsmPrinter::printDefaultOp() -> printGenericOp()

PiperOrigin-RevId: 230568819
2019-03-29 15:32:35 -07:00
MLIR Team b28009b681 Fix single producer check in loop fusion pass.
PiperOrigin-RevId: 230565482
2019-03-29 15:32:20 -07:00
Uday Bondhugula 864d9e02a1 Update fusion cost model + some additional infrastructure and debug information for -loop-fusion
- update fusion cost model to fuse while tolerating a certain amount of redundant
  computation; add cl option -fusion-compute-tolerance
  evaluate memory footprint and intermediate memory reduction
- emit debug info from -loop-fusion showing what was fused and why
- introduce function to compute memory footprint for a loop nest
- getMemRefRegion readability update - NFC

PiperOrigin-RevId: 230541857
2019-03-29 15:32:06 -07:00
Nicolas Vasilache e4020c2d1a Add support for Return in EDSCs
This CL adds the Return op to EDSCs types and emitter.
This allows generating full function bodies that can be compiled all the way
down to LLVMIR and executed on CPU.

At this point, the MLIR lacks the testing infrastructure to exercise this.
End-to-end testing of full functions written in EDSCs is left for a future CL.

PiperOrigin-RevId: 230527530
2019-03-29 15:31:50 -07:00
Uday Bondhugula 92e9d9484c loop unroll update: unroll factor one for a single iteration loop
- unrolling a single iteration loop by a factor of one should promote its body
  into its parent; this makes it consistent with the behavior/expectation that
  unrolling a loop by a factor equal to its trip count makes the loop go away.

PiperOrigin-RevId: 230426499
2019-03-29 15:31:35 -07:00
Uday Bondhugula 1b735dfe27 Refactor -dma-generate walker - NFC
- ForInst::walkOps will also be used in an upcoming CL (cl/229438679); better to have
  this instead of deriving from the InstWalker

PiperOrigin-RevId: 230413820
2019-03-29 15:31:03 -07:00
Uday Bondhugula 7669204304 Improve / fix documentation for affine map composition utilities - NFC
- improve/fix doc comments for affine apply composition related methods.
- drop makeSingleValueComposedAffineApply - really redundant and out of line in
  a public API; it's just returning the first result of the composed affine
  apply op, and not making a single result affine map or an affine_apply op.

PiperOrigin-RevId: 230406169
2019-03-29 15:30:47 -07:00
Uday Bondhugula 94a03f864f Allocate private/local buffers for slices accurately during fusion
- the size of the private memref created for the slice should be based on
  the memref region accessed at the depth at which the slice is being
  materialized, i.e., symbolic in the outer IVs up until that depth, as opposed
  to the region accessed based on the entire domain.

- leads to a significant contraction of the temporary / intermediate memref
  whenever the memref isn't reduced to a single scalar (through store fwd'ing).

Other changes

- update to promoteIfSingleIteration - avoid introducing unnecessary identity
  map affine_apply from IV; makes it much easier to write and read test cases
  and pass output for all passes that use promoteIfSingleIteration; loop-fusion
  test cases become much simpler

- fix replaceAllMemrefUsesWith bug that was exposed by the above update -
  'domInstFilter' could be one of the ops erased due to a memref replacement in
  it.

- fix getConstantBoundOnDimSize bug: a division by the coefficient of the identifier was
  missing (the latter need not always be 1); add lbFloorDivisors output argument

- rename getBoundingConstantSizeAndShape -> getConstantBoundingSizeAndShape

PiperOrigin-RevId: 230405218
2019-03-29 15:30:31 -07:00
MLIR Team 71495d58a7 Handle escaping memrefs in loop fusion pass:
*) Do not remove loop nests which write to memrefs which escape the function.
*) Do not remove memrefs which escape the function (e.g. are used in the return instruction).

PiperOrigin-RevId: 230398630
2019-03-29 15:30:14 -07:00
Jacques Pienaar 34c6f8c6e4 Add default attr value & define tf.AvgPool op and use pattern for rewrite.
Add default values to attributes, to allow attribute being left unspecified.  The attr getter will always return an attribute so callers need not check for it, if the attribute is not set then the default will be returned (at present the default will be constructed upon query but this will be changed).

Add op definition for tf.AvgPool in ops.td, rewrite matcher using pattern using attribute matching & transforms. Adding some helper functions to make it simpler.

Handle attributes with dialect prefix and map them to getter without dialect prefix.

Note: VerifyAvgPoolOp could probably be autogenerated by know given the predicate specification on attributes, but deferring that to a follow up.
PiperOrigin-RevId: 230364857
2019-03-29 15:29:59 -07:00
Uday Bondhugula d2aaa175ca Fix FlatAffineConstraints::removeIdRange
- the number of symbols/local ids was being incorrectly updated; the code in
  cl/230112574 exposes this.

PiperOrigin-RevId: 230358327
2019-03-29 15:29:44 -07:00
Jacques Pienaar a280e3997e Start doc generation pass.
Start doc generation pass that generates simple markdown output. The output is formatted simply[1] in markdown, but this allows seeing what info we have, where we can refine the op description (e.g., the inputs is probably redundant), what info is missing (e.g., the attributes could probably have a description).

The formatting of the description is still left up to whatever was in the op definition (which luckily, due to the uniformity in the .td file, turned out well but relying on the indentation there is fragile). The mechanism to autogenerate these post changes has not been added yet either. The output file could be run through a markdown formatter too to remove extra spaces.

[1]. This is not proposal for final style :) There could also be a discussion around single doc vs multiple (per dialect, per op), whether we want a TOC, whether operands/attributes should be headings or just formatted differently ...

PiperOrigin-RevId: 230354538
2019-03-29 15:29:29 -07:00
Lei Zhang 57aade19b3 Add assertions to SplatElementsAttr and ConstantOp builders and fix failures
1) Fix FloatAttr type inconsistency in conversion from tf.FusedBatchNorm to TFLite ops

We used to compose the splat tensor out of the scalar epsilon attribute by using the
type of the variance operand. However, the epsilon attribute may have a different
bitwidth than the one in the variance operand. So it ends up we were creating
inconsistent types within the FloatAttr itself.

2) Fix SplatElementsAttr type inconsistency in AnnotateInputArrays

We need to create the zero-valued attribute according to the type provided as the
command-line arguments.

3) Concretize the result type of tf.Shape constant folding test case

Currently the resultant constant is created by the constant folding harness, using
the result type of the original op as the constant's result type. That can be
a different type than the constant's internal DenseElementsAttr.

PiperOrigin-RevId: 230244665
2019-03-29 15:28:59 -07:00
Uday Bondhugula c1880a857d AffineExpr pretty print - add missing handling to print expr * - 1 as -expr
- print multiplication by -1 as unary negate; expressions like s0 * -1, d0 * -1
  + d1 will now appear as -s0, -d0 + d1 resp.
- a minor cleanup while on printAffineExprInternal

PiperOrigin-RevId: 230222151
2019-03-29 15:28:44 -07:00
River Riddle 512d87cefc Add a constant folding hook to ExtractElementOp to fold extracting the element of a constant. This also adds a 'getValue' function to DenseElementsAttr and SparseElementsAttr to get the element at a constant index.
PiperOrigin-RevId: 230098938
2019-03-29 15:28:28 -07:00
Nicolas Vasilache 119af6712e Cleanup spurious printing bits in EDSCs
This CL also makes ScopedEDSCContexts to reset the Bindable numbering when
creating a new context.
This is useful to write minimal tests that don't use FileCheck pattern
captures for now.

PiperOrigin-RevId: 230079997
2019-03-29 15:28:13 -07:00
Nicolas Vasilache 9f3f39d61a Cleanup EDSCs
This CL performs a bunch of cleanups related to EDSCs that are generally
useful in the context of using them with a simple wrapping C API (not in this
CL) and with simple language bindings to Python and Swift.

PiperOrigin-RevId: 230066505
2019-03-29 15:27:58 -07:00
River Riddle 174f66bc8a Restructure FloatAttr::get(Type, double) to allow for loss of precision when converting the double value to the target type semantics. A comment is added to discourage the use of this method for non simple constants. The new handling also removes the direct use of the float constructor for APFloat to avoid runtime float cast asan errors.
PiperOrigin-RevId: 230014696
2019-03-29 15:27:44 -07:00
River Riddle b04c9a47ca Fix raw buffer size when creating a DenseElementsAttr from an array of attributes.
PiperOrigin-RevId: 229973134
2019-03-29 15:27:13 -07:00
Lei Zhang 1e484b5ef4 Mark (void)indexRemap to please compiler for unused variable check
PiperOrigin-RevId: 229957023
2019-03-29 15:26:59 -07:00
River Riddle a1c0da42ec Rewrite OpStats to use llvm formatting utilities.
Example Output:

Operations encountered:
-----------------------
      addf                  , 11
      constant              , 4
      return                , 19
      some_op               , 1
   tf.AvgPool               , 3
   tf.DepthwiseConv2dNative , 3
   tf.FusedBatchNorm        , 2
  tfl.add                   , 7
  tfl.average_pool_2d       , 1
  tfl.leaky_relu            , 1

PiperOrigin-RevId: 229937190
2019-03-29 15:26:29 -07:00
MLIR Team c4237ae990 LoopFusion: Creates private MemRefs which are used only by operations in the fused loop.
*) Enables reduction of private memref size based on MemRef region accessed by fused slice.
*) Enables maximal fusion by creating a private memref to break a fusion-preventing dependence.
*) Adds maximal fusion flag to enable fusing as much as possible (though it still fuses the minimum cost computation slice).

PiperOrigin-RevId: 229936698
2019-03-29 15:26:15 -07:00
Nicolas Vasilache 24e5a72dac Fix AffineApply corner case
This CL adds a test reported by andydavis@ and fixes the corner case that
appears when operands do not come from an AffineApply and no Dim composition
is needed.

In such cases, we would need to create an empty map which is disallowed.
The composition in such cases becomes trivial: there is no composition.

This CL also updates the name AffineNormalizer to AffineApplyNormalizer.

PiperOrigin-RevId: 229819234
2019-03-29 15:25:59 -07:00
River Riddle 0e81d7c420 [MLIR] Add functionality for constructing a DenseElementAttr from an array of attributes and rerwite DenseElementsAttr::writeBits/readBits to handle non uniform bitwidths. This fixes asan failures that happen when using non uniform bitwidths.
PiperOrigin-RevId: 229815107
2019-03-29 15:25:45 -07:00
Uday Bondhugula 40f7535571 Update stale / target-specific information in comments - NFC
PiperOrigin-RevId: 229800834
2019-03-29 15:25:29 -07:00
Jacques Pienaar d6f84fa5d9 Add AttrConstraint to enable generating verification for attribute values.
Change MinMaxAttr to match hasValidMinMaxAttribute behavior. Post rewriting the other users of that function it could be removed too. The currently generated error message is:

error: 'tfl.fake_quant' op attribute 'minmax' failed to satisfy constraint of MinMaxAttr
PiperOrigin-RevId: 229775631
2019-03-29 15:25:13 -07:00
Smit Hinsu 0eebe6ffd9 Update comment in the constant folding pass as constant folding is supported even when not all operands are constants
PiperOrigin-RevId: 229670189
2019-03-29 15:24:28 -07:00
Nicolas Vasilache 4573a8da9a Fix improperly indexed DimOp in LowerVectorTransfers.cpp
This CL fixes a misunderstanding in how to build DimOp which triggered
execution issues in the CPU path.

The problem is that, given a `memref<?x4x?x8x?xf32>`, the expressions to
construct the dynamic dimensions should be:
`dim %arg, 0 : memref<?x4x?x8x?xf32>`
`dim %arg, 2 : memref<?x4x?x8x?xf32>`
and
`dim %arg, 4 : memref<?x4x?x8x?xf32>`

Before this CL, we wold construct:
`dim %arg, 0 : memref<?x4x?x8x?xf32>`
`dim %arg, 1 : memref<?x4x?x8x?xf32>`
`dim %arg, 2 : memref<?x4x?x8x?xf32>`

and expect the other dimensions to be constants.
This assumption seems consistent at first glance with the syntax of alloc:

```
    %tensor = alloc(%M, %N, %O) : memref<?x4x?x8x?xf32>
```

But this was actuallyincorrect.

This CL also makes the relevant functions available to EDSCs and removes
duplication of the incorrect function.

PiperOrigin-RevId: 229622766
2019-03-29 15:24:13 -07:00
Uday Bondhugula c1ca23ef6e Some loop fusion code cleanup/simplification post cl/229575126
- enforce the assumptions better / in a simpler way

PiperOrigin-RevId: 229612424
2019-03-29 15:23:43 -07:00
Lei Zhang 3766332533 Change impl::printBinaryOp() to consider operand and result type
The operand and result types of binary ops are not necessarily the
same. For those binary ops, we cannot print in the short-form assembly.

Enhance impl:::printBinaryOp to consider operand and result types
to select which assembly form to use.

PiperOrigin-RevId: 229608142
2019-03-29 15:23:28 -07:00
River Riddle 5843e5a7c0 Add a canonicalization pattern to remove Dealloc operations if the memref is an AllocOp that is only used by Dealloc operations.
PiperOrigin-RevId: 229606558
2019-03-29 15:23:13 -07:00
Alex Zinenko 05b02bb98e TableGen: implement predicate tree and basic simplification
A recent change in TableGen definitions allowed arbitrary AND/OR predicate
compositions at the cost of removing known-true predicate simplification.
Introduce a more advanced simplification mechanism instead.

In particular, instead of folding predicate C++ expressions directly in
TableGen, keep them as is and build a predicate tree in TableGen C++ library.
The predicate expression-substitution mechanism, necessary to implement complex
predicates for nested classes such as `ContainerType`, is replaced by a
dedicated predicate.  This predicate appears in the predicate tree and can be
used for tree matching and separation.  More specifically, subtrees defined
below such predicate may be subject to different transformations than those
that appear above.  For example, a subtree known to be true above the
substitution predicate is not necessarily true below it.

Use the predicate tree structure to eliminate known-true and known-false
predicates before code emission, as well as to collapse AND and OR predicates
if their value can be deduced based on the value of one child.

PiperOrigin-RevId: 229605997
2019-03-29 15:22:58 -07:00
Jacques Pienaar 4b2b5f5267 Enable specifying the op for which the reference implementation should be printed.
Allows emitting reference implementation of multiple ops inside the test lowering pass.

PiperOrigin-RevId: 229603494
2019-03-29 15:22:43 -07:00
River Riddle ada685f352 Add canonicalization to remove AllocOps if there are no uses. AllocOp has side effects on the heap, but can still be deleted if it has zero uses.
PiperOrigin-RevId: 229596556
2019-03-29 15:22:28 -07:00
Jacques Pienaar a5827fc91d Add attribute matching and transform to pattern rewrites.
Start simple with single predicate match & transform rules for attributes.
* Its unclear whether modelling Attr predicates will be needed so start with allowing matching attributes with a single predicate.
*  The input and output attr type often differs and so add ability to specify a transform between the input and output format.

PiperOrigin-RevId: 229580879
2019-03-29 15:22:14 -07:00
MLIR Team 27d067e164 LoopFusion improvements:
*) Adds support for fusing into consumer loop nests with multiple loads from the same memref.
*) Adds support for reducing slice loop trip count by projecting out destination loop IVs greater than destination loop depth.
*) Removes dependence on src loop depth and simplifies cost model computation.

PiperOrigin-RevId: 229575126
2019-03-29 15:21:59 -07:00
Jacques Pienaar 9d4bb57189 Start a testing pass for EDSC lowering.
This is mostly plumbing to start allowing testing EDSC lowering. Prototype specifying reference implementation using verbose format without any generation/binding support. Add test pass that dumps the constructed EDSC (of which there can only be one). The idea is to enable iterating from multiple sides, this is wrong on many dimensions at the moment.

PiperOrigin-RevId: 229570535
2019-03-29 15:21:44 -07:00
Alex Zinenko bd161ae5bc TableGen: untie Attr from Type
In TableGen definitions, the "Type" class has been used for types of things
that can be stored in Attributes, but not necessarily present in the MLIR type
system.  As a consequence, records like "String" or "DerviedAttrBody" were of
class "Type", which can be confusing.  Furthermore, the "builderCall" field of
the "Type" class serves only for attribute construction.  Some TableGen "Type"
subclasses that correspond to MLIR kinds of types do not have a canonical way
of construction only from the data available in TableGen, e.g. MemRefType would
require the list of affine maps.  This leads to a conclusion that the entities
that describe types of objects appearing in Attributes should be independent of
"Type": they have some properties "Type"s don't and vice versa.

Do not parameterize Tablegen "Attr" class by an instance of "Type".  Instead,
provide a "constBuilderCall" field that can be used to build an attribute from
a constant value stored in TableGen instead of indirectly going through
Attribute.Type.builderCall.  Some attributes still don't have a
"constBuilderCall" because they used to depend on types without a
"builderCall".

Drop definitions of class "Type" that don't correspond to MLIR Types.  Provide
infrastructure to define type-dependent attributes and string-backed attributes
for convenience.

PiperOrigin-RevId: 229570087
2019-03-29 15:21:28 -07:00
Lei Zhang 590012772d Promote broadcast logic from TensorFlowLite to Dialect/ directory
We also need the broadcast logic in the TensorFlow dialect. Move it to a
Dialect/ directory for a broader scope. This Dialect/ directory is intended
for code not in core IR, but can potentially be shared by multiple dialects.

Apart from fixing TensorFlow op TableGen to use this trait, this CL only
contains mechanical code shuffling.

PiperOrigin-RevId: 229563911
2019-03-29 15:21:14 -07:00
Uday Bondhugula f99a44a7cd Address documentation/readability related comments from cl/227252907 on memref
store forwarding - NFC.

PiperOrigin-RevId: 229561933
2019-03-29 15:20:59 -07:00
River Riddle 18fe1ffcd7 Move the storage of uniqued TypeStorage objects into TypeUniquer and give each context a unique TypeUniquer instance.
PiperOrigin-RevId: 229460053
2019-03-29 15:19:56 -07:00
Uday Bondhugula 03e15e1b9f Minor code cleanup - NFC.
- readability changes

PiperOrigin-RevId: 229443430
2019-03-29 15:19:41 -07:00
Lei Zhang b7dbfd04eb Const fold splat tensors for TFLite AddOp, SubOp, MulOp
The constant folding rules assumes value attributes of operands are already
verified to be in good standing.

For each op in the above, the constant folding rules support both integer and
floating point cases. Broadcast behavior is also supported as per the semantics
of TFLite ops.

This CL does not handle overflow/underflow cases yet.

PiperOrigin-RevId: 229441221
2019-03-29 15:19:26 -07:00
River Riddle f9d2eb1c8c Change derived type storage objects to define an 'operator==(const KeyTy &)' instead of converting to the KeyTy. This allows for handling cases where the KeyTy does not provide an equality operator on itself.
PiperOrigin-RevId: 229423249
2019-03-29 15:19:11 -07:00
River Riddle f8341cfe06 Verify that the parsed predicate attribute of a cmpi operation is a string.
PiperOrigin-RevId: 229419703
2019-03-29 15:18:53 -07:00
Alex Zinenko 0e58de70e7 Initial version of the LLVM IR dialect
LLVM IR types are defined using MLIR's extendable type system.  The dialect
provides the only type kind, LLVMType, that wraps an llvm::Type*.  Since LLVM
IR types are pointer-unique, MLIR type systems relies on those pointers to
perform its own type unique'ing.  Type parsing and printing is delegated to
LLVM libraries.

Define MLIR operations for the LLVM IR instructions currently used by the
translation to the LLVM IR Target to simplify eventual transition.  Operations
classes are defined using TableGen.  LLVM IR instruction operands that are only
allowed to take constant values are accepted as attributes instead.  All
operations are using verbose form for printing and parsing.

PiperOrigin-RevId: 229400375
2019-03-29 15:18:37 -07:00
Alex Zinenko 44e9869f1a TableGen: extract TypeConstraints from Type
MLIR has support for type-polymorphic instructions, i.e. instructions that may
take arguments of different types.  For example, standard arithmetic operands
take scalars, vectors or tensors.  In order to express such instructions in
TableGen, we need to be able to verify that a type object satisfies certain
constraints, but we don't need to construct an instance of this type.  The
existing TableGen definition of Type requires both.  Extract out a
TypeConstraint TableGen class to define restrictions on types.  Define the Type
TableGen class as a subclass of TypeConstraint for consistency.  Accept records
of the TypeConstraint class instead of the Type class as values in the
Arguments class when defining operators.

Replace the predicate logic TableGen class based on conjunctive normal form
with the predicate logic classes allowing for abitrary combinations of
predicates using Boolean operators (AND/OR/NOT).  The combination is
implemented using simple string rewriting of C++ expressions and, therefore,
respects the short-circuit evaluation order.  No logic simplification is
performed at the TableGen level so all expressions must be valid C++.
Maintaining CNF using TableGen only would have been complicated when one needed
to introduce top-level disjunction.  It is also unclear if it could lead to a
significantly simpler emitted C++ code.  In the future, we may replace inplace
predicate string combination with a tree structure that can be simplified in
TableGen's C++ driver.

Combined, these changes allow one to express traits like ArgumentsAreFloatLike
directly in TableGen instead of relying on C++ trait classes.

PiperOrigin-RevId: 229398247
2019-03-29 15:18:23 -07:00
Uday Bondhugula 4598dafa30 Parsing DmaStartOp: check if source, destination, and tag are of memref type.
- fix along the lines of cl/229390720 by @riverriddle

PiperOrigin-RevId: 229395218
2019-03-29 15:18:07 -07:00
River Riddle d50dc4fd6d When parsing DmaWait, check that the tag is a MemRef type.
PiperOrigin-RevId: 229390720
2019-03-29 15:17:52 -07:00
Nicolas Vasilache 515ce1e68e Add edsc::Indexed helper struct to act as syntactic sugar
This CL adds edsc::Indexed.

This helper class exists purely for sugaring purposes and allows writing
expressions such as:

```mlir
   Indexed A(...), B(...), C(...);
   ForNest(ivs, zeros, shapeA, ones, {
     C[ivs] = A[ivs] + B[ivs]
   });
```

PiperOrigin-RevId: 229388644
2019-03-29 15:17:37 -07:00
River Riddle 25d5b895fd When parsing Select/Cmpi standard operations, emit an error if the type does not have a valid i1 shape instead of crashing.
PiperOrigin-RevId: 229384794
2019-03-29 15:17:22 -07:00
Nicolas Vasilache 424041ad58 Add EDSC sugar
This allows load, store and ForNest to be used with both Expr and Bindable.
This simplifies writing generic pieces of MLIR snippet.

For instance, a generic pointwise add can now be written:

```cpp
// Different Bindable ivs, one per loop in the loop nest.
auto ivs = makeBindables(shapeA.size());
Bindable zero, one;
// Same bindable, all equal to `zero`.
SmallVector<Bindable, 8> zeros(ivs.size(), zero);
// Same bindable, all equal to `one`.
SmallVector<Bindable, 8> ones(ivs.size(), one);
// clang-format off
Bindable A, B, C;
Stmt scalarA, scalarB, tmp;
Stmt block = edsc::Block({
  ForNest(ivs, zeros, shapeA, ones, {
    scalarA = load(A, ivs),
    scalarB = load(B, ivs),
    tmp = scalarA + scalarB,
    store(tmp, C, ivs)
  }),
});
// clang-format on
```

This CL also adds some extra support for pretty printing that will be used in
a future CL when we introduce standalone testing of EDSCs. At the momen twe
are lacking the basic infrastructure to write such tests.

PiperOrigin-RevId: 229375850
2019-03-29 15:16:53 -07:00
Uday Bondhugula 6e4f3e40c7 Fix outdated comments
PiperOrigin-RevId: 229300301
2019-03-29 15:16:08 -07:00
River Riddle 3bb35ad0dc Don't allocate a buffer for an empty ArrayRef in TypeStorageAllocator.
PiperOrigin-RevId: 229290802
2019-03-29 15:15:52 -07:00
River Riddle b9c791b96d Change derived type storage objects to be constructed with an instance of the
KeyTy. This will simplify the cases where a type can be constructed, and need to be verified, in multiple ways.

PiperOrigin-RevId: 229279000
2019-03-29 15:15:37 -07:00
River Riddle 8b0ad6f579 If an instruction contains blocks, IfInst/ForInst, make sure to drop references held by those blocks when dropping references for the instruction.
PiperOrigin-RevId: 229278667
2019-03-29 15:15:23 -07:00
River Riddle 6c1631b3f8 Check that at least one constraint is parsed when parsing an IntegerSet.
PiperOrigin-RevId: 229248638
2019-03-29 15:15:08 -07:00
Lei Zhang 61ec6c0992 Swap the type and attribute parameter in ConstantOp::build()
This is to keep consistent with other TableGen generated builders
so that we can also use this builder in TableGen rules.

PiperOrigin-RevId: 229244630
2019-03-29 15:14:52 -07:00
River Riddle ed26dd0421 Add a canonicalization pattern for conditional branch to fold constant branch conditions.
PiperOrigin-RevId: 229242007
2019-03-29 15:14:37 -07:00
River Riddle 06b0bd9651 Emit unsupported error when parsing a DenseElementAttr with an integer type of greater than 64 bits.
DenseElementAttr currently does not support value bitwidths of > 64. This can result in asan failures and crashes when trying to invoke DenseElementsAttr::writeBits/DenseElementsAttr::readBits.

PiperOrigin-RevId: 229241125
2019-03-29 15:14:23 -07:00
River Riddle e0594ce732 Add missing return post parse failure for the indices of a sparse attribute.
PiperOrigin-RevId: 229231462
2019-03-29 15:14:07 -07:00
MLIR Team 38c2fe3158 LoopFusion: automate selection of source loop nest slice depth and destination loop nest insertion depth based on a simple cost model (cost model can be extended/replaced at a later time).
*) LoopFusion: Adds fusion cost function which compares the cost of the fused loop nest, with the cost of the two unfused loop nests to determine if it is profitable to fuse the candidate loop nests. The fusion cost function is run for various combinations for src/dst loop depths attempting find the minimum cost setting for src/dst loop depths which does not increase the computational cost when the loop nests are fused. Combinations of src/dst loop depth are evaluated attempting to maximize loop depth (i.e. take a bigger computation slice from the source loop nest, and insert it deeper in the destination loop nest for better locality).
*) LoopFusion: Adds utility to compute op instance count for loop nests, sliced loop nests, and to compute the cost of a loop nest fused with another sliced loop nest.
*) LoopFusion: canonicalizes slice bound AffineMaps (and updates related tests).
*) Analysis::Utils: Splits getBackwardComputationSlice into two functions: one which calculates and returns the slice loop bounds for analysis by LoopFusion, and the other for insertion of the computation slice (ones fusion has calculated the min-cost src/dst loop depths).
*) Test: Adds multiple unit tests to test the new functionality.

PiperOrigin-RevId: 229219757
2019-03-29 15:13:53 -07:00
River Riddle d6b71b0d57 Add a Block::dropAllReferences to drop all references from held instructions and call it when clearing the block. This fixes a bug where ForInst/IfInst instructions may still have references to values while being destroyed.
PiperOrigin-RevId: 229207798
2019-03-29 15:13:39 -07:00
River Riddle a674ae8bbd Return an empty IntegerSet if the '(' is not parsed.
PiperOrigin-RevId: 229198934
2019-03-29 15:13:25 -07:00
River Riddle 791049fb34 Add a FloatAttr::getChecked, and invoke it during Attribute parsing.
PiperOrigin-RevId: 229167099
2019-03-29 15:13:10 -07:00
Nicolas Vasilache 1b171e9357 Add EDSC support for operator*
PiperOrigin-RevId: 229097351
2019-03-29 15:12:55 -07:00
Nicolas Vasilache d734c50c5f [MLIR] Clip all access dimensions during LowerVectorTransfers
This CL adds a short term remedy to an issue that was found during execution
tests.

Lowering of vector transfer ops uses the permutation map to determine which
ForInst have been super-vectorized. During materialization to HW vector sizes
however, some of those dimensions may be fully unrolled and do not appear in
the permutation map.
Such dimensions were then not clipped and may have accessed out of bounds.

This CL conservatively clips all dimensions to ensure no out of bounds access.
The longer term solution is still up for debate but will probably require
either passing more information between Materialization and lowering, or just
merging the 2 passes.

PiperOrigin-RevId: 228980787
2019-03-29 15:12:26 -07:00
Nicolas Vasilache b941dc8238 [MLIR] Make MLIREmitter emit composed single-result AffineMap by construction
Arguably the dependence of EDSCs on Analysis is not great but on the other
hand this is a strict improvement in the emitted IR and since EDSCs are an
alternative to builders it makes sense that they have as much access to
Analysis as Transforms.

PiperOrigin-RevId: 228967624
2019-03-29 15:12:11 -07:00
Nicolas Vasilache 362557e11c Simplify compositions of AffineApply
This CL is the 6th and last on the path to simplifying AffineMap composition.
This removes `AffineValueMap::forwardSubstitutions` and replaces it by simple
calls to `fullyComposeAffineMapAndOperands`.

PiperOrigin-RevId: 228962580
2019-03-29 15:11:56 -07:00
River Riddle ba9a544615 Simplify Attribute constructor definitions.
PiperOrigin-RevId: 228926113
2019-03-29 15:11:41 -07:00
River Riddle 3fe8eb3f22 Add check for '[' when parsing a tensor literal list.
PiperOrigin-RevId: 228913908
2019-03-29 15:11:11 -07:00
River Riddle 6985dc62b5 Make sure that type construction arguments are forwarded.
PiperOrigin-RevId: 228910216
2019-03-29 15:10:55 -07:00
Jacques Pienaar 58423ad1c1 Follow up from previous change to avoid setting tokStart 2x.
PiperOrigin-RevId: 228903980
2019-03-29 15:10:40 -07:00
Jacques Pienaar 71ec869011 Fix omitted return post failed parse
PiperOrigin-RevId: 228903905
2019-03-29 15:10:25 -07:00
Jacques Pienaar 4fd6db3e29 Skip over whitespace using loop. NFC.
Else we can stack overflow on a long sequence of whitespace.

PiperOrigin-RevId: 228893517
2019-03-29 15:10:10 -07:00
Lei Zhang 311af4abf3 Const fold splat vectors/tensors in standard add, sub, and mul ops
The const folding logic is structurally similar, so use a template
to abstract the common part.

Moved mul(x, 0) to a legalization pattern to be consistent with
mul(x, 1).

Also promoted getZeroAttr() to be a method on Builder since it is
expected to be frequently used.

PiperOrigin-RevId: 228891989
2019-03-29 15:09:55 -07:00
Jacques Pienaar 78da6704b7 Verify string type token before attempting to get string value.
Add repro that would have resulted in crash previously.

PiperOrigin-RevId: 228890749
2019-03-29 15:09:40 -07:00
Jacques Pienaar 4c0faef943 Avoid redundant predicate checking in type matching.
Expand type matcher template generator to consider a set of predicates that are known to
hold. This avoids inserting redundant checking for trivially true predicates
(for example predicate that hold according to the op definition). This only targets predicates that trivially holds and does not attempt any logic equivalence proof.

PiperOrigin-RevId: 228880468
2019-03-29 15:09:25 -07:00
Lei Zhang ac5a50e1e4 Extract openInputFile() into Support/FileUtilities
Multiple binaries have the needs to open input files. Use this function
to de-duplicate the code.

Also changed openOutputFile() to return errors using std::string since
it is a library call and accessing I/O in library call is not friendly.

PiperOrigin-RevId: 228878221
2019-03-29 15:09:11 -07:00
River Riddle e8d0e1f72a Provide dialect hooks for defining named aliases for AffineMap/IntegerSet/Type.
The AsmPrinter will then query registered dialects for aliases of symbols used within the module and use them in place.

PiperOrigin-RevId: 228831678
2019-03-29 15:08:55 -07:00
Nicolas Vasilache cfa5831960 Uniformize composition of AffineApplyOp by construction
This CL is the 5th on the path to simplifying AffineMap composition.
This removes the distinction between normalized single-result AffineMap and
more general composed multi-result map.

One nice byproduct of making the implementation driven by single-result is
that the multi-result extension is a trivial change: the implementation is
still single-result and we just use:

```
unsigned idx = getIndexOf(...);
map.getResult(idx);
```

This CL also fixes an AffineNormalizer implementation issue related to symbols.
Namely it stops performing substitutions on symbols in AffineNormalizer and
instead concatenates them all to be consistent with the call to
`AffineMap::compose(AffineMap)`. This latter call to `compose` cannot perform
simplifications of symbols coming from different maps based on positions only:
i.e. dims are applied and renumbered but symbols must be concatenated.

The only way to determine whether symbols from different AffineApply are the
same is to look at the concrete values. The canonicalizeMapAndOperands is thus
extended with behavior to support replacing operands that appear multiple
times.

Lastly, this CL demonstrates that the implementation is correct by rewriting
ComposeAffineMaps using only `makeComposedAffineApply`. The implementation
uses a matcher because AffineApplyOp are introduced as composed operations on
the fly instead of iteratively forwardSubstituting. For this purpose, a walker
would revisit freshly introduced AffineApplyOp. Regardless, ComposeAffineMaps
is scheduled to disappear, this CL replaces the implementation based on
iterative `forwardSubstitute` by a composed-by-construction
`makeComposedAffineApply`.
Remaining calls to `forwardSubstitute` will be removed in the next CL.

PiperOrigin-RevId: 228830443
2019-03-29 15:08:40 -07:00
Uday Bondhugula 2370c601ba Add safeguard against FM explosion
- FM has a worst case exponential complexity. For our purposes, this worst case
  is rarely expected, but could still appear due to improperly constructed
  constraints (a logical/memory error in other methods for eg.) or artificially
  created arbitrarily complex integer sets (adversarial / fuzz tests).

  Add a check to detect such an explosion in the number of constraints and
  conservatively return false from isEmpty() (instead of running out of memory
  or running for too long).

- Add an artifical virus test case.

PiperOrigin-RevId: 228753496
2019-03-29 15:07:55 -07:00
Alex Zinenko 9003490287 Implement branch-free single-division lowering of affine division/remainder
This implements the lowering of `floordiv`, `ceildiv` and `mod` operators from
affine expressions to the arithmetic primitive operations.  Integer division
rules in affine expressions explicitly require rounding towards either negative
or positive infinity unlike machine implementations that round towards zero.
In the general case, implementing `floordiv` and `ceildiv` using machine signed
division requires computing both the quotient and the remainder.  When the
divisor is positive, this can be simplified by adjusting the dividend and the
quotient by one and switching signs.

In the current use cases, we are unlikely to encounter affine expressions with
negative divisors (affine divisions appear in loop transformations such as
tiling that guarantee that divisors are positive by construction).  Therefore,
it is reasonable to use branch-free single-division implementation.  In case of
affine maps, divisors can only be literals so we can check the sign and
implement the case for negative divisors when the need arises.

The affine lowering pass can still fail when applied to semi-affine maps
(division or modulo by a symbol).

PiperOrigin-RevId: 228668181
2019-03-29 15:07:40 -07:00
River Riddle 56b99b4045 Add a few utilities for terminator management:
* Get a specific successor operand.
* Iterator support for non successor operands.
* Fix bug when removing the last operand from the operand list of an Instruction.
* Get the argument number for a BlockArgument.

PiperOrigin-RevId: 228660898
2019-03-29 15:07:25 -07:00
Uday Bondhugula 742c37abc9 Fix DMA overlap pass buffer mapping
- the double buffer should be indexed (iv floordiv step) % 2 and NOT (iv % 2);
  step wasn't being accounted for.

- fix test cases, enable failing test cases

PiperOrigin-RevId: 228635726
2019-03-29 15:07:10 -07:00
Lei Zhang 9b034f0bfd Add tblgen::Attribute to wrap around TableGen Attr defs
This CL added a tblgen::Attribute class to wrap around raw TableGen
Record getValue*() calls on Attr defs, which will provide a nicer
API for handling TableGen Record.

PiperOrigin-RevId: 228581107
2019-03-29 15:06:41 -07:00
Alex Zinenko 6ce30becd7 Support verbose parsing and printing of terminator operations
Originally, terminators were special kinds of operation and could not be
extended by dialects.  Only builtin terminators were supported and they had
custom parsers and printers.  Currently, "terminator" is a property of an
operation, making it possible for dialects to define custom terminators.
However, verbose forms of operation syntax were not designed to support
terminators that may have a list of successors (each successor contains a block
name and an optional operand list).  Calling printDefaultOp on a terminator
drops all successor information.  Dialects are thus required to provide custom
parsers and printers for their terminators.

Introduce the syntax for the list of successors in the verbose from of the
operation.  Add support for printing and parsing verbose operations with
successors.

Note that this does not yet add support for unregistered terminators since
"terminator" is a property stored in AsbtractOperation and therefore is only
available for registered operations that have an instance of AbstractOperation.

Add tests for verbose parsing.  It is currently impossible to test round-trip
for verbose terminators because none of the known dialects use verbose syntax
for printing terminators by default, however the printer was exercised on the
LLVM IR dialect prototype.

PiperOrigin-RevId: 228566453
2019-03-29 15:06:26 -07:00
Uday Bondhugula 303c09299f Fix affine expr flattener bug + improve simplification in a particular scenario
- fix visitDivExpr: constraints constructed for localVarCst used the original
  divisor instead of the simplified divisor; fix this. Add a simple test case
  in memref-bound-check that reproduces this bug - although this was encountered in the
  context of slicing for fusion.

- improve mod expr flattening: when flattening mod expressions,
  cancel out the GCD of the numerator and denominator so that we can get a
  simpler flattened form along with a simpler floordiv local var for it

PiperOrigin-RevId: 228539928
2019-03-29 15:06:11 -07:00
Nicolas Vasilache 1f78d63f05 [MLIR] Make SuperVectorization use normalized AffineApplyOp
Supervectorization does not plan on handling multi-result AffineMaps and
non-canonical chains of > 1 AffineApplyOp.
This CL uses the simpler single-result unbounded AffineApplyOp in the
MaterializeVectors pass.

PiperOrigin-RevId: 228469085
2019-03-29 15:05:55 -07:00
Lei Zhang 3e5ee82b81 Put Operator and PredCNF into the tblgen namespace
PiperOrigin-RevId: 228429130
2019-03-29 15:05:38 -07:00
Lei Zhang b2cc2c344e Add tblgen::Type to wrap around TableGen Type defs
This CL added a tblgen::Type class to wrap around raw TableGen
Record getValue*() calls on Type defs, which will provide a
nicer API for handling TableGen Record.

The PredCNF class is also updated to work together with
tblgen::Type.
PiperOrigin-RevId: 228429090
2019-03-29 15:05:23 -07:00
Chris Lattner 2b902f1288 Delete FuncBuilder::createChecked. It is perhaps still a good idea, but has no
clients.  Let's re-add it in the future if there is ever a reason to.  NFC.

Unrelatedly, add a use of a variable to unbreak the non-assert build.

PiperOrigin-RevId: 228284026
2019-03-29 15:05:08 -07:00
Nicolas Vasilache 997415fa77 Extract BuiltinOps::canonicalizeMapAndOperands
This CL is the 4th on the path to simplifying AffineMap composition.
This CL extract canonicalizeMapAndOperands so it can be reused by other
functions; in particular, this will be used in
`makeNormalizedAffineApply`.

PiperOrigin-RevId: 228277890
2019-03-29 15:04:52 -07:00
Nicolas Vasilache 00aac70159 Move makeNormalizedAffineApply
This CL is the 3rd on the path to simplifying AffineMap composition.
This CL just moves `makeNormalizedAffineApply` from VectorAnalysis to
AffineAnalysis where it more naturally belongs.

PiperOrigin-RevId: 228277182
2019-03-29 15:04:38 -07:00
Nicolas Vasilache c6f798a976 Introduce AffineMap::compose(AffineMap)
This CL is the 2nd on the path to simplifying AffineMap composition.
This CL uses the now accepted `AffineExpr::compose(AffineMap)` to
implement `AffineMap::compose(AffineMap)`.

Implications of keeping the simplification function in
Analysis are documented where relevant.

PiperOrigin-RevId: 228276646
2019-03-29 15:04:20 -07:00
River Riddle 8eccc429b7 Add parser support for named type aliases.
Alias identifiers can be used in the place of the types that they alias, and are defined as:

    type-alias-def ::= '!' alias-name '=' 'type' type
    type-alias ::= '!' alias-name

Example:

    !avx.m128 = type vector<4 x f32>
    ...

    "foo"(%x) : vector<4 x f32> -> ()

    // becomes:

    "foo"(%x) : !avx.m128 -> ()

PiperOrigin-RevId: 228271372
2019-03-29 15:04:05 -07:00
Uday Bondhugula e94ba6815a Fix 0-d memref corner case for getMemRefRegion()
- fix crash on test/Transforms/canonicalize.mlir with
  -memref-bound-check

PiperOrigin-RevId: 228268486
2019-03-29 15:03:50 -07:00
Nicolas Vasilache c449e46ceb Introduce AffineExpr::compose(AffineMap)
This CL is the 1st on the path to simplifying AffineMap composition.
This CL uses the now accepted AffineExpr.replaceDimsAndSymbols to
implement `AffineExpr::compose(AffineMap)`.

Arguably, `simplifyAffineExpr` should be part of IR and not Analysis but
this CL does not yet pull the trigger on that.

PiperOrigin-RevId: 228265845
2019-03-29 15:03:36 -07:00
Uday Bondhugula 21baf86a2f Extend loop-fusion's slicing utility + other fixes / updates
- refactor toAffineFromEq and the code surrounding it; refactor code into
  FlatAffineConstraints::getSliceBounds
- add FlatAffineConstraints methods to detect identifiers as mod's and div's of other
  identifiers
- add FlatAffineConstraints::getConstantLower/UpperBound
- Address b/122118218 (don't assert on invalid fusion depths cmdline flags -
  instead, don't do anything; change cmdline flags
  src-loop-depth -> fusion-src-loop-depth
- AffineExpr/Map print method update: don't fail on null instances (since we have
  a wrapper around a pointer, it's avoidable); rationale: dump/print methods should
  never fail if possible.
- Update memref-dataflow-opt to add an optimization to avoid a unnecessary call to
  IsRangeOneToOne when it's trivially going to be true.
- Add additional test cases to exercise the new support
- update a few existing test cases since the maps are now generated uniformly with
  all destination loop operands appearing for the backward slice
- Fix projectOut - fix wrong range for getBestElimCandidate.
- Fix for getConstantBoundOnDimSize() - didn't show up in any test cases since
  we didn't have any non-hyperrectangular ones.

PiperOrigin-RevId: 228265152
2019-03-29 15:03:20 -07:00
Uday Bondhugula b934d75b8f Convert expr - c * (expr floordiv c) to expr mod c in AffineExpr
- Detect 'mod' to replace the combination of floordiv, mul, and subtract when
  possible at construction time; when 'c' is a power of two, this reduces the number of
  operations; also more compact and readable. Update simplifyAdd for this.

  On a side note:
  - with the affine expr flattening we have, a mod expression like d0 mod c
    would be flattened into d0 - c * q,  c * q <= d0 <= c*q + c - 1, with 'q'
    being added as the local variable (q = d0 floordiv c); as a result, a mod
    was turned into a floordiv whenever the expression was reconstructed back,
    i.e., as  d0 - c * (d0 floordiv c); as a result of this change, we recover
    the mod back.

- rename SimplifyAffineExpr -> SimplifyAffineStructures (pass had been renamed but
  the file hadn't been).

PiperOrigin-RevId: 228258120
2019-03-29 15:02:56 -07:00
Uday Bondhugula 56b3640b94 Misc readability and doc / code comment related improvements - NFC
- when SSAValue/MLValue existed, code at several places was forced to create additional
  aggregate temporaries of SmallVector<SSAValue/MLValue> to handle the conversion; get
  rid of such redundant code

- use filling ctors instead of explicit loops

- for smallvectors, change insert(list.end(), ...) -> append(...

- improve comments at various places

- turn getMemRefAccess into MemRefAccess ctor and drop duplicated
  getMemRefAccess. In the next CL, provide getAccess() accessors for load,
  store, DMA op's to return a MemRefAccess.

PiperOrigin-RevId: 228243638
2019-03-29 15:02:41 -07:00
Lei Zhang f8bbe5deca Various tiny refinements over TableGen Operator class
Use "native" vs "derived" to differentiate attributes on ops: native ones
are specified when creating the op as a part of defining the op, while
derived ones are computed from properties of the op.

PiperOrigin-RevId: 228186962
2019-03-29 15:01:56 -07:00
River Riddle 3b2c5600d9 Add support for types belonging to unknown dialects. This allows for types to be round tripped even if the dialect that defines them is not linked in. These types will be represented by a new "UnknownType" that uniques them based upon the dialect namespace and raw string type data.
PiperOrigin-RevId: 228184629
2019-03-29 15:01:11 -07:00
Jacques Pienaar aae85ddce1 Match attributes in input pattern.
Bind attributes similar to operands. Use to rewrite leakyreulo and const rewrite pattern. The attribute type/attributes are not currently checked so should only be used where the attributes match due to the construction of the op.

To support current attribute namespacing, convert __ in attribute name to "$" for matching purposes ('$' is not valid character in variable in TableGen).

Some simplification to make it simpler to specify indented ostream and avoid so many spaces. The goal is not to have perfectly formatted code generated but good enough so that its still easy to read for a user.

PiperOrigin-RevId: 228183639
2019-03-29 15:00:55 -07:00
Alex Zinenko 92a899f629 Drop all uses of the ForInst induction variable before deleting ForInst
The `for` instruction defines the loop induction variable it uses.  In the
well-formed IR, the induction variable can only be used by the body of the
`for` loop.  Existing implementation was explicitly cleaning the body of the
for loop to remove all uses of the induction variable before removing its
definition.  However, in ill-formed IR that may appear in some stages of
parsing, there may be (invalid) users of the loop induction variable outside
the loop body.  In case of unsuccessful parsing, destructor of the
ForInst-defined Value would assert because there are remaining though invalid
users of this Value.  Explicitly drop all uses of the loop induction Value when
destroying a ForInst.  It is no longer necessary to explicitly clean the body
of the loop, destructor of the block will take care of this.

PiperOrigin-RevId: 228168880
2019-03-29 15:00:26 -07:00
Alex Zinenko 3b7b0040ce FunctionParser::~FunctionParser: avoid iterator invalidation
When destroying a FunctionParser in case of parsing failure, we clean up all
uses of undefined forward-declared references.  This has been implemented as
iteration over the list of uses.  However, deleting one use from the list
invalidates the iterator (`IROperand::drop` sets `nextUse` to `nullptr` while
the iterator reads `nextUse` to advance; therefore only the first use was
deleted from the list).  Get a new iterator before calling drop to avoid
invalidation.

PiperOrigin-RevId: 228168849
2019-03-29 15:00:10 -07:00
Uday Bondhugula 94c2d969ce Rename getAffineBinaryExpr -> getAffineBinaryOpExpr, getBinaryAffineOpExpr ->
getAffineBinaryOpExpr for consistency (NFC)

- this is consistent with the name of the class and getAffineDimExpr/ConstantExpr, etc.

PiperOrigin-RevId: 228164959
2019-03-29 14:59:52 -07:00
Nicolas Vasilache 7c0bbe0939 Iterate on vector rather than DenseMap during AffineMap normalization
This CL removes a flakyness associated to a spurious iteration on DenseMap
iterators when normalizing AffineMap.

PiperOrigin-RevId: 228160074
2019-03-29 14:59:37 -07:00
Alex Zinenko c47ed53211 Add simple constant folding hook for CmpIOp
Integer comparisons can be constant folded if both of their arguments are known
constants, which we can compare in the compiler.  This requires implementing
all comparison predicates, but thanks to consistency between LLVM and MLIR
comparison predicates, we have a one-to-one correspondence between predicates
and llvm::APInt comparison functions.  Constant folding of comparsions with
maximum/minimum values of the integer type are left for future work.

This will be used to test the lowering of mod/floordiv/ceildiv in affine
expressions at compile time.

PiperOrigin-RevId: 228077580
2019-03-29 14:59:22 -07:00
Alex Zinenko caa7e70627 LLVM IR lowering: support integer division and remainder operations
These operations trivially map to LLVM IR counterparts for operands of scalar
and (one-dimensional) vector type.  Multi-dimensional vector and tensor type
operands would fail type conversion before the operation conversion takes
place.  Add tests for scalar and vector cases.  Also add a test for vector
`select` instruction for consistency with other tests.

PiperOrigin-RevId: 228077564
2019-03-29 14:59:07 -07:00
Alex Zinenko bc04556cf8 Introduce integer division and remainder operations
This adds signed/unsigned integer division and remainder operations to the
StandardOps dialect.  Two versions are required because MLIR integers are
signless, but the meaning of the leading bit is important in division and
affects the results.  LLVM IR made a similar choice.  Define the operations in
the tablegen file and add simple constant folding hooks in the C++
implementation.  Handle signed division overflow and division by zero errors in
constant folding.  Canonicalization is left for future work.

These operations are necessary to lower affine_apply's down to LLVM IR.

PiperOrigin-RevId: 228077549
2019-03-29 14:58:52 -07:00
Nicolas Vasilache 28cf580555 Cleanup spurious DenseMap include
PiperOrigin-RevId: 228059305
2019-03-29 14:58:38 -07:00
Jacques Pienaar 8f24943826 Verify type of operands match those specifed in op registry.
Expand type to include matcher predicates. Use CNF form to allow specifying combinations of constraints for type. The matching call for the type is used to verify the construction of the operation as well as in rewrite pattern generation.

The matching initially includes redundant checks (e.g., even if the operand of the op is guaranteed to satisfy some requirement, it is still checked during matcher generation for now). As well as some of the traits specified now check what the generated code already checks. Some of the traits can be removed in future as the verify method will include the relevant checks based on the op definition already.

More work is needed for variadic operands.

CNF form is used so that in the follow up redundant checks in the rewrite patterns could be omitted (e.g., when matching a F32Tensor, one does not need to verify that op X's operand 0 is a Tensor if that is guaranteed by op X's definition). The alternative was to have single matcher function specified, but this would not allow for reasoning about what attributes already hold (at the level of PredAtoms).

Use this new operand type restrictions to rewrite BiasAdd with floating point operands as declarative pattern.

PiperOrigin-RevId: 227991412
2019-03-29 14:58:23 -07:00
Nicolas Vasilache 62dabbfd09 Fix opt build failure
PiperOrigin-RevId: 227938032
2019-03-29 14:57:36 -07:00
Uday Bondhugula 8496f2c30b Complete TODOs / cleanup for loop-fusion utility
- this is CL 1/2 that does a clean up and gets rid of one limitation in an
  underlying method - as a result, fusion works for more cases.
- fix bugs/incomplete impl. in toAffineMapFromEq
- fusing across rank changing reshapes for example now just works

  For eg. given a rank 1 memref to rank 2 memref reshape (64 -> 8 x 8) like this,
  -loop-fusion -memref-dataflow-opt now completely fuses and inlines/store-forward
  to get rid of the temporary:

INPUT

  // Rank 1 -> Rank 2 reshape
  for %i0 = 0 to 64 {
     %v = load %A[%i0]
     store %v, %B[%i0 floordiv 8, i0 mod 8]
  }

  for %i1 = 0 to 8
    for %i2 = 0 to 8
      %w = load %B[%i1, i2]
      "foo"(%w) : (f32) -> ()

OUTPUT

$ mlir-opt -loop-fusion -memref-dataflow-opt fuse_reshape.mlir

#map0 = (d0, d1) -> (d0 * 8 + d1)
mlfunc @fuse_reshape(%arg0: memref<64xf32>) {
  for %i0 = 0 to 8 {
    for %i1 = 0 to 8 {
      %0 = affine_apply #map0(%i0, %i1)
      %1 = load %arg0[%0] : memref<64xf32>
      "foo"(%1) : (f32) -> ()
    }
  }
}

AFAIK, there is no polyhedral tool / compiler that can perform such fusion -
because it's not really standard loop fusion, but possible through a
generalized slicing-based approach such as ours.

PiperOrigin-RevId: 227918338
2019-03-29 14:57:22 -07:00
Smit Hinsu d3339ea2b8 Handle parsing failure for splat elements attribute
Currently, it emits the error but does not terminate parsing.

TESTED with unit test

PiperOrigin-RevId: 227886274
2019-03-29 14:56:52 -07:00
Nicolas Vasilache 618c6a74c6 [MLIR] Introduce normalized single-result unbounded AffineApplyOp
Supervectorization does not plan on handling multi-result AffineMaps and
non-canonical chains of > 1 AffineApplyOp.
This CL introduces a simpler abstraction and composition of single-result
unbounded AffineApplyOp by using the existing unbound AffineMap composition.

This CL adds a simple API call and relevant tests:

```c++
OpPointer<AffineApplyOp> makeNormalizedAffineApply(
  FuncBuilder *b, Location loc, AffineMap map, ArrayRef<Value*> operands);
```

which creates a single-result unbounded AffineApplyOp.
The operands of AffineApplyOp are not themselves results of AffineApplyOp by
consrtuction.

This represent the simplest possible interface to complement the composition
of (mathematical) AffineMap, for the cases when we are interested in applying
it to Value*.

In this CL the composed AffineMap is not compressed (i.e. there exist operands
that are not part of the result). A followup commit will compress to normal
form.

The single-result unbounded AffineApplyOp abstraction will be used in a
followup CL to support the MaterializeVectors pass.

PiperOrigin-RevId: 227879021
2019-03-29 14:56:37 -07:00
River Riddle d2cd083f79 Introduce CRTP TypeBase class to simplify type construction and validation.
This impl class currently provides the following:
* auto definition of the 'ImplType = StorageClass'
* get/getChecked wrappers around TypeUniquer
* 'verifyConstructionInvariants' hook
   - This hook verifies that the arguments passed into get/getChecked are valid
     to construct a type instance with.

With this, all non-generic type uniquing has been moved out of MLIRContext.cpp

PiperOrigin-RevId: 227871108
2019-03-29 14:56:22 -07:00
Chris Lattner 7983bbc251 Introduce a simple canonicalization of affine_apply that drops unused dims and
symbols.

Included with this is some other infra:
 - Testcases for other canonicalizations that I will implement next.
 - Some helpers in AffineMap/Expr for doing simple walks without defining whole
   visitor classes.
 - A 'replaceDimsAndSymbols' facility that I'll be using to simplify maps and
   exprs, e.g. to fold one constant into a mapping and to drop/renumber unused dims.
 - Allow index (and everything else) to work in memref's, as we previously
   discussed, to make the testcase easier to write.
 - A "getAffineBinaryExpr" helper to produce a binop when you know the kind as
   an enum.

This line of work will eventually subsume the ComposeAffineApply pass, but it is no where close to that yet :-)

PiperOrigin-RevId: 227852951
2019-03-29 14:56:07 -07:00
Alex Zinenko 8281151c2a TableGen standard arithmetic ops
Use tablegen to generate definitions of the standard binary arithmetic
operations.  These operations share a lot of boilerplate that is better off
generated by a tool.

Using tablegen for standard binary arithmetic operations requires the following
modifications.
1. Add a bit field `hasConstantFolder` to the base Op tablegen class; generate
the `constantFold` method signature if the bit is set.  Differentiate between
single-result and zero/multi-result functions that use different signatures.
The implementation of the method remains in C++, similarly to canonicalization
patterns, since it may be large and non-trivial.
2. Define the `AnyType` record of class `Type` since `BinaryOp` currently
provided in op_base.td is supposed to operate on tensors and other tablegen
users may rely on this behavior.

Note that this drops the inline documentation on the operation classes that was
copy-pasted around anyway.  Since we don't generate g3doc from tablegen yet,
keep LangRef.md as it is.  Eventually, the user documentation can move to the
tablegen definition file as well.

PiperOrigin-RevId: 227820815
2019-03-29 14:55:37 -07:00
Jacques Pienaar dde5bf234d Use Operator class in OpDefinitionsGen. Cleanup NFC.
PiperOrigin-RevId: 227764826
2019-03-29 14:55:22 -07:00
Nicolas Vasilache 0ebc0ba72e [MLIR] More graceful failure in MaterializeVectors
Even though it is unexpected except in pathological cases, a nullptr clone may
be returned. This CL handles the nullptr return gracefuly.

PiperOrigin-RevId: 227764615
2019-03-29 14:55:05 -07:00
Nicolas Vasilache 5b87a5ef4b [MLIR] Drop strict super-vector requirement in MaterializeVector
The strict requirement (i.e. at least 2 HW vectors in a super-vector) was a
premature optimization to avoid interfering with other vector code potentially
introduced via other means.

This CL avoids this premature optimization and the spurious errors it causes
when super-vector size == HW vector size (which is a possible corner case).

This may be revisited in the future.

PiperOrigin-RevId: 227763966
2019-03-29 14:54:49 -07:00
Nicolas Vasilache 17f96ea3dd [MLIR] Fix uninitialized value found with msan
The omission of an early exit created opportunities for unitialized memory
reads. This CL fixes the issue.

PiperOrigin-RevId: 227761814
2019-03-29 14:54:36 -07:00
Nicolas Vasilache 947e5f4a68 [MLIR] Handle corner case in MaterializeVectors
This corner was found when stress testing with a functional end-to-end CPU
path. In the case where the hardware vector size is 1x...x1 the `keep` vector
is empty and would result a crash.

While there is no reason to expect a 1x...x1 HW vector in practice, this case
can just gracefully degrade to scalar, which is what this CL allows.

PiperOrigin-RevId: 227761097
2019-03-29 14:54:22 -07:00
River Riddle 54948a4380 Split the standard types from builtin types and move them into separate source files(StandardTypes.cpp/h). After this cl only FunctionType and IndexType are builtin types, but IndexType will likely become a standard type when the ml/cfgfunc merger is done. Mechanical NFC.
PiperOrigin-RevId: 227750918
2019-03-29 14:54:07 -07:00
Jacques Pienaar c396c044e6 Match the op via isa instead of string compare.
* Match using isa
  - This limits the rewrite pattern to ops defined in op registry but that is probably better end state (esp. for additional verification).

PiperOrigin-RevId: 227598946
2019-03-29 14:53:37 -07:00
River Riddle 8abc06f3d5 Implement initial support for dialect specific types.
Dialect specific types are registered similarly to operations, i.e. registerType<...> within the dialect. Unlike operations, there is no notion of a "verbose" type, that is *all* types must be registered to a dialect. Casting support(isa/dyn_cast/etc.) is implemented by reserving a range of type kinds in the top level Type class as opposed to string comparison like operations.

To support derived types a few hooks need to be implemented:

In the concrete type class:
    - static char typeID;
      * A unique identifier for the type used during registration.

In the Dialect:
    - typeParseHook and typePrintHook must be implemented to provide parser support.

The syntax for dialect extended types is as follows:
 dialect-type:  '!' dialect-namespace '<' '"' type-specific-data '"' '>'

The 'type-specific-data' is information used to identify different types within the dialect, e.g:
 - !tf<"variant"> // Tensor Flow Variant Type
 - !tf<"string">  // Tensor Flow String Type

TensorFlow/TensorFlowControl types are now implemented as dialect specific types as a proof
 of concept.

PiperOrigin-RevId: 227580052
2019-03-29 14:53:07 -07:00
Alex Zinenko 0c4ee54198 Merge LowerAffineApplyPass into LowerIfAndForPass, rename to LowerAffinePass
This change is mechanical and merges the LowerAffineApplyPass and
LowerIfAndForPass into a single LowerAffinePass.  It makes a step towards
defining an "affine dialect" that would contain all polyhedral-related
constructs.  The motivation for merging these two passes is based on retiring
MLFunctions and, eventually, transforming If and For statements into regular
operations.  After that happens, LowerAffinePass becomes yet another
legalization.

PiperOrigin-RevId: 227566113
2019-03-29 14:52:52 -07:00
Alex Zinenko fa710c17f4 LowerForAndIf: expand affine_apply's inplace
Existing implementation was created before ML/CFG unification refactoring and
did not concern itself with further lowering to separate concerns.  As a
result, it emitted `affine_apply` instructions to implement `for` loop bounds
and `if` conditions and required a follow-up function pass to lower those
`affine_apply` to arithmetic primitives.  In the unified function world,
LowerForAndIf is mostly a lowering pass with low complexity.  As we move
towards a dialect for affine operations (including `for` and `if`), it makes
sense to lower `for` and `if` conditions directly to arithmetic primitives
instead of relying on `affine_apply`.

Expose `expandAffineExpr` function in LoweringUtils.  Use this function
together with `expandAffineMaps` to emit primitives that implement loop and
branch conditions directly.

Also remove tests that become unnecessary after transforming LowerForAndIf into
a function pass.

PiperOrigin-RevId: 227563608
2019-03-29 14:52:22 -07:00
Alex Zinenko d64db86f20 Refactor LowerAffineApply
In LoweringUtils, extract out `expandAffineMap`.  This function takes an affine
map and a list of values the map should be applied to and emits a sequence of
arithmetic instructions that implement the affine map.  It is independent of
the AffineApplyOp and can be used in places where we need to insert an
evaluation of an affine map without relying on a (temporary) `affine_apply`
instruction.  This prepares for a merge between LowerAffineApply and
LowerForAndIf passes.

Move the `expandAffineApply` function to the LowerAffineApply pass since it is
the only place that must be aware of the `affine_apply` instructions.

PiperOrigin-RevId: 227563439
2019-03-29 14:52:07 -07:00
Chris Lattner 8ebd64b32f Update the g3docs to reflect the merging of CFG and ML functions.
PiperOrigin-RevId: 227562943
2019-03-29 14:51:52 -07:00
Chris Lattner bbf362b784 Eliminate extfunc/cfgfunc/mlfunc as a concept, and just use 'func' instead.
The entire compiler now looks at structural properties of the function (e.g.
does it have one block, does it contain an if/for stmt, etc) so the only thing
holding up this difference is round tripping through the parser/printer syntax.
Removing this shrinks the compile by ~140LOC.

This is step 31/n towards merging instructions and statements.  The last step
is updating the docs, which I will do as a separate patch in order to split it
from this mostly mechanical patch.

PiperOrigin-RevId: 227540453
2019-03-29 14:51:37 -07:00
River Riddle ae3f8a79ae Rename OperationPrefix to Namespace in Dialect. This is important as dialects will soon be able to define more than just operations.
Moving forward dialect namespaces cannot contain '.' characters.

This cl also standardizes that operation names must begin with the dialect namespace followed by a '.'.

PiperOrigin-RevId: 227532193
2019-03-29 14:51:22 -07:00
Alex Zinenko 0565067495 LLVM IR Lowering: support "select"
This commit adds support for the "select" operation that lowers directly into
its LLVM IR counterpart.  A simple test is included.

PiperOrigin-RevId: 227527893
2019-03-29 14:51:08 -07:00
Chris Lattner 50a356d118 Simplify FunctionPass to only have a runOnFunction hook, instead of having a
runOnCFG/MLFunction override locations.  Passes that care can handle this
filtering if they choose.  Also, eliminate one needless difference between
CFG/ML functions in the parser.

This is step 30/n towards merging instructions and statements.

PiperOrigin-RevId: 227515912
2019-03-29 14:50:53 -07:00
Nicolas Vasilache 73f5c9c380 [MLIR] Sketch a simple set of EDSCs to declaratively write MLIR
This CL introduces a simple set of Embedded Domain-Specific Components (EDSCs)
in MLIR components:
1. a `Type` system of shell classes that closely matches the MLIR type system. These
types are subdivided into `Bindable` leaf expressions and non-bindable `Expr`
expressions;
2. an `MLIREmitter` class whose purpose is to:
  a. maintain a map of `Bindable` leaf expressions to concrete SSAValue*;
  b. provide helper functionality to specify bindings of `Bindable` classes to
     SSAValue* while verifying comformable types;
  c. traverse the `Expr` and emit the MLIR.

This is used on a concrete example to implement MemRef load/store with clipping in the
LowerVectorTransfer pass. More specifically, the following pseudo-C++ code:
```c++
MLFuncBuilder *b = ...;
Location location = ...;
Bindable zero, one, expr, size;
// EDSL expression
auto access = select(expr < zero, zero, select(expr < size, expr, size - one));
auto ssaValue = MLIREmitter(b)
    .bind(zero, ...)
    .bind(one, ...)
    .bind(expr, ...)
    .bind(size, ...)
    .emit(location, access);
```
is used to emit all the MLIR for a clipped MemRef access.

This simple EDSL can easily be extended to more powerful patterns and should
serve as the counterpart to pattern matchers (and could potentially be unified
once we get enough experience).

In the future, most of this code should be TableGen'd but for now it has
concrete valuable uses: make MLIR programmable in a declarative fashion.

This CL also adds Stmt, proper supporting free functions and rewrites
VectorTransferLowering fully using EDSCs.

The code for creating the EDSCs emitting a VectorTransferReadOp as loops
with clipped loads is:

```c++
  Stmt block = Block({
    tmpAlloc = alloc(tmpMemRefType),
    vectorView = vector_type_cast(tmpAlloc, vectorMemRefType),
    ForNest(ivs, lbs, ubs, steps, {
      scalarValue = load(scalarMemRef, accessInfo.clippedScalarAccessExprs),
      store(scalarValue, tmpAlloc, accessInfo.tmpAccessExprs),
    }),
    vectorValue = load(vectorView, zero),
    tmpDealloc = dealloc(tmpAlloc.getLHS())});
  emitter.emitStmt(block);
```

where `accessInfo.clippedScalarAccessExprs)` is created with:

```c++
select(i + ii < zero, zero, select(i + ii < N, i + ii, N - one));
```

The generated MLIR resembles:

```mlir
    %1 = dim %0, 0 : memref<?x?x?x?xf32>
    %2 = dim %0, 1 : memref<?x?x?x?xf32>
    %3 = dim %0, 2 : memref<?x?x?x?xf32>
    %4 = dim %0, 3 : memref<?x?x?x?xf32>
    %5 = alloc() : memref<5x4x3xf32>
    %6 = vector_type_cast %5 : memref<5x4x3xf32>, memref<1xvector<5x4x3xf32>>
    for %i4 = 0 to 3 {
      for %i5 = 0 to 4 {
        for %i6 = 0 to 5 {
          %7 = affine_apply #map0(%i0, %i4)
          %8 = cmpi "slt", %7, %c0 : index
          %9 = affine_apply #map0(%i0, %i4)
          %10 = cmpi "slt", %9, %1 : index
          %11 = affine_apply #map0(%i0, %i4)
          %12 = affine_apply #map1(%1, %c1)
          %13 = select %10, %11, %12 : index
          %14 = select %8, %c0, %13 : index
          %15 = affine_apply #map0(%i3, %i6)
          %16 = cmpi "slt", %15, %c0 : index
          %17 = affine_apply #map0(%i3, %i6)
          %18 = cmpi "slt", %17, %4 : index
          %19 = affine_apply #map0(%i3, %i6)
          %20 = affine_apply #map1(%4, %c1)
          %21 = select %18, %19, %20 : index
          %22 = select %16, %c0, %21 : index
          %23 = load %0[%14, %i1, %i2, %22] : memref<?x?x?x?xf32>
          store %23, %5[%i6, %i5, %i4] : memref<5x4x3xf32>
        }
      }
    }
    %24 = load %6[%c0] : memref<1xvector<5x4x3xf32>>
    dealloc %5 : memref<5x4x3xf32>
```

In particular notice that only 3 out of the 4-d accesses are clipped: this
corresponds indeed to the number of dimensions in the super-vector.

This CL also addresses the cleanups resulting from the review of the prevous
CL and performs some refactoring to simplify the abstraction.

PiperOrigin-RevId: 227367414
2019-03-29 14:50:23 -07:00
Chris Lattner a250643ec8 Merge together the CFG/ML function paths in the CSE pass. I did a first pass
on this to merge together the classes, but there may be other simplification
possible.  I'll leave that to riverriddle@ as future work.

This is step 29/n towards merging instructions and statements.

PiperOrigin-RevId: 227328680
2019-03-29 14:50:08 -07:00
Chris Lattner 7974889f54 Update and generalize various passes to work on both CFG and ML functions,
simplifying them in minor ways.  The only significant cleanup here
is the constant folding pass.  All the other changes are simple and easy,
but this is still enough to shrink the compiler by 45LOC.

The one pass left to merge is the CSE pass, which will be move involved, so I'm
splitting it out to its own patch (which I'll tackle right after this).

This is step 28/n towards merging instructions and statements.

PiperOrigin-RevId: 227328115
2019-03-29 14:49:52 -07:00
Chris Lattner 3c8fc797de Simplify the remapFunctionAttrs logic, merging CFG/ML function handling.
Remove an unnecessary restriction in forward substitution.  Slightly
simplify LLVM IR lowering, which previously would crash if given an ML
function, it should now produce a clean error if given a function with an
if/for instruction in it, just like it does any other unsupported op.

This is step 27/n towards merging instructions and statements.

PiperOrigin-RevId: 227324542
2019-03-29 14:49:35 -07:00
Chris Lattner 4bd9f93606 Simplify GreedyPatternRewriteDriver now that functions are merged into one
representation, shrinking by 70LOC.  The PatternRewriter class can probably
also be simplified as well, but one step at a time.

This is step 26/n towards merging instructions and statements.  NFC.

PiperOrigin-RevId: 227324218
2019-03-29 14:49:20 -07:00
Uday Bondhugula 18fbc3e170 Drop unusued HyperRectangularSet.h/.cpp, given the new design being worked on.
- drop these ununsed/incomplete sketches given the new design
  @albertcohen is working on, and given that FlatAffineConstraints is now
  stable and fast enough for all the analyses/transforms that depend on it.

PiperOrigin-RevId: 227322739
2019-03-29 14:49:03 -07:00
Uday Bondhugula f12182157e Introduce PostDominanceInfo, fix properlyDominates() for Instructions
- introduce PostDominanceInfo in the right/complete way and use that for post
  dominance check in store-load forwarding
- replace all uses of Analysis/Utils::dominates/properlyDominates with
  DominanceInfo::dominates/properlyDominates
- drop all redundant copies of dominance methods in Analysis/Utils/
- in pipeline-data-transfer, replace dominates call with a much less expensive
  check; similarly, substitute dominates() in checkMemRefAccessDependence with
  a simpler check suitable for that context
- fix a bug in properlyDominates
- improve doc for 'for' instruction 'body'

PiperOrigin-RevId: 227320507
2019-03-29 14:48:44 -07:00
Uday Bondhugula cea9f28a2c Fix dominates() for block's.
- dominates() for blocks was assuming that there was only a single block at the
  top level whenever there was a hierarchy of blocks (as in the case of 'for'/'if'
  instructions).
- fix the comments as well

PiperOrigin-RevId: 227319738
2019-03-29 14:48:28 -07:00
Chris Lattner ae618428f6 Greatly simplify the ConvertToCFG pass, converting it from a module pass to a
function pass, and eliminating the need to copy over code and do
interprocedural updates.  While here, also improve it to make fewer empty
blocks, and rename it to "LowerIfAndFor" since that is what it does.  This is
a net reduction of ~170 lines of code.

As drive-bys, change the splitBlock method to *not* insert an unconditional
branch, since that behavior is annoying for all clients.  Also improve the
AsmPrinter to not crash when a block is referenced that isn't linked into a
function.

PiperOrigin-RevId: 227308856
2019-03-29 14:48:13 -07:00
Uday Bondhugula 545f3ce430 Fix ASAN failure in memref-dataflow-opt
- memrefsToErase had duplicates inserted into it; switch to SmallPtrSet.

PiperOrigin-RevId: 227299306
2019-03-29 14:47:58 -07:00
Feng Liu dfee0a6e9b Make PrintOpStatsPass a module pass
PrintOpStatsPass is maintaining state (op stats ) across functions and doing
per-module work - it should be a module pass.

PiperOrigin-RevId: 227294151
2019-03-29 14:47:43 -07:00
Uday Bondhugula b9fe6be6d4 Introduce memref store to load forwarding - a simple memref dataflow analysis
- the load/store forwarding relies on memref dependence routines as well as
  SSA/dominance to identify the memref store instance uniquely supplying a value
  to a memref load, and replaces the result of that load with the value being
  stored. The memref is also deleted when possible if only stores remain.

- add methods for post dominance for MLFunction blocks.

- remove duplicated getLoopDepth/getNestingDepth - move getNestingDepth,
  getMemRefAccess, getNumCommonSurroundingLoops into Analysis/Utils (were
  earlier static)

- add a helper method in FlatAffineConstraints - isRangeOneToOne.

PiperOrigin-RevId: 227252907
2019-03-29 14:47:28 -07:00
Uday Bondhugula 6e3462d251 Fix b/122139732; update FlatAffineConstraints::isEmpty() to eliminate IDs in a
better order.

- update isEmpty() to eliminate IDs in a better order. Speed improvement for
  complex cases (for eg. high-d reshape's involving mod's/div's).
- minor efficiency update to projectOut (was earlier making an extra albeit
  benign call to gaussianEliminateIds) (NFC).
- move getBestIdToEliminate further up in the file (NFC).
- add the failing test case.
- add debug info to checkMemRefAccessDependence.

PiperOrigin-RevId: 227244634
2019-03-29 14:47:13 -07:00
Chris Lattner dffc589ad2 Extend InstVisitor and Walker to handle arbitrary CFG functions, expand the
Function::walk functionality into f->walkInsts/Ops which allows visiting all
instructions, not just ops.  Eliminate Function::getBody() and
Function::getReturn() helpers which crash in CFG functions, and were only kept
around as a bridge.

This is step 25/n towards merging instructions and statements.

PiperOrigin-RevId: 227243966
2019-03-29 14:46:58 -07:00
Chris Lattner 8ef2552df7 Have the asmprinter take advantage of the new capabilities of the asmparser, by
printing the entry block in a CFG function's argument line.  Since I'm touching
all of the testcases anyway, change the argument list from printing as
"%arg : type" to "%arg: type" which is more consistent with bb arguments.

In addition to being more consistent, this is a much nicer look for cfg functions.

PiperOrigin-RevId: 227240069
2019-03-29 14:46:29 -07:00
Chris Lattner aaa1d77e96 Clean up and improve the parser handling of basic block labels, now that we
have a designator.  This improves diagnostics and merges handling between CFG
and ML functions more.  This also eliminates hard coded parser knowledge of
terminator keywords, allowing dialects to define their own terminators.

PiperOrigin-RevId: 227239398
2019-03-29 14:46:13 -07:00
Chris Lattner 37579ae8c4 Introduce ^ as a basic block sigil, eliminating an ambiguity on the MLIR
syntax.

PiperOrigin-RevId: 227234174
2019-03-29 14:45:59 -07:00
Chris Lattner 56e2a6cc3b Merge the verifier logic for all functions into a unified framework, this
requires enhancing DominanceInfo to handle the structure of an ML function,
which is required anyway.  Along the way, this also fixes a const correctness
problem with Instruction::getBlock().

This is step 24/n towards merging instructions and statements.

PiperOrigin-RevId: 227228900
2019-03-29 14:45:43 -07:00
Chris Lattner 4a96a11d6d Enhance parsing of CFG and Ext functions to optionally allow named arguments in
the function signature, giving them common functionality to ml functions.  This
is a strictly additive patch that adds new capability without changing behavior
in a significant way (other than a few diagnostic cleanups).  A subsequent
patch will change the printer to use this behavior, which will require updating
a ton of testcases.  :)

This exposes the fact that we need to make a grammar change for block
arguments, as is tracked by b/122119779

This is step 23/n towards merging instructions and statements, and one of the
first steps towards eliminating the "cfg vs ml" distinction at a syntax and
semantic level.

PiperOrigin-RevId: 227228342
2019-03-29 14:45:28 -07:00
Chris Lattner 5b9c3f7cdb Tidy up references to "basic blocks" that should refer to blocks now. NFC.
PiperOrigin-RevId: 227196077
2019-03-29 14:44:59 -07:00
Chris Lattner be9ee4a98e Merge parser logic for CFG and ML functions, shrinking the code
by ~80 lines.  This causes a slight change to diagnostics, but
is otherwise behavior preserving.

This is step 22/n towards merging instructions and statements, MFC.

PiperOrigin-RevId: 227187857
2019-03-29 14:44:44 -07:00
Chris Lattner 456ad6a8e0 Standardize naming of statements -> instructions, revisting the code base to be
consistent and moving the using declarations over.  Hopefully this is the last
truly massive patch in this refactoring.

This is step 21/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227178245
2019-03-29 14:44:30 -07:00
Uday Bondhugula b1d9cc4d1e Extend/complete dependence tester to utilize local var info.
- extend/complete dependence tester to utilize local var info while adding
  access function equality constraints; one more step closer to get slicing
  based fusion working in the general case of affine_apply's involving mod's/div's.
- update test case to reflect more accurate dependence information; remove
  inaccurate comment on test case mod_deps.
- fix a minor "bug" in equality addition in addMemRefAccessConstraints (doesn't
  affect correctness, but the fixed version is more intuitive).
- some more surrounding code clean up
- move simplifyAffineExpr out of anonymous AffineExprFlattener class - the
  latter has state, and the former should reside outside.

PiperOrigin-RevId: 227175600
2019-03-29 14:44:14 -07:00
Chris Lattner 315a466aed Rename BasicBlock and StmtBlock to Block, and make a pass cleaning it up. I did not make an effort to rename all of the 'bb' names in the codebase, since they are still correct and any specific missed once can be fixed up on demand.
The last major renaming is Statement -> Instruction, which is why Statement and
Stmt still appears in various places.

This is step 19/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227163082
2019-03-29 14:43:58 -07:00
Jacques Pienaar 2a463c36b1 Add convenience wrapper for operator in tblgen
Add convenience wrapper to make it easier to iterate over attributes and operands of operator defined in TableGen file. Use this class in RewriterGen (not used in the op generator yet, will do shortly). Change the RewriterGen to pass the bound arguments explicitly, this is in preparation for multi-op matching.

PiperOrigin-RevId: 227156748
2019-03-29 14:43:43 -07:00
Chris Lattner 69f9f6e21c Merge ext/cfg/ml function printing logic in the AsmPrinter (shrinking it
by about 100 LOC), without changing any existing behavior.

This is step 20/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227155000
2019-03-29 14:43:29 -07:00
Chris Lattner 69d9e990fa Eliminate the using decls for MLFunction and CFGFunction standardizing on
Function.

This is step 18/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227139399
2019-03-29 14:43:13 -07:00
Chris Lattner d798f9bad5 Rename BBArgument -> BlockArgument, Op::getOperation -> Op::getInst(),
StmtResult -> InstResult, StmtOperand -> InstOperand, and remove the old names.

This is step 17/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227121537
2019-03-29 14:42:40 -07:00
Chris Lattner 5187cfcf03 Merge Operation into OperationInst and standardize nomenclature around
OperationInst.  This is a big mechanical patch.

This is step 16/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227093712
2019-03-29 14:42:23 -07:00
Chris Lattner 471c976413 Rework inherentance hierarchy: Operation now derives from Statement, and
OperationInst derives from it.  This allows eliminating some forwarding
functions, other complex code handling multiple paths, and the 'isStatement'
bit tracked by Operation.

This is the last patch I think I can make before the big mechanical change
merging Operation into OperationInst, coming next.

This is step 15/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227077411
2019-03-29 14:41:49 -07:00
Feng Liu 9b20a4ccdf add a method to get FloatAttr value as double
Sometimes we have to get the raw value of the FloatAttr to invoke APIs from
non-MLIR libraries (i.e. in the tpu_ops.inc and convert_tensor.cc files). Using
`FloatAttr::getValue().convertToFloat()` and
`FloatAttr::getValue().convertToDouble()` is not safe because interally they
checke the semantics of the APFloat in the attribute, and the semantics is not
always specified (the default value is f64 then convertToFloat will fail) or
inferred incorrectly (for example, using 1.0 instead of 1.f for IEEEFloat).
Calling these convert methods without knowing the semantics can usually crash
the compiler.

This new method converts the value of a FloatAttr to double even if it loses
precision. Currently this method can be used to read in f32 data from arrays.

PiperOrigin-RevId: 227076616
2019-03-29 14:41:34 -07:00
Chris Lattner 1b430f1d32 Delicately re-layer Operation, Statement, and OperationStmt, reworking
#includes so Statements.h includes Operation.h but nothing else does.  This is
in preparation to eliminate the Operation class and the complexity it brings
with it.  I split this patch off because it is just moving stuff around, the
next patch will be more complex.

This is step 14/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227071777
2019-03-29 14:41:05 -07:00
Chris Lattner 4fbcd1ac52 Minor renamings: Trim the "Stmt" prefix off
StmtSuccessorIterator/StmtSuccessorIterator, and rename and move the
CFGFunctionViewGraph pass to ViewFunctionGraph.

This is step 13/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227069438
2019-03-29 14:40:51 -07:00
Uday Bondhugula 294687ef59 Fix affine expr flattener bug introduced by cl/225452174.
- inconsistent local var constraint size when repeatedly using the same
  flattener for all expressions in a map.

PiperOrigin-RevId: 227067836
2019-03-29 14:40:37 -07:00
Chris Lattner 4c05f8cac6 Merge CFGFuncBuilder/MLFuncBuilder/FuncBuilder together into a single new
FuncBuilder class.  Also rename SSAValue.cpp to Value.cpp

This is step 12/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227067644
2019-03-29 14:40:22 -07:00
Chris Lattner 3f190312f8 Merge SSAValue, CFGValue, and MLValue together into a single Value class, which
is the new base of the SSA value hierarchy.  This CL also standardizes all the
nomenclature and comments to use 'Value' where appropriate.  This also eliminates a large number of cast<MLValue>(x)'s, which is very soothing.

This is step 11/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227064624
2019-03-29 14:40:06 -07:00
Chris Lattner 776b035646 Eliminate the Instruction, BasicBlock, CFGFunction, MLFunction, and ExtFunction classes, using the Statement/StmtBlock hierarchy and Function instead.
This *only* changes the internal data structures, it does not affect the user visible syntax or structure of MLIR code.  Function gets new "isCFG()" sorts of predicates as a transitional measure.

This patch is gross in a number of ways, largely in an effort to reduce the amount of mechanical churn in one go.  It introduces a bunch of using decls to keep the old names alive for now, and a bunch of stuff needs to be renamed.

This is step 10/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227044402
2019-03-29 14:39:49 -07:00
Alex Zinenko a63f440601 LoopAnalysis: isContiguousAccess fail gracefully
Existing implementation of isContiguousAccess asserts that one of the
function arguments is within certain range, depending on another parameter.
However, the value of this argument may come from outside, in particular in the
loop vectorization pass it may come from command line arguments.  This leads
to 'mlir-opt' crashing on an assertion depending on flags.  Handle the error
gracefully by reporting error returning a negative result instead.  This
negative result prevents any further transformation by the vectorizer so the IR
remains valid.

PiperOrigin-RevId: 227029496
2019-03-29 14:39:34 -07:00
Jacques Pienaar 057984d05d Move print op stats pass to analysis.
Move PrintOpStatsPass out of tools and to other passes (moved to Analysis as it
doesn't modify the program but it is different than the other analysis passes
as it is only consumer at present is the user).

PiperOrigin-RevId: 227018996
2019-03-29 14:39:19 -07:00
Chris Lattner abf72a8bb1 Rename findFunction from the ML side of the house to be named getFunction(),
making it more similar to the CFG side of things.  It is true that in a deeply
nested case that this is not a guaranteed O(1) time operation, and that 'get'
could lead compiler hackers to think this is cheap, but we need to merge these
and we can look into solutions for this in the future if it becomes a problem
in practice.

This is step 9/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 226983931
2019-03-29 14:38:49 -07:00
Mehdi Amini 4e5337601e Inline Instruction's operands as TrailingObjects
For performance/memory saving purpose, having the Instruction holding a
std::vector for the operands isn't a really good tradeoff.  The only reason for
this was to support adding/removing easily BasicBlock arguments to Terminator.
Since this isn't the most common operation, we instead force a pre-allocated
list of operands on Instructions at creation time.
PiperOrigin-RevId: 226981227
2019-03-29 14:38:34 -07:00
Chris Lattner 036f87b15f Rename CFGFunctionGraphTraits.h -> FunctionGraphTraits.h and add
graph specializations for doing CFG traversals of ML Functions, making the two
sorts of functions have the same capabilities.

This is step 8/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 226968502
2019-03-29 14:38:19 -07:00
Chris Lattner 3bd8ff6699 Eliminate the MLFuncArgument class representing arguments to MLFunctions: use the
BlockArgument arguments of the entry block instead.  This makes MLFunctions and
CFGFunctions work more similarly.

This is step 7/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 226966975
2019-03-29 14:38:04 -07:00
Chris Lattner 5ff0001dc7 Introduce a new StmtBlockList type to hold a list of StmtBlocks. Use it in
MLFunction, IfStmt, ForStmt even though they currently only contain exactly one
block in that list.

This is step 6/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 226960278
2019-03-29 14:37:49 -07:00
Feng Liu 63068da4d9 Support NameLoc and CallSiteLoc for mlir::Location
The NameLoc can be used to represent a variable, node or method. The
CallSiteLoc has two fields, one represents the concrete location and another
one represents the caller's location. Multiple CallSiteLocs can be chained as
a call stack.

For example, the following call stack
```
AAA
at file1:1
at file2:135
at file3:34
```

can be formed by call0:

```
auto name = NameLoc::get("AAA");
auto file1 = FileLineColLoc::get("file1", 1);
auto file2 = FileLineColLoc::get("file2", 135);
auto file3 = FileLineColLoc::get("file3", 34);
auto call2 = CallSiteLoc::get(file2, file3);
auto call1 = CallSiteLoc::get(file1, call2);
auto call0 = CallSiteLoc::get(name, call1);
```

PiperOrigin-RevId: 226941797
2019-03-29 14:37:34 -07:00
Alex Zinenko eb0f9f37af SuperVectorization: fix 'isa' assertion
Supervectorization uses null pointers to SSA values as a means of communicating
the failure to vectorize.  In operation vectorization, all operations producing
the values of operation arguments must be vectorized for the given operation to
be vectorized.  The existing check verified if any of the value "def"
statements was vectorized instead, sometimes leading to assertions inside `isa`
called on a null pointer.  Fix this to check that all "def" statements were
vectorized.

PiperOrigin-RevId: 226941552
2019-03-29 14:37:20 -07:00
Alex Zinenko 9403f80dd3 LLVM IR lowering: support SubIOp and SubFOp
The binary subtraction operations were not supported by the lowering because
they were not essential for the testing flow.  Add support for these
operations.

PiperOrigin-RevId: 226941463
2019-03-29 14:37:05 -07:00
Jacques Pienaar 58d50a6325 Rename convenience methods to make type explicit.
PiperOrigin-RevId: 226939383
2019-03-29 14:36:50 -07:00
Chris Lattner d613f5ab65 Refactor MLFunction to contain a StmtBlock for its body instead of inheriting
from it.  This is necessary progress to squaring away the parent relationship
that a StmtBlock has with its enclosing if/for/fn, and makes room for functions
to have more than one block in the future.  This also removes IfClause and ForStmtBody.

This is step 5/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 226936541
2019-03-29 14:36:35 -07:00
Chris Lattner 9a4060d3f5 Eliminate the ability to add operands to an instruction, used in a narrow case
for SSA values in terminators, but easily worked around.  At the same time,
move the StmtOperand list in a OperationStmt to the end of its trailing
objects list so we can *reduce* the number of operands, without affecting
offsets to the other stuff in the allocation.

This is important because we want OperationStmts to be consequtive, including
their operands - we don't want to use an std::vector of operands like
Instructions have.

This is patch 4/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 226865727
2019-03-29 14:36:20 -07:00
Chris Lattner eadaa1101c Implement StmtBlocks support for arguments and pred/succ iteration. This isn't
tested yet, but will when stuff starts switching over to it.  This is part 3/n of merging CFGFunctions and MLFunctions.

PiperOrigin-RevId: 226794787
2019-03-29 14:36:05 -07:00
Chris Lattner 87ce4cc501 Per review on the previous CL, drop MLFuncBuilder::createOperation, changing
clients to use OperationState instead.  This makes MLFuncBuilder more similiar
to CFGFuncBuilder.  This whole area will get tidied up more when cfg and ml
worlds get unified.  This patch is just gardening, NFC.

PiperOrigin-RevId: 226701959
2019-03-29 14:35:49 -07:00
Chris Lattner 49315c6f6b Give StmtBlocks a use-def list, and give OperationStmt's the ability to have
optional successor operands when they are terminator operations.

This isn't used yet, but is part 2/n towards merging BasicBlock into StmtBlock
and Instruction into OperationStmt.

PiperOrigin-RevId: 226684636
2019-03-29 14:35:34 -07:00
Chris Lattner 1301f907a1 Refactor ForStmt: having it contain a StmtBlock instead of subclassing
StmtBlock.  This is more consistent with IfStmt and also conceptually makes
more sense - a forstmt "isn't" its body, it contains its body.

This is step 1/N towards merging BasicBlock and StmtBlock.  This is required
because in the new regime StmtBlock will have a use list (just like BasicBlock
does) of operands, and ForStmt already has a use list for its induction
variable.

This is a mechanical patch, NFC.

PiperOrigin-RevId: 226684158
2019-03-29 14:35:19 -07:00
MLIR Team 4eef795a1d Computation slice update: adds parameters to insertBackwardComputationSlice which specify the source loop nest depth at which to perform iteration space slicing, and the destination loop nest depth at which to insert the compution slice.
Updates LoopFusion pass to take these parameters as command line flags for experimentation.

PiperOrigin-RevId: 226514297
2019-03-29 14:35:03 -07:00
River Riddle 1e0ebabf66 Unify type uniquing and construction.
This allows for us to decouple type uniquing/construction from MLIRContext and pave the way for dialect specific types.

To accomplish this we two new classes, TypeUniquer and TypeStorageAllocator.

* TypeUniquer is now responsible for all construction and uniquing of types.
* TypeStorageAllocator is a utility used by derived type storage objects to allocate memory within an MLIRContext.

This cl also standardizes what a derived type storage class needs to provide:
    - Define a type alias, KeyTy, to a type that uniquely identifies the
      instance of the type within its kind.
      * The key type must be constructible from the values passed into the
        detail::TypeUniquer::get call after the type kind.
      * The key type must have a llvm::DenseMapInfo specialization for
        hashing.

    - Provide a method, 'KeyTy getKey() const', to construct the key type
      from an existing storage instance.

    - Provide a construction method:
        'DerivedStorage *construct(TypeStorageAllocator &, ...)'
      that builds a unique instance of the derived storage. The arguments
      after the TypeStorageAllocator must correspond with the values passed
      into the detail::TypeUniquer::get call after the type kind.

PiperOrigin-RevId: 226507184
2019-03-29 14:34:46 -07:00
MLIR Team bcb7c4742d Do proper indexing for local variables when building access function equality constraints (working on test cases).
PiperOrigin-RevId: 226399089
2019-03-29 14:34:02 -07:00
MLIR Team 4f5ef1619e Pass loop depth 1 to memref dependence check when constructing dependence constraints used to calculate computation slice for loop fusion.
This done so that the dominance check between ancestors of op statements from src/dst memref accesses will be run.

PiperOrigin-RevId: 226350443
2019-03-29 14:33:46 -07:00
MLIR Team 2570fb5bb7 Address some issues from memref dependence check bug (b/121216762), adds tests cases.
PiperOrigin-RevId: 226277453
2019-03-29 14:33:17 -07:00
MLIR Team 6892ffb896 Improve loop fusion algorithm by using a memref dependence graph.
Fixed TODO for reduction fusion unit test.

PiperOrigin-RevId: 226277226
2019-03-29 14:33:02 -07:00
Uday Bondhugula 14d2618f63 Simplify memref-dependence-check's meta data structures / drop duplication and
reuse existing ones.

- drop IterationDomainContext, redundant since FlatAffineConstraints has
  MLValue information associated with its dimensions.
- refactor to use existing support
- leads to a reduction in LOC
- as a result of these changes, non-constant loop bounds get naturally
  supported for dep analysis.
- update test cases to include a couple with non-constant loop bounds
- rename addBoundsFromForStmt -> addForStmtDomain
- complete TODO for getLoopIVs (handle 'if' statements)

PiperOrigin-RevId: 226082008
2019-03-29 14:32:46 -07:00
Uday Bondhugula 1d72f2e47e Update / complete a TODO for addBoundsForForStmt
- when adding constraints from a 'for' stmt into FlatAffineConstraints,
  correctly add bound operands of the 'for' stmt as a dimensional identifier or
  a symbolic identifier depending on whether the bound operand is a valid
  MLFunction symbol
- update test case to exercise this.

PiperOrigin-RevId: 225988511
2019-03-29 14:32:31 -07:00
Alex Zinenko 49c81ebcb0 Densify storage for f16, f32 and support f16 semantics in FloatAttrs
Existing implementation always uses 64 bits to store floating point values in
DenseElementsAttr.  This was due to FloatAttrs always a `double` for storage
independently of the actual type.  Recent commits added support for FloatAttrs
with the proper f32 type and floating semantics and changed the bitwidth
reporting on FloatType.

Use the existing infrastructure for densely storing 16 and 32-bit values in
DenseElementsAttr storage to store f16 and f32 values.  Move floating semantics
definition to the FloatType level.  Properly support f16 / IEEEhalf semantics
at the FloatAttr level and in the builder.

Note that bf16 is still stored as a 64-bit value with IEEEdouble semantics
because APFloat does not have first-class support for bf16 types.

PiperOrigin-RevId: 225981289
2019-03-29 14:32:14 -07:00
Uday Bondhugula 20531932f4 Refactor/update memref-dep-check's addMemRefAccessConstraints and
addDomainConstraints; add support for mod/div for dependence testing.

- add support for mod/div expressions in dependence analysis
- refactor addMemRefAccessConstraints to use getFlattenedAffineExprs (instead
  of getFlattenedAffineExpr); update addDomainConstraints.
- rename AffineExprFlattener::cst -> localVarCst

PiperOrigin-RevId: 225933306
2019-03-29 14:31:58 -07:00
Alex Zinenko 4dbd94b543 Refactor LowerVectorTransfersPass using pattern rewriters
This introduces a generic lowering pass for ML functions.  The pass is
parameterized by template arguments defining individual pattern rewriters.
Concrete lowering passes define individual pattern rewriters and inherit from
the generic class that takes care of allocating rewriters, traversing ML
functions and performing the actual rewrite.

While this is similar to the greedy pattern rewriter available in
Transform/Utils, it requires adjustments due to the ML/CFG duality.  In
particular, ML function rewriters must be able to create statements, not only
operations, and need access to an MLFuncBuilder.  When we move to using the
unified function type, the ML-specific rewriting will become unnecessary.

Use LowerVectorTransfers as a testbed for the generic pass.

PiperOrigin-RevId: 225887424
2019-03-29 14:31:43 -07:00
Alex Zinenko 699a2f5373 LLVM IR lowering: support vector_type_cast
Introduce support for lowering vector_type_cast to LLVM IR.  It consists in
creating a new MemRef descriptor with the base pointer with the type that
corresponds to the lowered element type of the target memref.  Since
`vector_type_cast` does not support dynamic shapes in the target type, no
dynamic size conversion is necessary.

This commit goes in the opposite direction of what is expected of LLVM IR
lowering: it should not be aware of all the other dialects.  Instead, we should
have separate definitions for conversions in a global lowering framework.
However, this requires LLVM dialect to be implemented, which is currently
blocked by the absence of user-defined types.  Implement the lowering anyway to
unblock end-to-end vectorization experiments.
PiperOrigin-RevId: 225887368
2019-03-29 14:31:28 -07:00
Alex Zinenko 51c8a095a3 Materialize vector_type_cast operation in the SuperVector dialect
This operation is produced and used by the super-vectorization passes and has
been emitted as an abstract unregistered operation until now.  For end-to-end
testing purposes, it has to be eventually lowered to LLVM IR.  Matching
abstract operation by name goes into the opposite direction of the generic
lowering approach that is expected to be used for LLVM IR lowering in the
future.  Register vector_type_cast operation as a part of the SuperVector
dialect.

Arguably, this operation is a special case of the `view` operation from the
Standard dialect.  The semantics of `view` is not fully specified at this point
so it is safer to rely on a custom operation.  Additionally, using a custom
operation may help to achieve clear dialect separation.

PiperOrigin-RevId: 225887305
2019-03-29 14:31:13 -07:00
Uday Bondhugula 19b2ce23a5 Refactor / eliminate duplicate code in
memref-dep-check / getIterationDomainContext

PiperOrigin-RevId: 225857762
2019-03-29 14:30:58 -07:00
Alex Zinenko df9bd857b1 Type system: replace Type::getBitWidth with getIntOrFloatBitWidth
As MLIR moves towards dialect-specific types, a generic Type::getBitWidth does
not make sense for all of them.  Even with the current type system, the bit
width is not defined (and causes the method in question to abort) for all
TensorFlow types.

This commit restricts the bit width definition to primitive standard types that
have a number of bits appearing verbatim in their type, i.e., integers and
floats.  As a side effect, it delegates the decision on the bit width of the
`index` to the backends.  Existing backends currently hardcode it to 64 bits.

The Type::getBitWidth method is replaced by Type::getIntOrFloatBitWidth that
only applies to integers and floats.  The call sites are updated to use the new
method, where applicable, or rewritten so as not rely on it.  Incidentally,
this fixes a utility method that did not account for memrefs being allowed to
have vectors as element types in the size computation.

As an observation, several places in the code use Type in places where a more
specific type could be used instead.  Some of those are fixed by this commit.

PiperOrigin-RevId: 225844792
2019-03-29 14:30:43 -07:00
Uday Bondhugula 4a3e4e8ea7 loop-unroll - add function callback argument for outside targets to
provide unroll factors, and a cmd line argument to specify number of
innermost loop unroll repetitions.

- add function callback parameter for outside targets to provide unroll factors
- add a cmd line parameter to repeatedly apply innermost loop unroll a certain
  number of times (to avoid using -loop-unroll -loop-unroll ...; instead
  -unroll-num-reps=2).
- implement the callback for a target
- update test cases / usage

PiperOrigin-RevId: 225843191
2019-03-29 14:30:28 -07:00
MLIR Team 3b69230b3a Loop Fusion pass update: introduce utilities to perform generalized loop fusion based on slicing; encompasses standard loop fusion.
*) Adds simple greedy fusion algorithm to drive experimentation. This algorithm greedily fuses loop nests with single-writer/single-reader memref dependences to improve locality.
*) Adds support for fusing slices of a loop nest computation: fusing one loop nest into another by adjusting the source loop nest's iteration bounds (after it is fused into the destination loop nest). This is accomplished by solving for the source loop nest's IVs in terms of the destination loop nests IVs and symbols using the dependece polyhedron, then creating AffineMaps of these functions for the loop bounds of the fused source loop.
*) Adds utility function 'insertMemRefComputationSlice' which computes and inserts computation slice from loop nest surrounding a source memref access into the loop nest surrounding the destingation memref access.
*) Adds FlatAffineConstraints::toAffineMap function which returns and AffineMap which represents an equality contraint where one dimension identifier is represented as a function of all others in the equality constraint.
*) Adds multiple fusion unit tests.

PiperOrigin-RevId: 225842944
2019-03-29 14:30:13 -07:00
Jacques Pienaar 49c4d2a630 Fix builder getFloatAttr of double to use F64 type and use fltSemantics in FloatAttr.
Store FloatAttr using more appropriate fltSemantics (mostly fixing up F32/F64 storage, F16/BF16 pending). Previously F32 type was used incorrectly for double (the storage was double). Also add query method that returns fltSemantics for IEEE fp types and use that to verify that the APfloat given matches the type:
* FloatAttr created using APFloat is verified that the semantics of the type and APFloat matches;
* FloatAttr created using double has the APFloat created to match the semantics of the type;

Change parsing of tensor negative splat element to pass in the element type expected. Misc other changes to account for the storage type matching the attribute.

PiperOrigin-RevId: 225821834
2019-03-29 14:29:58 -07:00
Uday Bondhugula dced746bd1 Remove duplicate code / reuse right utilities from memref-dep-check / loop-tile
- use addBoundsForForStmt
- getLoopIVs can return a vector of ForStmt * instead of const ForStmt *; the
  returned things aren't owned / part of the stmt on which it's being called.
- other minor API cleanup

PiperOrigin-RevId: 225774301
2019-03-29 14:29:28 -07:00
Uday Bondhugula c41ee60647 'memref-bound-check': extend to store op's as well
- extend memref-bound-check to store op's
- make the bound check an analysis util and move to lib/Analysis/Utils.cpp (so that
  one doesn't need to always create a pass to use it)

PiperOrigin-RevId: 225564830
2019-03-29 14:29:13 -07:00
Alex Zinenko bc52a639f9 Extract vector_transfer_* Ops into a SuperVectorDialect.
From the beginning, vector_transfer_read and vector_transfer_write opreations
were intended as a mid-level vectorization abstraction.  In particular, they
are lowered to the StandardOps dialect before further processing.  As such, it
does not make sense to keep them at the same level as StandardOps.  Introduce
the new SuperVectorOps dialect and move vector_transfer_* operations there.
This will be used as a testbed for the generic lowering/legalization pass.

PiperOrigin-RevId: 225554492
2019-03-29 14:28:58 -07:00
Uday Bondhugula 45a0f52519 Expression flattening improvement - reuse local expressions.
- if a local id was already for a specific mod/div expression, just reuse it if
  the expression repeats (instead of adding a new one).
- drastically reduces the number of local variables added during flattening for
  real use cases - since the same div's and mod expressions often repeat.
- add getFlattenedAffineExprs for AffineMap, IntegerSet based on the above

As a natural result of the above:

- FlatAffineConstraints(IntegerSet) ctor now deals with integer sets that have mod
  and div constraints as well, and these get simplified as well from -simplify-affine-structures

PiperOrigin-RevId: 225452174
2019-03-29 14:28:13 -07:00
Uday Bondhugula 8365bdc17f FlatAffineConstraints - complete TODOs: add method to remove duplicate /
trivially redundant constraints. Update projectOut to eliminate identifiers in
a more efficient order. Fix b/120801118.

- add method to remove duplicate / trivially redundant constraints from
  FlatAffineConstraints (use a hashing-based approach with DenseSet)
- update projectOut to eliminate identifiers in a more efficient order

(A sequence of affine_apply's like this (from a real use case) finally exposed
the lack of the above trivial/low hanging simplifications).

  for %ii = 0 to 64 {
    for %jj = 0 to 9 {
      %a0 = affine_apply (d0, d1) -> (d0 * (9 * 1024) + d1 * 128) (%ii, %jj)
      %a1 = affine_apply (d0) ->
        (d0 floordiv (2 * 3 * 3 * 128 * 128),
        (d0 mod 294912) floordiv (3 * 3 * 128 * 128),
        (((d0 mod 294912) mod 147456) floordiv 1152) floordiv 8,
        (((d0 mod 294912) mod 147456) mod 1152) floordiv 384,
        ((((d0 mod 294912) mod 147456) mod 1152) mod 384) floordiv 128,
        (((((d0 mod 294912) mod 147456) mod 1152) mod 384) mod 128)
          floordiv 128) (%a0)
      %v0 = load %in[%a1tensorflow/mlir#0, %a1tensorflow/mlir#1, %a1tensorflow/mlir#3, %a1tensorflow/mlir#4, %a1tensorflow/mlir#2, %a1tensorflow/mlir#5]
        : memref<2x2x3x3x16x1xi32>
    }
  }

- update FlatAffineConstraints::print to print number of constraints.

PiperOrigin-RevId: 225397480
2019-03-29 14:27:29 -07:00
River Riddle 5c4f1fdd42 Check if the operation is already in the worklist before adding it.
PiperOrigin-RevId: 225379496
2019-03-29 14:27:14 -07:00
Alex Zinenko 359835eb27 LLVM IR lowering: support 1D vector operations
Introduce initial support for 1D vector operations.  LLVM does not support
higher-dimensional vectors so the caller must make sure they don't appear in
the input MLIR.  Handle the presence of higher-dimensional vectors by failing
gracefully.

Introduce the type conversion for 1D vector types and hook it up with the rest
of the type convresion system.  Support "splat" constants for vector types.  As
a side effect, this refactors constant operation emission by separating out
scalar integer constants into a separate case and by extracting out the helper
function for scalar float construction.  Existing binary operations apply to
vectors transparently.

PiperOrigin-RevId: 225172349
2019-03-29 14:26:37 -07:00
Alex Zinenko 97d2f3cd3d ConvertToCFG: use affine_apply to implement loop steps
Originally, loop steps were implemented using `addi` and `constant` operations
because `affine_apply` was not handled in the first implementation.  The
support for `affine_apply` has been added, use it to implement the update of
the loop induction variable.  This is more consistent with the lower and upper
bounds of the loop that are also implemented as `affine_apply`, removes the
dependence of the converted function on the StandardOps dialect and makes it
clear from the CFG function that all operations on the loop induction variable
are purely affine.

PiperOrigin-RevId: 225165337
2019-03-29 14:26:22 -07:00
Uday Bondhugula c86c414765 Remove dead code from FlatAffineConstraints
- getDimensionBounds() was added initially for quick experimentation - no
  longer used (getConstantBoundOnDimSize is the more powerful/complete
  replacement).
- FlatAffineConstraints::getConstantLower/UpperBound are incomplete,
  functionality/naming-wise misleading, and not used currently. Removing these;
  complete/fixed version will be added in an upcoming CL.

PiperOrigin-RevId: 225075061
2019-03-29 14:25:52 -07:00
Alex Zinenko 63261aa9a8 Disallow index types as elements of vector, memref and tensor types
An extensive discussion demonstrated that it is difficult to support `index`
types as elements of compound (vector, memref, tensor) types.  In particular,
their size is unknown until the target-specific lowering takes place.  MLIR may
need to store constants of the fixed-shape compound types (e.g.,
vector<4 x index>) internally and must know the size of the element type and
data layout constraints.  The same information is necessary for target-specific
lowering and translation to reliably support compound types with `index`
elements, but MLIR does not have a dedicated target description mechanism yet.

The uses cases for compound types with `index` elements, should they appear,
can be handled via an `index_cast` operation that converts between `index` and
fixed-size integer types at the SSA value level instead of the type level.

PiperOrigin-RevId: 225064373
2019-03-29 14:25:22 -07:00
Uday Bondhugula b9f53dc0bd Update/Fix LoopUtils::stmtBodySkew to handle loop step.
- loop step wasn't handled and there wasn't a TODO or an assertion; fix this.
- rename 'delay' to shift for consistency/readability.
- other readability changes.
- remove duplicate attribute print for DmaStartOp; fix misplaced attribute
  print for DmaWaitOp
- add build method for AddFOp (unrelated to this CL, but add it anyway)

PiperOrigin-RevId: 224892958
2019-03-29 14:25:07 -07:00
Uday Bondhugula d59a95a05c Fix missing check for dependent DMAs in pipeline-data-transfer
- adding a conservative check for now (TODO: use the dependence analysis pass
  once the latter is extended to deal with DMA ops). resolve an existing bug on
  a test case.

- update test cases

PiperOrigin-RevId: 224869526
2019-03-29 14:24:53 -07:00
Uday Bondhugula 6757fb151d FlatAffineConstraints API cleanup; add normalizeConstraintsByGCD().
- add method normalizeConstraintsByGCD
- call normalizeConstraintsByGCD() and GCDTightenInequalities() at the end of
  projectOut.
- remove call to GCDTightenInequalities() from getMemRefRegion
- change isEmpty() to check isEmptyByGCDTest() / hasInvalidConstraint() each
  time an identifier is eliminated (to detect emptiness early).
- make FourierMotzkinEliminate, gaussianEliminateId(s),
  GCDTightenInequalities() private
- improve / update stale comments

PiperOrigin-RevId: 224866741
2019-03-29 14:24:37 -07:00
Uday Bondhugula 2ef57806ba Update/fix -pipeline-data-transfer; fix b/120770946
- fix replaceAllMemRefUsesWith call to replace only inside loop body.
- handle the case where DMA buffers are dynamic; extend doubleBuffer() method
  to handle dynamically shaped DMA buffers (pass the right operands to AllocOp)
- place alloc's for DMA buffers at the depth at which pipelining is being done
  (instead of at top-level)
- add more test cases

PiperOrigin-RevId: 224852231
2019-03-29 14:24:22 -07:00
Alex Zinenko 073c3ad997 Properly namespace createLowerAffineApply
This was missing from the original commit.  The implementation of
createLowerAffineApply was defined in the default namespace but declared in the
`mlir` namespace, which could lead to linking errors when it was used.  Put the
definition in `mlir` namespace.

PiperOrigin-RevId: 224830894
2019-03-29 14:24:04 -07:00
Nicolas Vasilache c28aeef901 [MLIR] Drop bug-prone global map indexed by MLFunction*
PiperOrigin-RevId: 224610805
2019-03-29 14:23:49 -07:00
Uday Bondhugula 2d6478fa92 Extend loop tiling utility to handle non-constant loop bounds and bounds that
are a max/min of several expressions.

- Extend loop tiling to handle non-constant loop bounds and bounds that
  are a max/min of several expressions, i.e., bounds using multi-result affine
  maps

- also fix b/120630124 as a result (the IR was in an invalid state when tiled
  loop generation failed; SSA uses were created that weren't plugged into the IR).

PiperOrigin-RevId: 224604460
2019-03-29 14:23:34 -07:00
Uday Bondhugula dfc752e42b Generate strided DMAs from -dma-generate
- generate DMAs correctly now using strided DMAs where needed
- add support for multi-level/nested strides; op still supports one level of
  stride for now.

Other things
- add test case for  symbolic lower/upper bound; cases where the DMA buffer
  size can't be bounded by a known constant
- add test case for dynamic shapes where the DMA buffers are however bounded by
  constants
- refactor some of the '-dma-generate' code

PiperOrigin-RevId: 224584529
2019-03-29 14:23:19 -07:00
Nicolas Vasilache d9b6420fc9 [MLIR] Add LowerVectorTransfersPass
This CL adds a pass that lowers VectorTransferReadOp and VectorTransferWriteOp
to a simple loop nest via local buffer allocations.

This is an MLIR->MLIR lowering based on builders.

A few TODOs are left to address in particular:
1. invert the permutation map so the accesses to the remote memref are coalesced;
2. pad the alloc for bank conflicts in local memory (e.g. GPUs shared_memory);
3. support broadcast / avoid copies when permutation_map is not of full column rank
4. add a proper "element_cast" op

One notable limitation is this does not plan on supporting boundary conditions.
It should be significantly easier to use pre-baked MLIR functions to handle such paddings.
This is left for future consideration.
Therefore the current CL only works properly for full-tile cases atm.

This CL also adds 2 simple tests:

```mlir
  for %i0 = 0 to %M step 3 {
    for %i1 = 0 to %N step 4 {
      for %i2 = 0 to %O {
        for %i3 = 0 to %P step 5 {
          vector_transfer_write %f1, %A, %i0, %i1, %i2, %i3 {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d0)} : vector<5x4x3xf32>, memref<?x?x?x?xf32, 0>, index, index, index, index
```

lowers into:
```mlir
for %i0 = 0 to %arg0 step 3 {
  for %i1 = 0 to %arg1 step 4 {
    for %i2 = 0 to %arg2 {
      for %i3 = 0 to %arg3 step 5 {
        %1 = alloc() : memref<5x4x3xf32>
        %2 = "element_type_cast"(%1) : (memref<5x4x3xf32>) -> memref<1xvector<5x4x3xf32>>
        store %cst, %2[%c0] : memref<1xvector<5x4x3xf32>>
        for %i4 = 0 to 5 {
          %3 = affine_apply (d0, d1) -> (d0 + d1) (%i3, %i4)
          for %i5 = 0 to 4 {
            %4 = affine_apply (d0, d1) -> (d0 + d1) (%i1, %i5)
            for %i6 = 0 to 3 {
              %5 = affine_apply (d0, d1) -> (d0 + d1) (%i0, %i6)
              %6 = load %1[%i4, %i5, %i6] : memref<5x4x3xf32>
              store %6, %0[%5, %4, %i2, %3] : memref<?x?x?x?xf32>
       dealloc %1 : memref<5x4x3xf32>
```

and
```mlir
  for %i0 = 0 to %M step 3 {
    for %i1 = 0 to %N {
      for %i2 = 0 to %O {
        for %i3 = 0 to %P step 5 {
          %f = vector_transfer_read %A, %i0, %i1, %i2, %i3 {permutation_map: (d0, d1, d2, d3) -> (d3, 0, d0)} : (memref<?x?x?x?xf32, 0>, index, index, index, index) -> vector<5x4x3xf32>

```

lowers into:
```mlir
for %i0 = 0 to %arg0 step 3 {
  for %i1 = 0 to %arg1 {
    for %i2 = 0 to %arg2 {
      for %i3 = 0 to %arg3 step 5 {
        %1 = alloc() : memref<5x4x3xf32>
        %2 = "element_type_cast"(%1) : (memref<5x4x3xf32>) -> memref<1xvector<5x4x3xf32>>
        for %i4 = 0 to 5 {
          %3 = affine_apply (d0, d1) -> (d0 + d1) (%i3, %i4)
          for %i5 = 0 to 4 {
            for %i6 = 0 to 3 {
              %4 = affine_apply (d0, d1) -> (d0 + d1) (%i0, %i6)
              %5 = load %0[%4, %i1, %i2, %3] : memref<?x?x?x?xf32>
              store %5, %1[%i4, %i5, %i6] : memref<5x4x3xf32>
        %6 = load %2[%c0] : memref<1xvector<5x4x3xf32>>
        dealloc %1 : memref<5x4x3xf32>
```

PiperOrigin-RevId: 224552717
2019-03-29 14:23:05 -07:00
Nicolas Vasilache 879be718a0 [MLIR] Fix the name of the MaterializeVectorPass
PiperOrigin-RevId: 224536381
2019-03-29 14:22:49 -07:00
Nicolas Vasilache db1b9f7381 [MLIR] Add composeWithUnboundedMap
This CL adds a finer grain composition function between AffineExpr and an
unbounded map. This will be used in the next CL.
Also cleans up some comments remaining from a previous CL.

PiperOrigin-RevId: 224536314
2019-03-29 14:22:34 -07:00
Smit Hinsu adca59e4f7 Return bool from all emitError methods similar to Operation::emitOpError
This simplifies call-sites returning true after emitting an error. After the
conversion, dropped braces around single statement blocks as that seems more
common.

Also, switched to emitError method instead of emitting Error kind using the
emitDiagnostic method.

TESTED with existing unit tests

PiperOrigin-RevId: 224527868
2019-03-29 14:22:06 -07:00
Nicolas Vasilache 13bc77045e [MLIR] Drop assert for NYI in Vectorize.cpp
This CLs adds proper error emission, removes NYI assertions and documents
assumptions that are required in the relevant functions.

PiperOrigin-RevId: 224377207
2019-03-29 14:21:37 -07:00
Nicolas Vasilache 2408f0eba5 [MLIR] Drop assert for NYI in VectorAnalysis
This CLs adds proper error emission, removes NYI assertions and documents
assumptions that are required in the relevant functions.

PiperOrigin-RevId: 224377143
2019-03-29 14:21:22 -07:00
Nicolas Vasilache 48d22e83e3 [MLIR] Drop unnecessary mention of NYI.
This CL also documents the `substExpr` helper function assumptions.
The assumptions are properly propagated up already.

PiperOrigin-RevId: 224377072
2019-03-29 14:21:07 -07:00
Nicolas Vasilache a019379cdb [MLIR] Remove NYI assertions in LoopAnalysis.cpp
This CL also cleans up some loose ends and returns conservative answers while
emitting errors in the NYI cases.

PiperOrigin-RevId: 224377004
2019-03-29 14:20:52 -07:00
Nicolas Vasilache 5b610630b2 [MLIR] Error handling in MaterializeVectors
This removes assertions as a means to capture NYI behavior and propagates
errors up.

PiperOrigin-RevId: 224376935
2019-03-29 14:20:37 -07:00
Nicolas Vasilache 4adc169bd0 [MLIR] Add AffineMap composition and use it in Materialization
This CL adds the following free functions:
```
/// Returns the AffineExpr e o m.
AffineExpr compose(AffineExpr e, AffineMap m);
/// Returns the AffineExpr f o g.
AffineMap compose(AffineMap f, AffineMap g);
```

This addresses the issue that AffineMap composition is only available at a
distance via AffineValueMap and is thus unusable on Attributes.
This CL thus implements AffineMap composition in a more modular and composable
way.

This CL does not claim that it can be a good replacement for the
implementation in AffineValueMap, in particular it does not support bounded
maps atm.

Standalone tests are added that replicate some of the logic of the AffineMap
composition pass.

Lastly, affine map composition is used properly inside MaterializeVectors and
a standalone test is added that requires permutation_map composition with a
projection map.

PiperOrigin-RevId: 224376870
2019-03-29 14:20:22 -07:00
Nicolas Vasilache df0a25efee [MLIR] Add support for permutation_map
This CL hooks up and uses permutation_map in vector_transfer ops.
In particular, when going into the nuts and bolts of the implementation, it
became clear that cases arose that required supporting broadcast semantics.
Broadcast semantics are thus added to the general permutation_map.
The verify methods and tests are updated accordingly.

Examples of interest include.

Example 1:
The following MLIR snippet:
```mlir
   for %i3 = 0 to %M {
     for %i4 = 0 to %N {
       for %i5 = 0 to %P {
         %a5 = load %A[%i4, %i5, %i3] : memref<?x?x?xf32>
   }}}
```
may vectorize with {permutation_map: (d0, d1, d2) -> (d2, d1)} into:
```mlir
   for %i3 = 0 to %0 step 32 {
     for %i4 = 0 to %1 {
       for %i5 = 0 to %2 step 256 {
         %4 = vector_transfer_read %arg0, %i4, %i5, %i3
              {permutation_map: (d0, d1, d2) -> (d2, d1)} :
              (memref<?x?x?xf32>, index, index) -> vector<32x256xf32>
   }}}
````
Meaning that vector_transfer_read will be responsible for reading the 2-D slice:
`%arg0[%i4, %i5:%15+256, %i3:%i3+32]` into vector<32x256xf32>. This will
require a transposition when vector_transfer_read is further lowered.

Example 2:
The following MLIR snippet:
```mlir
   %cst0 = constant 0 : index
   for %i0 = 0 to %M {
     %a0 = load %A[%cst0, %cst0] : memref<?x?xf32>
   }
```
may vectorize with {permutation_map: (d0) -> (0)} into:
```mlir
   for %i0 = 0 to %0 step 128 {
     %3 = vector_transfer_read %arg0, %c0_0, %c0_0
          {permutation_map: (d0, d1) -> (0)} :
          (memref<?x?xf32>, index, index) -> vector<128xf32>
   }
````
Meaning that vector_transfer_read will be responsible of reading the 0-D slice
`%arg0[%c0, %c0]` into vector<128xf32>. This will require a 1-D vector
broadcast when vector_transfer_read is further lowered.

Additionally, some minor cleanups and refactorings are performed.

One notable thing missing here is the composition with a projection map during
materialization. This is because I could not find an AffineMap composition
that operates on AffineMap directly: everything related to composition seems
to require going through SSAValue and only operates on AffinMap at a distance
via AffineValueMap. I have raised this concern a bunch of times already, the
followup CL will actually do something about it.

In the meantime, the projection is hacked at a minimum to pass verification
and materialiation tests are temporarily incorrect.

PiperOrigin-RevId: 224376828
2019-03-29 14:20:07 -07:00
Alex Zinenko 7c89a225cf ConvertToCFG: support min/max in loop bounds.
The recently introduced `select` operation enables ConvertToCFG to support
min(max) in loop bounds.  Individual min(max) is implemented as
`cmpi "lt"`(`cmpi "gt"`) followed by a `select` between the compared values.
Multiple results of an `affine_apply` operation extracted from the loop bounds
are reduced using min(max) in a sequential manner.  While this may decrease the
potential for instruction-level parallelism, it is easier to recognize for the
following passes, in particular for the vectorizer.

PiperOrigin-RevId: 224376233
2019-03-29 14:19:52 -07:00
Alex Zinenko 513d6d896c OpPointer: replace conversion operator to Operation* to OpType*.
The implementation of OpPointer<OpType> provides an implicit conversion to
Operation *, but not to the underlying OpType *.  This has led to
awkward-looking code when an OpPointer needs to be passed to a function
accepting an OpType *.  For example,

    if (auto someOp = genericOp.dyn_cast<OpType>())
      someFunction(&*someOp);

where "&*" makes it harder to read.  Arguably, one does not want to spell out
OpPointer<OpType> in the line with dyn_cast.  More generally, OpPointer is now
being used as an owning pointer to OpType rather than to operation.

Replace the implicit conversion to Operation* with the conversion to OpType*
taking into account const-ness of the type.  An Operation* can be obtained from
an OpType with a simple call.  Since an instance of OpPointer owns the OpType
value, the pointer to it is never null.  However, the OpType value may not be
associated with any Operation*.  In this case, return nullptr when conversion
is attempted to maintain consistency with the existing null checks.

PiperOrigin-RevId: 224368103
2019-03-29 14:19:37 -07:00
Uday Bondhugula 73fc0223e4 Fix cases where unsigned / signed arithmetic was being mixed (following up on
cl/224246657); eliminate repeated evaluation of exprs in loop upper bounds.

- while on this, sweep through and fix potential repeated evaluation of
  expressions in loop upper bounds

PiperOrigin-RevId: 224268918
2019-03-29 14:19:22 -07:00
MLIR Team a53ed1b767 Fix bug in GCD calculation when flattening AffineExpr (adds unit test which triggers the bug and tests the fix).
PiperOrigin-RevId: 224246657
2019-03-29 14:19:07 -07:00
Uday Bondhugula 9f77faae87 Strided DMA support for DmaStartOp
- add optional stride arguments for DmaStartOp
- add DmaStartOp::verify(), and missing test cases for DMA op's in
  test/IR/memory-ops.mlir.

PiperOrigin-RevId: 224232466
2019-03-29 14:18:37 -07:00
Uday Bondhugula a92130880e Complete multiple unhandled cases for DmaGeneration / getMemRefRegion;
update/improve/clean up API.

- update FlatAffineConstraints::getConstBoundDifference; return constant
  differences between symbolic affine expressions, look at equalities as well.
- fix buffer size computation when generating DMAs symbolic in outer loops,
  correctly handle symbols at various places (affine access maps, loop bounds,
  loop IVs outer to the depth at which DMA generation is being done)
- bug fixes / complete some TODOs for getMemRefRegion
- refactor common code b/w memref dependence check and getMemRefRegion
- FlatAffineConstraints API update; added methods employ trivial checks /
  detection - sufficient to handle hyper-rectangular cases in a precise way
  while being fast / low complexity. Hyper-rectangular cases fall out as
  trivial cases for these methods while other cases still do not cause failure
  (either return conservative or return failure that is handled by the caller).

PiperOrigin-RevId: 224229879
2019-03-29 14:18:22 -07:00
Lei Zhang b572322859 Add isIntOrIndex() and isIntOrIndexOrFloat() into Type
The checks for `isa<IndexType>() || isa<IntegerType>()` and
`isa<IndexType>() || isa<IntegerType>() || isa<FloatType>()`
are frequently used, so it's useful to have some helper
methods for them.

PiperOrigin-RevId: 224133596
2019-03-29 14:17:38 -07:00
Uday Bondhugula f9af62998b Remove duplicate FlatAffineConstraints::removeId - refactor to use
removeColumnRange

- remove functionally duplicate code in removeId.

- rename removeColumnRange -> removeIdRange - restrict valid input to just the
  identifier columns (not the constant term column).

PiperOrigin-RevId: 224054064
2019-03-29 14:17:24 -07:00
Uday Bondhugula 7c2347266d FlatAffineConstraints::removeId() fix.
This is an obvious bug, but none of the test cases exposed it since numIds was
correctly updated, and the dimensional identifiers were always eliminated
before the symbolic identifiers in all cases that removeId was getting
called from. However, other work in progress exercises the other scenarios and
exposes this bug.

Add an hasConsistentState() private method to move common assertion checks, and call it
from several base methods. Make hasInvalidConstraint() a private method as
well (from a file static one).

PiperOrigin-RevId: 224032721
2019-03-29 14:17:10 -07:00
MLIR Team 753109547d During forward substitution, merge symbols from input AffineMap with the symbol list of the target AffineMap.
Symbols can be used as dim identifiers and symbolic identifiers, and so we must preserve the symbolic identifies from the input AffineMap during forward substitution, even if that same identifier is used as a dimension identifier in the target AffineMap.
Test case added.

Going forward, we may want to explore solutions where we do not maintain this split between dimensions and symbols, and instead verify the validity of each use of each AffineMap operand AffineMap in the context where the AffineMap operand usage is required to be a symbol: in the denominator of floordiv/ceildiv/mod for semi-affine maps, and in instructions that can capture symbols (i.e. alloc)

PiperOrigin-RevId: 224017364
2019-03-29 14:16:40 -07:00
Alex Zinenko 7868abd9d8 ConvertToCFG: convert "if" statements.
The condition of the "if" statement is an integer set, defined as a conjunction
of affine constraints.  An affine constraints consists of an affine expression
and a flag indicating whether the expression is strictly equal to zero or is
also allowed to be greater than zero.  Affine maps, accepted by `affine_apply`
are also formed from affine expressions.  Leverage this fact to implement the
checking of "if" conditions.  Each affine expression from the integer set is
converted into an affine map.  This map is applied to the arguments of the "if"
statement.  The result of the application is compared with zero given the
equality flag to obtain the final boolean value.  The conjunction of conditions
is tested sequentially with short-circuit branching to the "else" branch if any
of the condition evaluates to false.

Create an SESE region for the if statement (including its "then" and optional
"else" statement blocks) and append it to the end of the current region.  The
conditional region consists of a sequence of condition-checking blocks that
implement the short-circuit scheme, followed by a "then" SESE region and an
"else" SESE region, and the continuation block that post-dominates all blocks
of the "if" statement.  The flow of blocks that correspond to the "then" and
"else" clauses are constructed recursively, enabling easy nesting of "if"
statements and if-then-else-if chains.

Note that MLIR semantics does not require nor prohibit short-circuit
evaluation.  Since affine expressions do not have side effects, there is no
observable difference in the program behavior.  We may trade off extra
operations for operation-level parallelism opportunity by first performing all
`affine_apply` and comparison operations independently, and then performing a
tree pattern reduction of the resulting boolean values with the `muli i1`
operations (in absence of the dedicated bit operations).  The pros and cons are
not clear, and since MLIR does not include parallel semantics, we prefer to
minimize the number of sequentially executed operations.

PiperOrigin-RevId: 223970248
2019-03-29 14:16:10 -07:00
Alex Zinenko dee51d0961 LLVM IR Lowering: support multi-value returns.
Unlike MLIR, LLVM IR does not support functions that return multiple values.
Simulate this by packing values into the LLVM structure type in the same order
as they appear in the MLIR return.  If the function returns only a single
value, return it directly without packing.

PiperOrigin-RevId: 223964886
2019-03-29 14:15:56 -07:00
Nicolas Vasilache b39d1f0bdb [MLIR] Add VectorTransferOps
This CL implements and uses VectorTransferOps in lieu of the former custom
call op. Tests are updated accordingly.

VectorTransferOps come in 2 flavors: VectorTransferReadOp and
VectorTransferWriteOp.

VectorTransferOps can be thought of as a backend-independent
pseudo op/library call that needs to be legalized to MLIR (whiteboxed) before
it can be lowered to backend-dependent IR.

Note that the current implementation does not yet support a real permutation
map. Proper support will come in a followup CL.

VectorTransferReadOp
====================
VectorTransferReadOp performs a blocking read from a scalar memref
location into a super-vector of the same elemental type. This operation is
called 'read' by opposition to 'load' because the super-vector granularity
is generally not representable with a single hardware register. As a
consequence, memory transfers will generally be required when lowering
VectorTransferReadOp. A VectorTransferReadOp is thus a mid-level abstraction
that supports super-vectorization with non-effecting padding for full-tile
only code.

A vector transfer read has semantics similar to a vector load, with additional
support for:
  1. an optional value of the elemental type of the MemRef. This value
     supports non-effecting padding and is inserted in places where the
     vector read exceeds the MemRef bounds. If the value is not specified,
     the access is statically guaranteed to be within bounds;
  2. an attribute of type AffineMap to specify a slice of the original
     MemRef access and its transposition into the super-vector shape. The
     permutation_map is an unbounded AffineMap that must represent a
     permutation from the MemRef dim space projected onto the vector dim
     space.

Example:
```mlir
  %A = alloc(%size1, %size2, %size3, %size4) : memref<?x?x?x?xf32>
  ...
  %val = `ssa-value` : f32
  // let %i, %j, %k, %l be ssa-values of type index
  %v0 = vector_transfer_read %src, %i, %j, %k, %l
        {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} :
          (memref<?x?x?x?xf32>, index, index, index, index) ->
            vector<16x32x64xf32>
  %v1 = vector_transfer_read %src, %i, %j, %k, %l, %val
        {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} :
          (memref<?x?x?x?xf32>, index, index, index, index, f32) ->
            vector<16x32x64xf32>
```

VectorTransferWriteOp
=====================
VectorTransferWriteOp performs a blocking write from a super-vector to
a scalar memref of the same elemental type. This operation is
called 'write' by opposition to 'store' because the super-vector
granularity is generally not representable with a single hardware register. As
a consequence, memory transfers will generally be required when lowering
VectorTransferWriteOp. A VectorTransferWriteOp is thus a mid-level
abstraction that supports super-vectorization with non-effecting padding
for full-tile only code.
A vector transfer write has semantics similar to a vector store, with
additional support for handling out-of-bounds situations.

Example:
```mlir
  %A = alloc(%size1, %size2, %size3, %size4) : memref<?x?x?x?xf32>.
  %val = `ssa-value` : vector<16x32x64xf32>
  // let %i, %j, %k, %l be ssa-values of type index
  vector_transfer_write %val, %src, %i, %j, %k, %l
    {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} :
  (vector<16x32x64xf32>, memref<?x?x?x?xf32>, index, index, index, index)
```
PiperOrigin-RevId: 223873234
2019-03-29 14:15:25 -07:00
Jacques Pienaar bb3ffc1c22 Fix two more getHashValues.
These were still returning the hash of the pointers resulting in the two getHashValues being different.

PiperOrigin-RevId: 223862743
2019-03-29 14:15:11 -07:00
Uday Bondhugula 89c41fdca1 FlatAffineConstraints::composeMap: return failure instead of asserting on semi-affine maps
FlatAffineConstraints::composeMap: should return false instead of asserting on
a semi-affine map. Make getMemRefRegion just propagate false when encountering
semi-affine maps (instead of crashing!)
PiperOrigin-RevId: 223828743
2019-03-29 14:14:56 -07:00
Uday Bondhugula 5f76245cfe Minor fix for replaceAllMemRefUsesWith.
The check for whether the memref was used in a non-derefencing context had to
be done inside, i.e., only for the op stmt's that the replacement was specified
to be performed on (by the domStmtFilter arg if provided). As such, it is
completely fine for example for a function to return a memref while the replacement
is being performed only a specific loop's body (as in the case of DMA
generation).

PiperOrigin-RevId: 223827753
2019-03-29 14:14:43 -07:00
River Riddle 7669a259c4 Add a simple common sub expression elimination pass.
The algorithm collects defining operations within a scoped hash table. The scopes within the hash table correspond to nodes within the dominance tree for a function. This cl only adds support for simple operations, i.e non side-effecting. Such operations, e.g. load/store/call, will be handled in later patches.

PiperOrigin-RevId: 223811328
2019-03-29 14:14:28 -07:00
Jacques Pienaar 3277f94bf4 Update getHashValue for ptr values stored in a DenseMap/Set to use getHasValue of KeyTy.
Ensures both hash values returned are the same. Tested by triggering resize of map/set and verifying failure before change.

PiperOrigin-RevId: 223651443
2019-03-29 14:13:58 -07:00
Jacques Pienaar 45e3139bc8 RankedTensorType: Use getHashValue(KeyTy) when calling getHashValue(RankedTensorTypeStorage*).
PiperOrigin-RevId: 223649958
2019-03-29 14:13:44 -07:00
Jacques Pienaar 21ed46abb8 Avoid failing when attempting to print null Attribute.
This avoids segfaulting when dumping during debugging of failures.

PiperOrigin-RevId: 223449494
2019-03-29 14:13:14 -07:00
Uday Bondhugula a619b5c295 Debug output / logging memref sizes in DMA generation + related changes
- Add method to get a memref's size in bytes
- clean up a loop tiling pass helper (NFC)

PiperOrigin-RevId: 223422077
2019-03-29 14:12:56 -07:00
Chris Lattner 3f2530cdf5 Split "rewrite" functionality out of Pattern into a new RewritePattern derived
class.  This change is NFC, but allows for new kinds of patterns, specifically
LegalizationPatterns which will be allowed to change the types of things they
rewrite.

PiperOrigin-RevId: 223243783
2019-03-29 14:12:07 -07:00
Lei Zhang 1f5330ac90 Verify CmpIOp's result type to be bool-like
This CL added two new traits, SameOperandsAndResultShape and
ResultsAreBoolLike, and changed CmpIOp to embody these two
traits. As a consequence, CmpIOp's result type now is verified
to be bool-like.

PiperOrigin-RevId: 223208438
2019-03-29 14:11:53 -07:00
Alex Zinenko a3fb6d0da3 StandardOps: introduce 'select'.
The semantics of 'select' is conventional: return the second operand if the
first operand is true (1 : i1) and the third operand otherwise.  It is
applicable to vectors and tensors element-wise, similarly to LLVM instruction.
This operation is necessary to implement min/max to lower 'for' loops with
complex bounds to CFG functions and to support ternary operations in ML
functions.  It is preferred to first-class min/max because of its simplicity,
e.g. it is not concered with signedness.

PiperOrigin-RevId: 223160860
2019-03-29 14:11:25 -07:00
Alex Zinenko e7f43c8361 LLVM IR lowering: support 'dim' operation.
Add support for translating 'dim' opreation on MemRefs to LLVM IR.  For a
static size, this operation merely defines an LLVM IR constant value that may
not appear in the output IR if not used (and had not been removed before by
DCE).  For a dynamic size, this operation is translated into an access to the
MemRef descriptor that contains the dynamic size.

PiperOrigin-RevId: 223160774
2019-03-29 14:11:10 -07:00
Alex Zinenko 90d1b6b5f2 LLVM IR lowering: support simple MemRef types
Introduce initial support for MemRef types, including type conversion,
allocation and deallocation, read and write element-wise access, passing
MemRefs to and returning from functions.  Affine map compositions and
non-default memory spaces are NOT YET supported.

Lowered code needs to handle potentially dynamic sizes of the MemRef.  To do
so, it replaces a MemRef-typed value with a special MemRef descriptor that
carries the data and the dynamic sizes together.  A MemRef type is converted to
LLVM's first-class structure type with the first element being the pointer to
the data buffer with data layed out linearly, followed by as many integer-typed
elements as MemRef has dynamic sizes.  The type of these elements is that of
MLIR index lowered to LLVM.  For example, `memref<?x42x?xf32>` is converted to
`{ f32*, i64, i64 }` provided `index` is lowered to `i64`.  While it is
possible to convert MemRefs with fully static sizes to simple pointers to their
elemental types, we opted for consistency and convert them to the
single-element structure.  This makes the conversion code simpler and the
calling convention of the generated LLVM IR functions consistent.

Loads from and stores to a MemRef element are lowered to a sequence of LLVM
instructions that, first, computes the linearized index of the element in the
data buffer using the access indices and combining the static sizes with the
dynamic sizes stored in the descriptor, and then loads from or stores to the
buffer element indexed by the linearized subscript.  While some of the index
computations may be redundant (i.e., consecutive load and store to the same
location in the same scope could reuse the linearized index), we emit them for
every operation.  A subsequent optimization pass may eliminate them if
necessary.

MemRef allocation and deallocation is performed using external functions
`__mlir_alloc(index) -> i8*` and `__mlir_free(i8*)` that must be implemented by
the caller.  These functions behave similarly to `malloc` and `free`, but can
be extended to support different memory spaces in future.  Allocation and
deallocation instructions take care of casting the pointers.  Prior to calling
the allocation function, the emitted code creates an SSA Value for the
descriptor and uses it to store the dynamic sizes of the MemRef passed to the
allocation operation.  It further emits instructions that compute the dynamic
amount of memory to allocate in bytes.  Finally, the allocation stores the
result of calling the `__mlir_alloc` in the MemRef descriptor.  Deallocation
extracts the pointer to the allocated memory from the descriptor and calls
`__mlir_free` on it.  The descriptor itself is not modified and, being
stack-allocated, ceases to exist when it goes out of scope.

MLIR functions that access MemRef values as arguments or return them are
converted to LLVM IR functions that accept MemRef descriptors as LLVM IR
structure types by value.  This significantly simplifies the calling convention
at the LLVM IR level and avoids handling descriptors in the dynamic memory,
however is not always comaptible with LLVM IR functions emitted from C code
with similar signatures.  A separate LLVM pass may be introduced in the future
to provide C-compatible calling conventions for LLVM IR functions generated
from MLIR.

PiperOrigin-RevId: 223134883
2019-03-29 14:10:55 -07:00
River Riddle 759fd1c6a3 Add support for setting the location of an IROperandOwner.
PiperOrigin-RevId: 222995814
2019-03-29 14:09:43 -07:00
Chris Lattner 721a30d6a0 Tidy up the replaceOp hooks in PatternMatch, generalizing them to support any
number of result ops.  Among other things, this results in shorter names

PiperOrigin-RevId: 222685039
2019-03-29 14:09:28 -07:00
Chris Lattner 1427d0f01b Minimal patch to allow patterns to rewrite multi-result instructions, related to b/119877155
PiperOrigin-RevId: 222597798
2019-03-29 14:09:14 -07:00
Alex Zinenko 68e9721aa8 Rename Deaffinator to LowerAffineApply and patch it.
Several things were suggested in post-submission reviews.  In particular, use
pointers in function interfaces instead of references (still use references
internally).  Clarify the behavior of the pass in presence of MLFunctions.

PiperOrigin-RevId: 222556851
2019-03-29 14:08:59 -07:00
Nicolas Vasilache 63bc6d2f6a [MLIR] Fix opt build
PiperOrigin-RevId: 222491353
2019-03-29 14:08:45 -07:00
Nicolas Vasilache a5782f0d40 [MLIR][MaterializeVectors] Add a MaterializeVector pass via unrolling.
This CL adds an MLIR-MLIR pass which materializes super-vectors to
hardware-dependent sized vectors.

While the physical vector size is target-dependent, the pass is written in
a target-independent way: the target vector size is specified as a parameter
to the pass. This pass is thus a partial lowering that opens the "greybox"
that is the super-vector abstraction.

This first CL adds a first materilization pass iterates over vector_transfer_write operations and:
1. computes the program slice including the current vector_transfer_write;
2. computes the multi-dimensional ratio of super-vector shape to hardware
vector shape;
3. for each possible multi-dimensional value within the bounds of ratio, a new slice is
instantiated (i.e. cloned and rewritten) so that all operations in this instance operate on
the hardware vector type.

As a simple example, given:
```mlir
mlfunc @vector_add_2d(%M : index, %N : index) -> memref<?x?xf32> {
  %A = alloc (%M, %N) : memref<?x?xf32>
  %B = alloc (%M, %N) : memref<?x?xf32>
  %C = alloc (%M, %N) : memref<?x?xf32>
  for %i0 = 0 to %M {
    for %i1 = 0 to %N {
      %a1 = load %A[%i0, %i1] : memref<?x?xf32>
      %b1 = load %B[%i0, %i1] : memref<?x?xf32>
      %s1 = addf %a1, %b1 : f32
      store %s1, %C[%i0, %i1] : memref<?x?xf32>
    }
  }
  return %C : memref<?x?xf32>
}
```

and the following options:
```
-vectorize -virtual-vector-size 32 --test-fastest-varying=0 -materialize-vectors -vector-size=8
```

materialization emits:
```mlir
#map0 = (d0, d1) -> (d0, d1)
#map1 = (d0, d1) -> (d0, d1 + 8)
#map2 = (d0, d1) -> (d0, d1 + 16)
#map3 = (d0, d1) -> (d0, d1 + 24)
mlfunc @vector_add_2d(%arg0 : index, %arg1 : index) -> memref<?x?xf32> {
  %0 = alloc(%arg0, %arg1) : memref<?x?xf32>
  %1 = alloc(%arg0, %arg1) : memref<?x?xf32>
  %2 = alloc(%arg0, %arg1) : memref<?x?xf32>
  for %i0 = 0 to %arg0 {
    for %i1 = 0 to %arg1 step 32 {
      %3 = affine_apply #map0(%i0, %i1)
      %4 = "vector_transfer_read"(%0, %3tensorflow/mlir#0, %3tensorflow/mlir#1) : (memref<?x?xf32>, index, index) -> vector<8xf32>
      %5 = affine_apply #map1(%i0, %i1)
      %6 = "vector_transfer_read"(%0, %5tensorflow/mlir#0, %5tensorflow/mlir#1) : (memref<?x?xf32>, index, index) -> vector<8xf32>
      %7 = affine_apply #map2(%i0, %i1)
      %8 = "vector_transfer_read"(%0, %7tensorflow/mlir#0, %7tensorflow/mlir#1) : (memref<?x?xf32>, index, index) -> vector<8xf32>
      %9 = affine_apply #map3(%i0, %i1)
      %10 = "vector_transfer_read"(%0, %9tensorflow/mlir#0, %9tensorflow/mlir#1) : (memref<?x?xf32>, index, index) -> vector<8xf32>
      %11 = affine_apply #map0(%i0, %i1)
      %12 = "vector_transfer_read"(%1, %11tensorflow/mlir#0, %11tensorflow/mlir#1) : (memref<?x?xf32>, index, index) -> vector<8xf32>
      %13 = affine_apply #map1(%i0, %i1)
      %14 = "vector_transfer_read"(%1, %13tensorflow/mlir#0, %13tensorflow/mlir#1) : (memref<?x?xf32>, index, index) -> vector<8xf32>
      %15 = affine_apply #map2(%i0, %i1)
      %16 = "vector_transfer_read"(%1, %15tensorflow/mlir#0, %15tensorflow/mlir#1) : (memref<?x?xf32>, index, index) -> vector<8xf32>
      %17 = affine_apply #map3(%i0, %i1)
      %18 = "vector_transfer_read"(%1, %17tensorflow/mlir#0, %17tensorflow/mlir#1) : (memref<?x?xf32>, index, index) -> vector<8xf32>
      %19 = addf %4, %12 : vector<8xf32>
      %20 = addf %6, %14 : vector<8xf32>
      %21 = addf %8, %16 : vector<8xf32>
      %22 = addf %10, %18 : vector<8xf32>
      %23 = affine_apply #map0(%i0, %i1)
      "vector_transfer_write"(%19, %2, %23tensorflow/mlir#0, %23tensorflow/mlir#1) : (vector<8xf32>, memref<?x?xf32>, index, index) -> ()
      %24 = affine_apply #map1(%i0, %i1)
      "vector_transfer_write"(%20, %2, %24tensorflow/mlir#0, %24tensorflow/mlir#1) : (vector<8xf32>, memref<?x?xf32>, index, index) -> ()
      %25 = affine_apply #map2(%i0, %i1)
      "vector_transfer_write"(%21, %2, %25tensorflow/mlir#0, %25tensorflow/mlir#1) : (vector<8xf32>, memref<?x?xf32>, index, index) -> ()
      %26 = affine_apply #map3(%i0, %i1)
      "vector_transfer_write"(%22, %2, %26tensorflow/mlir#0, %26tensorflow/mlir#1) : (vector<8xf32>, memref<?x?xf32>, index, index) -> ()
    }
  }
  return %2 : memref<?x?xf32>
}
```

PiperOrigin-RevId: 222455351
2019-03-29 14:08:31 -07:00
Nicolas Vasilache 258dae5d73 [MLIR][Slicing] Apply cleanups
This CL applies a few last cleanups from a previous CL that have been
missed during the previous submit.

PiperOrigin-RevId: 222454774
2019-03-29 14:08:17 -07:00
Nicolas Vasilache 5c16564bca [MLIR][Slicing] Add utils for computing slices.
This CL adds tooling for computing slices as an independent CL.
The first consumer of this analysis will be super-vector materialization in a
followup CL.

In particular, this adds:
1. a getForwardStaticSlice function with documentation, example and a
standalone unit test;
2. a getBackwardStaticSlice function with documentation, example and a
standalone unit test;
3. a getStaticSlice function with documentation, example and a standalone unit
test;
4. a topologicalSort function that is exercised through the getStaticSlice
unit test.

The getXXXStaticSlice functions take an additional root (resp. terminators)
parameter which acts as a boundary that the transitive propagation algorithm
is not allowed to cross.

PiperOrigin-RevId: 222446208
2019-03-29 14:08:02 -07:00
MLIR Team cff7789a49 Clean up parse_headers in mlir
Not having self-contained headers in LLVM is a constant pain. Don't make the
same mistake in mlir. The only interesting change here is moving setSuccessor
to Instructions.cpp, which breaks the cycle between Instructions.h and
BasicBlock.h.

PiperOrigin-RevId: 222440816
2019-03-29 14:07:46 -07:00
Uday Bondhugula 2631b155a9 Fix bugs in DMA generation and FlatAffineConstraints; add more test
cases.

- fix bug in calculating index expressions for DMA buffers in certain cases
  (affected tiled loop nests); add more test cases for better coverage.
- introduce an additional optional argument to replaceAllMemRefUsesWith;
  additional operands to the index remap AffineMap can now be supplied by the
  client.
- FlatAffineConstraints::addBoundsForStmt - fix off by one upper bound,
  ::composeMap - fix position bug.
- Some clean up and more comments

PiperOrigin-RevId: 222434628
2019-03-29 14:07:31 -07:00
Alex Zinenko 615c41c788 Introduce Deaffinator pass.
This function pass replaces affine_apply operations in CFG functions with
sequences of primitive arithmetic instructions that form the affine map.

The actual replacement functionality is located in LoweringUtils as a
standalone function operating on an individual affine_apply operation and
inserting the result at the location of the original operation.  It is expected
to be useful for other, target-specific lowering passes that may start at
MLFunction level that Deaffinator does not support.

PiperOrigin-RevId: 222406692
2019-03-29 14:07:16 -07:00
Alex Zinenko ac6bfa6780 Lower scalar parts of CFG functions to LLVM IR
Initial restricted implementaiton of the MLIR to LLVM IR translation.
Introduce a new flow into the mlir-translate tool taking an MLIR module
containing CFG functions only and producing and LLVM IR module.  The MLIR
features supported by the translator are as follows:
- primitive and function types;
- integer constants;
- cfg and ext functions with 0 or 1 return values;
- calls to these functions;
- basic block conversion translation of arguments to phi nodes;
- conversion between arguments of the first basic block and function arguments;
- (conditional) branches;
- integer addition and comparison operations.

Are NOT supported:
- vector and tensor types and operations on them;
- memrefs and operations on them;
- allocations;
- functions returning multiple values;
- LLVM Module triple and data layout (index type is hardcoded to i64).

Create a new MLIR library and place it under lib/Target/LLVMIR.  The "Target"
library group is similar to the one present in LLVM and is intended to contain
all future public MLIR translation targets.

The general flow of MLIR to LLVM IR convresion will include several lowering
and simplification passes on the MLIR itself in order to make the translation
as simple as possible.  In particular, ML functions should be transformed to
CFG functions by the recently introduced pass, operations on structured types
will be converted to sequences of operations on primitive types, complex
operations such as affine_apply will be converted into sequence of primitive
operations, primitive operations themselves may eventually be converted to an
LLVM dialect that uses LLVM-like operations.

Introduce the first translation test so that further changes make sure the
basic translation functionality is not broken.

PiperOrigin-RevId: 222400112
2019-03-29 14:07:01 -07:00
Alex Zinenko 6e1a050f7e Create the Support library.
This has been a long-standing TODO in the build system.  Now that we need to
share the non-inlined implementation of file utilities for translators, create
a separate library for support functionality.  Move Support/* headers to the
new library in the build system.

PiperOrigin-RevId: 222398880
2019-03-29 14:06:47 -07:00
Alex Zinenko 6c5317eafa Separate translators into "from MLIR" and "to MLIR".
Translations performed by mlir-translate only have MLIR on one end.
MLIR-to-MLIR conversions (including dialect changes) should be treated as
passes and run by mlir-opt.  Individual translations should not care about
reading or writing MLIR and should work on in-memory representation of MLIR
modules instead.  Split the TranslateFunction interface and the translate
registry into two parts: "from MLIR" and "to MLIR".

Update mlir-translate to handle both registries together by wrapping
translation functions into source-to-source convresions.  Remove MLIR parsing
and writing from individual translations and make them operate on Modules
instead.  This removes the need for individual translators to include
tools/mlir-translate/mlir-translate.h, which can now be safely removed.

Remove mlir-to-mlir translation that only existed as a registration example and
use mlir-opt instead for tests.

PiperOrigin-RevId: 222398707
2019-03-29 14:06:33 -07:00
Alex Zinenko b5756fdaa1 Factor out translation registry.
The mlir-translate tool is expected to discover individual translations at link
time.  These translations must register themselves and may need the utilities
that are currently defined in mlir-translate.cpp for their entry point
functions.  Since mlir-translate is linking against individual translations,
the translations cannot link against mlir-translate themselves.  Extract out
the utilities into a separate "Translation" library to avoid the potential
dependency cycle.  Individual translations link to that library to access
TranslateRegistration. The mlir-translate tool links to individual translations
and to the "Translation" library because it needs the utilities as well.

The main header of the new library is located in include/mlir/Translation.h to
make it easily accessible by translators.  The rationale for putting it to
include/mlir rather than to one of its subdirectories is that its purpose is
similar to that of include/mlir/Pass.h so it makes sense to put them at the
same level.

PiperOrigin-RevId: 222398617
2019-03-29 14:06:19 -07:00
River Riddle 1cfe508316 Add verifier check for integer constants to check that the value can fit within the type bit width.
PiperOrigin-RevId: 222335526
2019-03-29 14:05:48 -07:00
River Riddle 58cd315a68 Remove unnecessary include from StandardOps.cpp.
PiperOrigin-RevId: 222316745
2019-03-29 14:05:34 -07:00
Uday Bondhugula b6c03917ad Remove allocations for memref's that become dead as a result of double
buffering in the auto DMA overlap pass.

This is done online in the pass.

PiperOrigin-RevId: 222313640
2019-03-29 14:05:19 -07:00
Feng Liu a9d3e5ee38 Adds ConstantFoldHook registry in MLIRContext
This reverts the previous method which needs to create a new dialect with the
constant fold hook from TensorFlow. This new method uses a function object in
dialect to store the constant fold hook. Once a hook is registered to the
dialect, this function object will be assigned when the dialect is added to the
MLIRContext.

For the operations which are not registered, a new method getRegisteredDialects
is added to the MLIRContext to query the dialects which matches their op name
prefixes.

PiperOrigin-RevId: 222310149
2019-03-29 14:04:34 -07:00
River Riddle 5041e13c96 Add functionality for erasing terminator successor operands and basic block arguments.
PiperOrigin-RevId: 222303233
2019-03-29 14:04:19 -07:00
Nicolas Vasilache 87d46aaf4b [MLIR][Vectorize] Refactor Vectorize use-def propagation.
This CL refactors a few things in Vectorize.cpp:
1. a clear distinction is made between:
  a. the LoadOp are the roots of vectorization and must be vectorized
  eagerly and propagate their value; and
  b. the StoreOp which are the terminals of vectorization and must be
  vectorized late (i.e. they do not produce values that need to be
  propagated).
2. the StoreOp must be vectorized late because in general it can store a value
that is not reachable from the subset of loads defined in the
current pattern. One trivial such case is storing a constant defined at the
top-level of the MLFunction and that needs to be turned into a splat.
3. a description of the algorithm is given;
4. the implementation matches the algorithm;
5. the last example is made parametric, in practice it will fully rely on the
implementation of vector_transfer_read/write which will handle boundary
conditions and padding. This will happen by lowering to a lower-level
abstraction either:
  a. directly in MLIR (whether DMA or just loops or any async tasks in the
     future) (whiteboxing);
  b. in LLO/LLVM-IR/whatever blackbox library call/ search + swizzle inventor
  one may want to use;
  c. a partial mix of a. and b. (grey-boxing)
5. minor cleanups are applied;
6. mistakenly disabled unit tests are re-enabled (oopsie).

With this CL, this MLIR snippet:
```
mlfunc @vector_add_2d(%M : index, %N : index) -> memref<?x?xf32> {
  %A = alloc (%M, %N) : memref<?x?xf32>
  %B = alloc (%M, %N) : memref<?x?xf32>
  %C = alloc (%M, %N) : memref<?x?xf32>
  %f1 = constant 1.0 : f32
  %f2 = constant 2.0 : f32
  for %i0 = 0 to %M {
    for %i1 = 0 to %N {
      // non-scoped %f1
      store %f1, %A[%i0, %i1] : memref<?x?xf32>
    }
  }
  for %i4 = 0 to %M {
    for %i5 = 0 to %N {
      %a5 = load %A[%i4, %i5] : memref<?x?xf32>
      %b5 = load %B[%i4, %i5] : memref<?x?xf32>
      %s5 = addf %a5, %b5 : f32
      // non-scoped %f1
      %s6 = addf %s5, %f1 : f32
      store %s6, %C[%i4, %i5] : memref<?x?xf32>
    }
  }
  return %C : memref<?x?xf32>
}
```

vectorized with these arguments:
```
-vectorize -virtual-vector-size 256 --test-fastest-varying=0
```

vectorization produces this standard innermost-loop vectorized code:
```
mlfunc @vector_add_2d(%arg0 : index, %arg1 : index) -> memref<?x?xf32> {
  %0 = alloc(%arg0, %arg1) : memref<?x?xf32>
  %1 = alloc(%arg0, %arg1) : memref<?x?xf32>
  %2 = alloc(%arg0, %arg1) : memref<?x?xf32>
  %cst = constant 1.000000e+00 : f32
  %cst_0 = constant 2.000000e+00 : f32
  for %i0 = 0 to %arg0 {
    for %i1 = 0 to %arg1 step 256 {
      %cst_1 = constant splat<vector<256xf32>, 1.000000e+00> : vector<256xf32>
      "vector_transfer_write"(%cst_1, %0, %i0, %i1) : (vector<256xf32>, memref<?x?xf32>, index, index) -> ()
    }
  }
  for %i2 = 0 to %arg0 {
    for %i3 = 0 to %arg1 step 256 {
      %3 = "vector_transfer_read"(%0, %i2, %i3) : (memref<?x?xf32>, index, index) -> vector<256xf32>
      %4 = "vector_transfer_read"(%1, %i2, %i3) : (memref<?x?xf32>, index, index) -> vector<256xf32>
      %5 = addf %3, %4 : vector<256xf32>
      %cst_2 = constant splat<vector<256xf32>, 1.000000e+00> : vector<256xf32>
      %6 = addf %5, %cst_2 : vector<256xf32>
      "vector_transfer_write"(%6, %2, %i2, %i3) : (vector<256xf32>, memref<?x?xf32>, index, index) -> ()
    }
  }
  return %2 : memref<?x?xf32>
}
```

Of course, much more intricate n-D imperfectly-nested patterns can be emitted too in a fully declarative fashion, but this is enough for now.

PiperOrigin-RevId: 222280209
2019-03-29 14:03:50 -07:00
Alex Zinenko f986d5920b ConvertToCFG: handle loop 1D affine loop bounds.
In the general case, loop bounds can be expressed as affine maps of the outer
loop iterators and function arguments.  Relax the check for loop bounds to be
known integer constants and also accept one-dimensional affine bounds in
ConvertToCFG ForStmt lowering.  Emit affine_apply operations for both the upper
and the lower bound.  The semantics of MLFunctions guarantees that both bounds
can be computed before the loop starts iterating.  Constant bounds are merely a
short-hand notation for zero-dimensional affine maps and get supported
transparently.

Multidimensional affine bounds are not yet supported because the target IR
dialect lacks min/max operations necessary to implement the corresponding
semantics.

PiperOrigin-RevId: 222275801
2019-03-29 14:03:20 -07:00
River Riddle 85f86ca203 Add support for getting the operand number from an IROperandImpl(InstOperand, BasicBlockOperand, StmtOperand).
PiperOrigin-RevId: 222274598
2019-03-29 14:03:05 -07:00
Jacques Pienaar d0590caa90 Add op stats pass to mlir-opt.
op-stats pass currently returns the number of occurrences of different operations in a Module. Useful for verifying transformation properties (e.g., 3 ops of specific dialect, 0 of another), but probably not useful outside of that so keeping it local to mlir-opt. This does not consider op attributes when counting.

PiperOrigin-RevId: 222259727
2019-03-29 14:02:46 -07:00
River Riddle d63ab4b47a Add support for Operation::moveBefore(Operation *).
PiperOrigin-RevId: 222252521
2019-03-29 14:02:31 -07:00
Nicolas Vasilache 89d9913a20 [MLIR][VectorAnalysis] Add a VectorAnalysis and standalone tests
This CL adds some vector support in prevision of the upcoming vector
materialization pass. In particular this CL adds 2 functions to:
1. compute the multiplicity of a subvector shape in a supervector shape;
2. help match operations on strict super-vectors. This is defined for a given
subvector shape as an operation that manipulates a vector type that is an
integral multiple of the subtype, with multiplicity at least 2.

This CL also adds a TestUtil pass where we can dump arbitrary testing of
functions and analysis that operate at a much smaller granularity than a pass
(e.g. an analysis for which it is convenient to write a bit of artificial MLIR
and write some custom test). This is in order to keep using Filecheck for
things that essentially look and feel like C++ unit tests.

PiperOrigin-RevId: 222250910
2019-03-29 14:02:17 -07:00
Jacques Pienaar 64c6d3946c Change pretty printing of constant so that the attributes precede the value.
This does create an inconsistency between the print formats (e.g., attributes are normally before operands) but fixes an invalid parsing & keeps constant uniform wrt itself (function or int attributes have type at same place). And specifying the specific type for a int/float attribute might get revised shortly.

Also add test to verify that output printed can be parsed again.

PiperOrigin-RevId: 221923893
2019-03-29 14:01:05 -07:00
Uday Bondhugula fff1efbaf5 Updates to transformation/analysis passes/utilities. Update DMA generation pass
and getMemRefRegion() to work with specified loop depths; add support for
outgoing DMAs, store op's.

- add support for getMemRefRegion symbolic in outer loops - hence support for
  DMAs symbolic in outer surrounding loops.

- add DMA generation support for outgoing DMAs (store op's to lower memory
  space); extend getMemoryRegion to store op's. -memref-bound-check now works
  with store op's as well.

- fix dma-generate (references to the old memref in the dma_start op were also
  being replaced with the new buffer); we need replace all memref uses to work
  only on a subset of the uses - add a new optional argument for
  replaceAllMemRefUsesWith. update replaceAllMemRefUsesWith to take an optional
  'operation' argument to serve as a filter - if provided, only those uses that
  are dominated by the filter are replaced.

- Add missing print for attributes for dma_start, dma_wait op's.

- update the FlatAffineConstraints API

PiperOrigin-RevId: 221889223
2019-03-29 14:00:51 -07:00
River Riddle d34fcce2a7 [MLIR] Rename OperationInst to Instruction.
PiperOrigin-RevId: 221795407
2019-03-29 14:00:09 -07:00
River Riddle 8b6bc09f48 Merge OperationInst functionality into Instruction.
We do some limited renaming here but define an alias for OperationInst so that a follow up cl can solely perform the large scale renaming.

PiperOrigin-RevId: 221726963
2019-03-29 13:59:37 -07:00
Jacques Pienaar 711047c0cd Add Type to int/float attributes.
* Optionally attach the type of integer and floating point attributes to the attributes, this allows restricting a int/float to specific width.
  - Currently this allows suffixing int/float constant with type [this might be revised in future].
  - Default to i64 and f32 if not specified.
* For index types the APInt width used is 64.
* Change callers to request a specific attribute type.
* Store iN type with APInt of width N.
* This change does not handle the folding of constants of different types (e.g., doing int type promotions to support constant folding i3 and i32), and instead restricts the constant folding to only operate on the same types.

PiperOrigin-RevId: 221722699
2019-03-29 13:59:23 -07:00
River Riddle c7df0651d3 [MLIR] Merge terminator and uses into BasicBlock operations list handling.
PiperOrigin-RevId: 221700132
2019-03-29 13:59:10 -07:00
River Riddle 503caf0722 Replace TerminatorInst with builtin terminator operations.
Note: Terminators will be merged into the operations list in a follow up patch.
PiperOrigin-RevId: 221670037
2019-03-29 13:58:55 -07:00
River Riddle de828dd259 Fix variables only used in assertions.
PiperOrigin-RevId: 221660580
2019-03-29 13:58:40 -07:00
River Riddle 1807ba3c2c Add functionality for parsing/managing operation terminator successors.
Follow up patches will work to remove TerminatorInst.

PiperOrigin-RevId: 221640621
2019-03-29 13:58:27 -07:00
Tatiana Shpeisman cfb49f2584 Fix hasStaticShape() method on vectors and tensors to work correctly for unranked tensors and remove getShape() method for unranked tensors.
Unranked tensors used to return an empty list of dimensions as their shape. This is confusing since an empty list of dimensions is also returned for 0-D tensors. In particular, hasStaticShape() method used to check if any of the dimensions are -1, which held for unranked tensors even though they don't have static shape.

PiperOrigin-RevId: 221571138
2019-03-29 13:58:13 -07:00
Alex Zinenko d030433443 ConvertToCFG: properly remap nested function attributes.
Array attributes can nested and function attributes can appear anywhere at that
level.  They should be remapped to point to the generated CFGFunction after
ML-to-CFG conversion, similarly to plain function attributes.  Extract the
nested attribute remapping functionality from the Parser to Utils.  Extract out
the remapping function for individual Functions from the module remapping
function.  Use these new functions in the ML-to-CFG conversion pass and in the
parser.

PiperOrigin-RevId: 221510997
2019-03-29 13:57:58 -07:00
Alex Zinenko cb40633969 Move definitions of lopoUnroll* functions to LoopUtils.cpp.
These functions are declared in Transforms/LoopUtils.h (included to the
Transforms/Utils library) but were defined in the loop unrolling pass in
Transforms/LoopUnroll.cpp.  As a result, targets depending only on
TransformUtils library but not on Transforms could get link errors.  Move the
definitions to Transforms/Utils/LoopUtils.cpp where they should actually live.
This does not modify any code.

PiperOrigin-RevId: 221508882
2019-03-29 13:57:44 -07:00
Nicolas Vasilache fefbf91314 [MLIR] Support for vectorizing operations.
This CL adds support for and a vectorization test to perform scalar 2-D addf.

The support extension notably comprises:
1. extend vectorizable test to exclude vector_transfer operations and
expose them to LoopAnalysis where they are needed. This is a temporary
solution a concrete MLIR Op exists;
2. add some more functional sugar mapKeys, apply and ScopeGuard (which became
relevant again);
3. fix improper shifting during coarsening;
4. rename unaligned load/store to vector_transfer_read/write and simplify the
design removing the unnecessary AllocOp that were introduced prematurely:
vector_transfer_read currently has the form:
  (memref<?x?x?xf32>, index, index, index) -> vector<32x64x256xf32>
vector_transfer_write currently has the form:
  (vector<32x64x256xf32>, memref<?x?x?xf32>, index, index, index) -> ()
5. adds vectorizeOperations which traverses the operations in a ForStmt and
rewrites them to their vector form;
6. add support for vector splat from a constant.

The relevant tests are also updated.

PiperOrigin-RevId: 221421426
2019-03-29 13:56:47 -07:00
River Riddle 8659f3fa2c Start the plumbing for removing TerminatorInst.
* Add skeleton br/cond_br builtin ops.
* Add a terminator trait for operations.
* Mark ReturnOp as a Terminator.

The functionality for managing/parsing/verifying successors will be added in a follow up cl.

PiperOrigin-RevId: 221283000
2019-03-29 13:56:19 -07:00
Alex Zinenko be6ea23aee Optionally emit errors from IntegerType factory functions.
Similarly to other types, introduce "get" and "getChecked" static member
functions for IntegerType.  The latter emits errors to the error handler
registered with the MLIR context and returns a null type for the caller to
handle errors gracefully.  This deduplicates type consistency checks between
the parser and the builder.  Update the parser to call IntegerType::getChecked
for error reporting instead of the builder that would simply assert.

This CL completes the type system error emission refactoring: the parser now
only emits syntax-related errors for types while type factory systems may emit
type consistency errors.

PiperOrigin-RevId: 221165207
2019-03-29 13:55:50 -07:00
Alex Zinenko cab24dc211 Homogenize branch instruction arguments.
Branch instruction arguments were defined and used inconsistently across
different instructions, in both the spec and the implementation.  In
particular, conditional and unconditional branch instructions were using
different syntax in the implementation.  This led to the IR we produce not
being accepted by the parser. Update the printer to use common syntax: `(`
list-of-SSA-uses `:` list-of-types `)`.  The motivation for choosing this
syntax as opposed to the one in the spec, `(` list-of-SSA-uses `)` `:`
list-of-types is double-fold.  First, it is tricky to differentiate the label
of the false branch from the type while parsing conditional branches (which is
what apparently motivated the implementation to diverge from the spec in the
first place).  Second, the ongoing convergence between terminator instructions
and other operations prompts for consistency between their operand list syntax.
After this change, the only remaining difference between the two is the use of
parentheses.  Update the comment of the parser that did not correspond to the
code.  Remove the unused isParenthesized argument from parseSSAUseAndTypeList.

Update the spec accordingly.  Note that the examples in the spec were _not_
using the EBNF defined a couple of lines above them, but were using the current
syntax.  Add a supplementary example of a branch to a basic block with multiple
arguments.

PiperOrigin-RevId: 221162655
2019-03-29 13:55:36 -07:00
Alex Zinenko 5a0d3d0204 Basic conversion of MLFunctions to CFGFunctions.
Implement a pass converting a subset of MLFunctions to CFGFunctions.  Currently
supports arbitrarily complex imperfect loop nests with statically constant
(i.e., not affine map) bounds filled with operations.  Does NOT support
branches and non-constant loop bounds.

Conversion is performed per-function and the function names are preserved to
avoid breaking any external references to the current module.  In-memory IR is
updated to point to the right functions in direct calls and constant loads.
This behavior is tested via a really hidden flag that enables function
renaming.

Inside each function, the control flow conversion is based on single-entry
single-exit regions, i.e. subgraphs of the CFG that have exactly one incoming
and exactly one outgoing edge.  Since an MLFunction must have a single "return"
statement as per MLIR spec, it constitutes an SESE region.  Individual
operations are appended to this region.  Control flow statements are
recursively converted into such regions that are concatenated with the current
region.  Bodies of the compound statement also form SESE regions, which allows
to nest control flow statements easily.  Note that SESE regions are not
materialized in the code.  It is sufficent to keep track of the end of the
region as the current instruction insertion point as long as all recursive
calls update the insertion point in the end.

The converter maintains a mapping between SSA values in ML functions and their
CFG counterparts.  The mapping is used to find the operands for each operation
and is updated to contain the results of each operation as the conversion
continues.

PiperOrigin-RevId: 221162602
2019-03-29 13:55:22 -07:00
Jacques Pienaar 25e6b541cd Switch IntegerAttr to use APInt.
Change the storage type to APInt from int64_t for IntegerAttr (following the change to APFloat storage in FloatAttr). Effectively a direct change from int64_t to 64-bit APInt throughout (the bitwidth hardcoded). This change also adds a getInt convenience method to IntegerAttr and replaces previous getValue calls with getInt calls.

While this changes updates the storage type, it does not update all constant folding calls.

PiperOrigin-RevId: 221082788
2019-03-29 13:55:08 -07:00
Chris Lattner 86a5323f04 - Simplify PatternMatch to *require* static benefits at pattern construction
time.  The "Fast and Flexible Instruction Selection With Constraints" paper
  from CC2018 makes a credible argument that dynamic costs aren't actually
  necessary/important, and we are not using them.

- Check in my "MLIR Generic DAG Rewriter Infrastructure" design doc into the
  source tree.

PiperOrigin-RevId: 221017546
2019-03-29 13:54:38 -07:00
Smit Hinsu 8946854128 Handle VectorOrTensorType parse failure instead of crashing
This was unsafe after cr/219372163 and seems to be the only such case in the
change. All other usage of dyn_cast are either handling the nullptr or are
implicitly safe.  For example, they are being extracted from operand or result
SSAValue.

TESTED with unit test

PiperOrigin-RevId: 220905942
2019-03-29 13:54:10 -07:00
Feng Liu f8f723cf02 Falls back to dialect constant folding hook
PiperOrigin-RevId: 220861133
2019-03-29 13:53:56 -07:00
River Riddle ce5ba22cd9 - Add support for fused locations.
These are locations that form a collection of other source locations with an optional metadata attribute.

- Add initial support for print/dump for locations.
Location Printing Examples:
* Unknown        : [unknown-location]
* FileLineColLoc : third_party/llvm/llvm/projects/google-mlir/test/TensorFlowLite/legalize.mlir:6:8
* FusedLoc       : <"tfl-legalize">[third_party/llvm/llvm/projects/google-mlir/test/TensorFlowLite/legalize.mlir:6:8, third_party/llvm/llvm/projects/google-mlir/test/TensorFlowLite/legalize.mlir:7:8]

- Add diagnostic support for fused locs.
* Prints the first location as the main location and the remaining as "fused from here" notes:
e.g.
third_party/llvm/llvm/projects/google-mlir/test/TensorFlowLite/legalize.mlir:6:8: error: This is an error.
  %1 = "tf.add"(%arg0, %0) : (i32, i32) -> i32
       ^
third_party/llvm/llvm/projects/google-mlir/test/TensorFlowLite/legalize.mlir:7:8: error: Fused from here.
  %2 = "tf.relu"(%1) : (i32) -> i32
       ^

PiperOrigin-RevId: 220835552
2019-03-29 13:53:42 -07:00
MLIR Team b5424dd0cb Adds support for returning the direction of the dependence between memref accesses (distance/direction vectors).
Updates MemRefDependenceCheck to check and report on all memref access pairs at all loop nest depths.
Updates old and adds new memref dependence check tests.
Resolves multiple TODOs.

PiperOrigin-RevId: 220816515
2019-03-29 13:53:28 -07:00
Uday Bondhugula e0623d4b86 Automatic DMA generation for simple cases.
- constant bounded memory regions, static shapes, no handling of
  overlapping/duplicate regions (through union) for now; also only, load memory
  op's.
- add build methods for DmaStartOp, DmaWaitOp.
- move getMemoryRegion() into Analysis/Utils and expose it.
- fix addIndexSet, getMemoryRegion() post switch to exclusive upper bounds;
  update test cases for memref-bound-check and memref-dependence-check for
  exclusive bounds (missed in a previous CL)

PiperOrigin-RevId: 220729810
2019-03-29 13:53:14 -07:00
Alex Zinenko dafa6929d3 Clean up TensorType construction.
This CL introduces the following related changes:
- move tensor element type validity checking to a static member function
  TensorType::isValidElementType
- introduce get/getChecked similarly to MemRefType, where the checked function
  emits errors and returns nullptrs;
- remove duplicate element type validity checking from the parser and rely on
  the type constructor to emit errors instead.

PiperOrigin-RevId: 220694831
2019-03-29 13:52:59 -07:00
Alex Zinenko 8e711246e4 Clean up VectorType construction.
This CL introduces the following related changes:
- factor out element type validity checking to a static member function
  VectorType::isValidElementType;
- introduce get/getChecked similarly to MemRefType, where the checked function
  emits errors and returns nullptrs;
- remove duplicate element type validity checking from the parser and rely on
  the type constructor to emit errors instead.

PiperOrigin-RevId: 220693828
2019-03-29 13:52:46 -07:00
River Riddle 2fa4bc9fc8 Implement value type abstraction for locations.
Value type abstraction for locations differ from others in that a Location can NOT be null. NOTE: dyn_cast returns an Optional<T>.

PiperOrigin-RevId: 220682078
2019-03-29 13:52:31 -07:00
Uday Bondhugula 23ddd577ef Complete migration to exclusive upper bound
cl/220448963 had missed a part of the updates.

- while on this, clean up some of the test cases to use ops' custom forms.

PiperOrigin-RevId: 220675303
2019-03-29 13:52:17 -07:00
Jacques Pienaar 76bbe2cff6 Add lookupPassInfo to enable querying the pass info for a pass.
The short term use would be in querying the pass name when reporting errors.

PiperOrigin-RevId: 220665532
2019-03-29 13:52:03 -07:00
MLIR Team cd051dc634 Bug fixes in FlatAffineConstraints. Tests cases that discovered these in follow up CL on memref dependence checks.
PiperOrigin-RevId: 220632386
2019-03-29 13:51:47 -07:00
Alex Zinenko 846e48d16f Allow vector types to have index elements.
It is unclear why vector types were not allowed to have "index" as element
type.  Index values are integers, although of unknown bit width, and should
behave as such.  Vectors of integers are allowed and so are tensors of indices
(for indirection purposes), it is more consistent to also have vectors of
indices.

PiperOrigin-RevId: 220630123
2019-03-29 13:51:33 -07:00
Alex Zinenko ac2a655e87 Enable arithmetics for index types.
Arithmetic and comparison instructions are necessary to implement, e.g.,
control flow when lowering MLFunctions to CFGFunctions.  (While it is possible
to replace some of the arithmetics by affine_apply instructions for loop
bounds, it is still necessary for loop bounds checking, steps, if-conditions,
non-trivial memref subscripts, etc.)  Furthermore, working with indirect
accesses in, e.g., lookup tables for large embeddings, may require operating on
tensors of indexes.  For example, the equivalents to C code "LUT[Index[i]]" or
"ResultIndex[i] = i + j" where i, j are loop induction variables require the
arithmetics on indices as well as the possibility to operate on tensors
thereof.  Allow arithmetic and comparison operations to apply to index types by
declaring them integer-like.  Allow tensors whose element type is index for
indirection purposes.

The absence of vectors with "index" element type is explicitly tested, but the
only justification for this restriction in the CL introducing the test is
"because we don't need them".  Do NOT enable vectors of index types, although
it makes vector and tensor types inconsistent with respect to allowed element
types.

PiperOrigin-RevId: 220614055
2019-03-29 13:51:19 -07:00
Alex Zinenko cc82a94aff Materialize IndexType in the API.
Previously, index (aka affint) type was hidden under OtherType in the type API.
We will need to identify and operate on values of index types in the upcoming
MLFunc->CFGFunc(->LLVM) lowering passes.  Materialize index type into a
separate class and make it visible to LLVM RTTI hierarchy directly.
Practically, index is an integer type of unknown bit width and is accetable in
most places where regular integer types are.  This is purely an API change that
does not affect the IR.

After IndexType is separated out from OtherType, the remaining "other types"
are, in fact, TF-specific types only.  Further renaming may be of interest.

PiperOrigin-RevId: 220614026
2019-03-29 13:51:04 -07:00
Alex Zinenko 3a38a5d0d6 Introduce integer comparison operation.
This binary operation is applicable to integers, vectors and tensors thereof
similarly to binary arithmetic operations.  The operand types must match
exactly, and the shape of the result type is the same as that of the operands.
The element type of the result is always i1.  The kind of the comparison is
defined by the "predicate" integer attribute.  This attribute requests one of:
- equals to;
- not equals to;
- signed less than;
- signed less than or equals;
- signed greater than;
- signed greater than or equals;
- unsigned less than;
- unsigned less than or equals;
- unsigned greater than;
- unsigned greater than or equals.
Since integer values themselves do not have a sign, the comparison operator
specifies whether to use signed or unsigned comparison logic, i.e. whether to
interpret values where the foremost bit is set as negatives expressed as two's
complements or as positive values.  For non-scalar operands, pairwise
per-element comparison is performed.  Comparison operators on scalars are
necessary to implement basic control flow with conditional branches.

PiperOrigin-RevId: 220613566
2019-03-29 13:50:49 -07:00
Jacques Pienaar cc9a6ed09d Initialize Pass with PassID.
The passID is not currently stored in Pass but this avoids the unused variable warning. The passID is used to uniquely identify passes, currently this is only stored/used in PassInfo.

PiperOrigin-RevId: 220485662
2019-03-29 13:50:34 -07:00
Nicolas Vasilache cde8248753 [MLIR] Make upper bound implementation exclusive
This CL implement exclusive upper bound behavior as per b/116854378.
A followup CL will update the semantics of the for loop.

PiperOrigin-RevId: 220448963
2019-03-29 13:49:49 -07:00
Jacques Pienaar 6f0fb22723 Add static pass registration
Add static pass registration and change mlir-opt to use it. Future work is needed to refactor the registration for PassManager usage.

Change build targets to alwayslink to enforce registration.

PiperOrigin-RevId: 220390178
2019-03-29 13:49:34 -07:00
Alex Zinenko 559e816f3f Add OpTraits for operand types: IntegerLike and SameType.
Introduce new OpTraits verifying relation between operands of an Operation,
similarly to its results.  Arithmetic operations are defined separately for
integer and floating point types.  While we are currently leveraging the
equality of result and operand types to make sure the right arithmetic
operations are used for the right types, we may eventually want to verify
operand types directly.  Furthermore, for upcoming comparison operations, the
type of the result differs from those of the operands so we need to verify the
operand types directly.  Similarly, we will want to restrict comparisons (and
potentially binary arithmetic operations) to operands of the same type.

PiperOrigin-RevId: 220365629
2019-03-29 13:49:19 -07:00