We just need a way to unpack ArrayRef<ValueHandle> to ArrayRef<Value*>.
No need to expose this to the user.
This reduces the cognitive overhead for the tutorial.
PiperOrigin-RevId: 240037425
This also eliminates some incorrect reinterpret_cast logic working around it, and numerous const-incorrect issues (like block argument iteration).
PiperOrigin-RevId: 239712029
This eliminate ConstOpPointer (but keeps OpPointer for now) by making OpPointer
implicitly launder const in a const incorrect way. It will eventually go away
entirely, this is a progressive step towards the new const model.
PiperOrigin-RevId: 239512640
This CL fixes an issue where cloned loop induction variables were not properly
propagated and beefs up the corresponding test.
PiperOrigin-RevId: 239422961
This CL introduces a ValueArrayHandle helper to manage the implicit conversion
of ArrayRef<ValueHandle> -> ArrayRef<Value*> by converting first to ValueArrayHandle.
Without this, boilerplate operations that take ArrayRef<Value*> cannot be removed easily.
This all seems to boil down to decoupling Value from Type.
Alternative solutions exist (e.g. MLIR using Value by value everywhere) but they would be very intrusive. This seems to be the lowest impedance change.
Intrinsics are also lowercased by popular demand.
PiperOrigin-RevId: 238974125
This CL removes the dependency of LowerVectorTransfers on the AST version of EDSCs which will be retired.
This exhibited a pretty fundamental staging difference in AST-based vs declarative based emission.
Since the delayed creation with an AST was staged, the loop order came into existence after the clipping expressions were computed.
This now changes as the loops first need to be created declaratively in fixed order and then the clipping expressions are created.
Also, due to lack of staging, coalescing cannot be done on the fly anymore and
needs to be done either as a pre-pass (current implementation) or as a local transformation on the generated IR (future work).
Tests are updated accordingly.
PiperOrigin-RevId: 238971631
- this is really not a hard error; emit a warning instead (for inability to compute
footprint due to the union failing due to unimplemented cases)
- remove a misleading warning from LoopFusion.cpp
PiperOrigin-RevId: 238118711
- fix for getConstantBoundOnDimSize: floordiv -> ceildiv for extent
- make getConstantBoundOnDimSize also return the identifier upper bound
- fix unionBoundingBox to correctly use the divisor and upper bound identified by
getConstantBoundOnDimSize
- deal with loop step correctly in addAffineForOpDomain (covers most cases now)
- fully compose bound map / operands and simplify/canonicalize before adding
dim/symbol to FlatAffineConstraints; fixes false positives in -memref-bound-check; add
test case there
- expose mlir::isTopLevelSymbol from AffineOps
PiperOrigin-RevId: 238050395
multi-result upper bounds, complete TODOs, fix/improve test cases.
- complete TODOs for loop unroll/unroll-and-jam. Something as simple as
"for %i = 0 to %N" wasn't being unrolled earlier (unless it had been written
as "for %i = ()[s0] -> (0)()[%N] to %N"; addressed now.
- update/replace getTripCountExpr with buildTripCountMapAndOperands; makes it
more powerful as it composes inputs into it
- getCleanupLowerBound and getUnrolledLoopUpperBound actually needed the same
code; refactor and remove one.
- reorganize test cases, write previous ones better; most of these changes are
"label replacements".
- fix wrongly labeled test cases in unroll-jam.mlir
PiperOrigin-RevId: 238014653
- compute tile sizes based on a simple model that looks at memory footprints
(instead of using the hardcoded default value)
- adjust tile sizes to make them factors of trip counts based on an option
- update loop fusion CL options to allow setting maximal fusion at pass creation
- change an emitError to emitWarning (since it's not a hard error unless the client
treats it that way, in which case, it can emit one)
$ mlir-opt -debug-only=loop-tile -loop-tile test/Transforms/loop-tiling.mlir
test/Transforms/loop-tiling.mlir:81:3: note: using tile sizes [4 4 5 ]
for %i = 0 to 256 {
for %i0 = 0 to 256 step 4 {
for %i1 = 0 to 256 step 4 {
for %i2 = 0 to 250 step 5 {
for %i3 = #map4(%i0) to #map11(%i0) {
for %i4 = #map4(%i1) to #map11(%i1) {
for %i5 = #map4(%i2) to #map12(%i2) {
%0 = load %arg0[%i3, %i5] : memref<8x8xvector<64xf32>>
%1 = load %arg1[%i5, %i4] : memref<8x8xvector<64xf32>>
%2 = load %arg2[%i3, %i4] : memref<8x8xvector<64xf32>>
%3 = mulf %0, %1 : vector<64xf32>
%4 = addf %2, %3 : vector<64xf32>
store %4, %arg2[%i3, %i4] : memref<8x8xvector<64xf32>>
}
}
}
}
}
}
PiperOrigin-RevId: 237461836
* bool succeeded(Status)
- Return if the status corresponds to a success value.
* bool failed(Status)
- Return if the status corresponds to a failure value.
PiperOrigin-RevId: 237153884
Adds utility to convert slice bounds to a FlatAffineConstraints representation.
Adds utility to FlatAffineConstraints to promote loop IV symbol identifiers to dim identifiers.
PiperOrigin-RevId: 236973261
- change this for consistency - everything else similar takes/returns a
Function pointer - the FuncBuilder ctor,
Block/Value/Instruction::getFunction(), etc.
- saves a whole bunch of &s everywhere
PiperOrigin-RevId: 236928761
This fixes a bug: previously, during conversion function argument
attributes were neither beings passed through nor converted. This fix
extends DialectConversion to allow for simultaneous conversion of the
function type and the argument attributes.
This was important when lowering MLIR to LLVM where attribute
information (e.g. noalias) needs to be preserved in MLIR(LLVMDialect).
Longer run it seems reasonable that we want to convert both the
function attribute and its type and the argument attributes, but that
requires a small refactoring in Function.h to aggregate these three
fields in an inner struct, which will require some discussion.
PiperOrigin-RevId: 236709409
An analysis can be any class, but it must provide the following:
* A constructor for a given IR unit.
struct MyAnalysis {
// Compute this analysis with the provided module.
MyAnalysis(Module *module);
};
Analyses can be accessed from a Pass by calling either the 'getAnalysisResult<AnalysisT>' or 'getCachedAnalysisResult<AnalysisT>' methods. A FunctionPass may query for a cached analysis on the parent module with 'getCachedModuleAnalysisResult'. Similary, a ModulePass may query an analysis, it doesn't need to be cached, on a child function with 'getFunctionAnalysisResult'.
By default, when running a pass all cached analyses are set to be invalidated. If no transformation was performed, a pass can use the method 'markAllAnalysesPreserved' to preserve all analysis results. As noted above, preserving specific analyses is not yet supported.
PiperOrigin-RevId: 236505642
This CL changes dialect op source files (.h, .cpp, .td) to follow the following
convention:
<full-dialect-name>/<dialect-namespace>Ops.{h|cpp|td}
Builtin and standard dialects are specially treated, though. Both of them do
not have dialect namespace; the former is still named as BuiltinOps.* and the
latter is named as Ops.*.
Purely mechanical. NFC.
PiperOrigin-RevId: 236371358
*) Breaks fusion pass into multiple sub passes over nodes in data dependence graph:
- first pass fuses single-use producers into their unique consumer.
- second pass enables fusing for input-reuse by fusing sibling nodes which read from the same memref, but which do not share dependence edges.
- third pass fuses remaining producers into their consumers (Note that the sibling fusion pass may have transformed a producer with multiple uses into a single-use producer).
*) Fusion for input reuse is enabled by computing a sibling node slice using the load/load accesses to the same memref, and fusion safety is guaranteed by checking that the sibling node memref write region (to a different memref) is preserved.
*) Enables output vector and output matrix computations from KFAC patches-second-moment operation to fuse into a single loop nest and reuse input from the image patches operation.
*) Adds a generic loop utilitiy for finding all sequential loops in a loop nest.
*) Adds and updates unit tests.
PiperOrigin-RevId: 236350987
LoopFusion
- getConstDifference in LoopFusion is pending a refactoring to handle bounds
with min's and max's; it currently asserts on some useful test cases that we
want to experiment with. This CL changes getSliceBounds to be more
conservative so as to not trigger the assertion. Filed b/126426796 to track this.
PiperOrigin-RevId: 235826538
- clean up loop fusion CL options for promoting local buffers to fast memory
space
- add parameters to loop fusion pass instantiation
PiperOrigin-RevId: 235813419
This CL adds a primitive to perform stripmining of a loop by a given factor and
sinking it under multiple target loops.
In turn this is used to implement imperfectly nested loop tiling (with interchange) by repeatedly calling the stripmineSink primitive.
The API returns the point loops and allows repeated invocations of tiling to achieve declarative, multi-level, imperfectly-nested tiling.
Note that this CL is only concerned with the mechanical aspects and does not worry about analysis and legality.
The API is demonstrated in an example which creates an EDSC block, emits the corresponding MLIR and applies imperfectly-nested tiling:
```cpp
auto block = edsc::block({
For(ArrayRef<edsc::Expr>{i, j}, {zero, zero}, {M, N}, {one, one}, {
For(k1, zero, O, one, {
C({i, j, k1}) = A({i, j, k1}) + B({i, j, k1})
}),
For(k2, zero, O, one, {
C({i, j, k2}) = A({i, j, k2}) + B({i, j, k2})
}),
}),
});
// clang-format on
emitter.emitStmts(block.getBody());
auto l_i = emitter.getAffineForOp(i), l_j = emitter.getAffineForOp(j),
l_k1 = emitter.getAffineForOp(k1), l_k2 = emitter.getAffineForOp(k2);
auto indicesL1 = mlir::tile({l_i, l_j}, {512, 1024}, {l_k1, l_k2});
auto l_ii1 = indicesL1[0][0], l_jj1 = indicesL1[1][0];
mlir::tile({l_jj1, l_ii1}, {32, 16}, l_jj1);
```
The edsc::Expr for the induction variables (i, j, k_1, k_2) provide the programmatic hooks from which tiling can be applied declaratively.
PiperOrigin-RevId: 235548228
Analysis - NFC
- refactor AffineExprFlattener (-> SimpleAffineExprFlattener) so that it
doesn't depend on FlatAffineConstraints, and so that FlatAffineConstraints
could be moved out of IR/; the simplification that the IR needs for
AffineExpr's doesn't depend on FlatAffineConstraints
- have AffineExprFlattener derive from SimpleAffineExprFlattener to use for
all Analysis/Transforms purposes; override addLocalFloorDivId in the derived
class
- turn addAffineForOpDomain into a method on FlatAffineConstraints
- turn AffineForOp::getAsValueMap into an AffineValueMap ctor
PiperOrigin-RevId: 235283610