tblgen be non-const. This requires introducing some const_cast's at the
moment, but those (and lots more stuff) will disappear in subsequent patches.
This significantly simplifies those patches because the various tblgen op emitters
get adjusted.
PiperOrigin-RevId: 239954566
This eliminate ConstOpPointer (but keeps OpPointer for now) by making OpPointer
implicitly launder const in a const incorrect way. It will eventually go away
entirely, this is a progressive step towards the new const model.
PiperOrigin-RevId: 239512640
* print-ir-before=(comma-separated-pass-list)
- Print the IR before each of the passes provided within the pass list.
* print-ir-before-all
- Print the IR before every pass in the pipeline.
* print-ir-after=(comma-separated-pass-list)
- Print the IR after each of the passes provided within the pass list.
* print-ir-after-all
- Print the IR after every pass in the pipeline.
* print-ir-module-scope
- Always print the Module IR, even for non module passes.
PiperOrigin-RevId: 238523649
* Separate MyAnalysis into MyFunctionAnalysis/MyModuleAnalysis to avoid potential confusion.
* Add an example of an inline lambda builder for PassPipelineRegistration.
* Clarify the wording on a few of the pass restrictions.
PiperOrigin-RevId: 237840325
These cleanups reflects some recent changes to the LLVM IR Dialect and the
infrastructure that affects it. In particular, add documentation on direct and
indirect function calls as well as remove the `call` and `call0` separation.
Change the prefix of custom types from `!llvm.type` to `!llvm` so that it
matches the IR. Remove the verifier check disallowing conditional branches to
the same block with arguments: identical arguments are now supported, and
different arguments will be caught later.
PiperOrigin-RevId: 237203452
Dialect attributes are defined as:
dialect-namespace `.` attr-name `:` attribute-value
Dialects can override any of the following hooks to verify the validity of a given attribute:
* verifyFunctionAttribute
* verifyFunctionArgAttribute
* verifyInstructionAttribute
PiperOrigin-RevId: 236507970
When lowering to MLIR(LLVMDialect) we unbox the structs that result
from converting static memrefs, that is, singleton structs
that just contain a raw pointer. This allows us to get rid of all
"extractvalue" instructions in the common case where shapes are fully
known.
PiperOrigin-RevId: 235706021
Since the goal of the LLVM IR dialect is to reflect LLVM IR in MLIR, the
dialect and the conversion procedure must account for the differences betweeen
block arguments and LLVM IR PHI nodes. In particular, LLVM IR disallows PHI
nodes with different values coming from the same source. Therefore, the LLVM IR
dialect now disallows `cond_br` operations that have identical successors
accepting arguments, which would lead to invalid PHI nodes. The conversion
process resolves the potential PHI source ambiguity by injecting dummy blocks
if the same block is used more than once as a successor in an instruction.
These dummy blocks branch unconditionally to the original successors, pass them
the original operands (available in the dummy block because it is dominated by
the original block) and are used instead of them in the original terminator
operation.
PiperOrigin-RevId: 235682798
Addressing post-submit comments. The `getelementptr` operation now supports
non-constant indexes, similarly to LLVM, and this functionality is exercised by
the lowering to the dialect. Update the documentation accordingly.
List the values of integer comparison predicates, which currently correspond to
those of CmpIOp in MLIR. Ideally, we would use strings instead, but it
requires additional support for argument conversion in both the dialect
lowering pass and the LLVM translator.
PiperOrigin-RevId: 235678877
Add a documentation page on the key points of the conversion to LLVM IR. This
focuses on the aspects of conversion that are relevant for integration of the
LLVM IR dialect (and produced LLVM IR that is mostly a one-to-one translation)
into other projects. In particular, it describes the type conversion rules and
the memref model supporting dynamic sizes.
PiperOrigin-RevId: 235190772
The LLVM IR pass was bootstrapped without user documentation, following LLVM's
language reference and existing conversions between MLIR standard operations
and LLVM IR instructions. Provide concise documentation of the LLVM IR dialect
operations. This documentation does not describe the semantics of the
operations, which should match that of LLVM IR, but highlights the structural
differences in operation definitions, in particular using attributes instead of
constant-only values. It also describes pseudo-operations that exist only to
make the LLVM IR dialect self-contained within MLIR.
While it could have been possible to generate operation description from
TableGen, this opts for a more concise format where groups of related
operations are described together.
PiperOrigin-RevId: 235149136
Aggregate types where at least one dimension is zero do not fully make sense as
they cannot contain any values (their total size is zero). However, TensorFlow
and XLA support tensors with zero sizes, so we must support those too. This is
relatively safe since, unlike vectors and memrefs, we don't have first-class
element accessors for MLIR tensors.
To support sparse element attributes of vector types that have no non-zero
elements, make sure that index and value element attributes have tensor type so
that we never need to create a zero vector type internally. Note that this is
already consistent with the inline documentation of the sparse elements
attribute. Users of the sparse elements attribute should not rely on the
storage schema anyway.
PiperOrigin-RevId: 232896707
Existing IR syntax is ambiguous in type declarations in presence of zero sizes.
In particular, `0x1` in the type size can be interpreted as either a
hexadecimal literal corresponding to 1, or as two distinct decimal literals
separated by an `x` for sizes. Furthermore, the shape `<0xi32>` fails lexing
because it is expected to be an integer literal.
Fix the lexer to treat `0xi32` as an integer literal `0` followed by a bare
identifier `xi32` (look one character ahead and early return instead of
erroring out).
Disallow hexadecimal literals in type declarations and forcibly split the token
into multiple parts while parsing the type. Note that the splitting trick has
been already present to separate the element type from the preceding `x`
character.
PiperOrigin-RevId: 232880373
Existing type syntax contains the following productions:
function-type ::= type-list-parens `->` type-list
type-list ::= type | type-list-parens
type ::= <..> | function-type
Due to these rules, when the parser sees `->` followed by `(`, it cannot
disambiguate if `(` starts a parenthesized list of function result types, or a
parenthesized list of operands of another function type, returned from the
current function. We would need an unknown amount of lookahead to try to find
the `->` at the right level of function nesting to differentiate between type
lists and singular function types.
Instead, require the result type of the function that is a function type itself
to be always parenthesized, at the syntax level. Update the spec and the
parser to correspond to the production rule names used in the spec (although it
would have worked without modifications). Fix the function type parsing bug in
the process, as it used to accept the non-parenthesized list of types for
arguments, disallowed by the spec.
PiperOrigin-RevId: 232528361
They are essentially both modelling MLIR OpTrait; the former achieves the
purpose via introducing corresponding symbols in TableGen, while the latter
just uses plain strings.
Unify them to provide a single mechanism to avoid confusion and to better
reflect the definitions on MLIR C++ side.
Ideally we should be able to deduce lots of these traits automatically via
other bits of op definitions instead of manually specifying them; but not
for now though.
PiperOrigin-RevId: 232191401
This commit introduces a generic dialect conversion/lowering/legalization pass
and illustrates it on StandardOps->LLVMIR conversion.
It partially reuses the PatternRewriter infrastructure and adds the following
functionality:
- an actual pass;
- non-default pattern constructors;
- one-to-many rewrites;
- rewriting terminators with successors;
- not applying patterns iteratively (unlike the existing greedy rewrite driver);
- ability to change function signature;
- ability to change basic block argument types.
The latter two things required, given the existing API, to create new functions
in the same module. Eventually, this should converge with the rest of
PatternRewriter. However, we may want to keep two pass versions: "heavy" with
function/block argument conversion and "light" that only touches operations.
This pass creates new functions within a module as a means to change function
signature, then creates new blocks with converted argument types in the new
function. Then, it traverses the CFG in DFS-preorder to make sure defs are
converted before uses in the dominated blocks. The generic pass has a minimal
interface with two hooks: one to fill in the set of patterns, and another one
to convert types for functions and blocks. The patterns are defined as
separate classes that can be table-generated in the future.
The LLVM IR lowering pass partially inherits from the existing LLVM IR
translator, in particular for type conversion. It defines a conversion pattern
template, instantiated for different operations, and is a good candidate for
tablegen. The lowering does not yet support loads and stores and is not
connected to the translator as it would have broken the existing flows. Future
patches will add missing support before switching the translator in a single
patch.
PiperOrigin-RevId: 230951202
This CL just changes various docs and comments to use the term "generic" and
"custom" when mentioning assembly forms. To be consist, several methods are
also renamed:
* FunctionParser::parseVerboseOperation() -> parseGenericOperation()
* ModuleState::hasShorthandForm() -> hasCustomForm()
* OpAsmPrinter::printDefaultOp() -> printGenericOp()
PiperOrigin-RevId: 230568819
This CL performs a bunch of cleanups related to EDSCs that are generally
useful in the context of using them with a simple wrapping C API (not in this
CL) and with simple language bindings to Python and Swift.
PiperOrigin-RevId: 230066505
Start simple with single predicate match & transform rules for attributes.
* Its unclear whether modelling Attr predicates will be needed so start with allowing matching attributes with a single predicate.
* The input and output attr type often differs and so add ability to specify a transform between the input and output format.
PiperOrigin-RevId: 229580879